The Influence of Explosive Loads on the Strength of Shallow Underground Bomb Shelters
DOI:
https://doi.org/10.32347/2410-2547.2025.115.175-185Keywords:
engineering structures, numerical modeling, finite element method, stress-strain state, structural interactions, mathematical models, soil base, explosive loads, strengthAbstract
This study investigates the impact of explosive loads on the strength of shallow underground bomb shelters under the detonation of a kamikaze drone warhead with a 90 kg TNT equivalent. A numerical modeling methodology is proposed, employing the finite element method in the ABAQUS software with a coupled Eulerian-Lagrangian approach. The JWL equation of state is used to describe the behavior of explosives, the Concrete Damaged Plasticity model accounts for damage and degradation in concrete, and the Johnson-Cook model simulates the nonlinear elastic-plastic properties and failure of steel. The stress-strain state of the shelter’s structures and soil base is analyzed, alongside pressure changes in the soil and the dimensions of the resulting crater. The numerical results are validated by comparison with empirical relationships derived from field tests, including those by Gould and Cooper. It is found that the shelter’s entrance groups facilitate blast wave penetration, leading to localized damage and failure of load-bearing structures, particularly near entrances. A modified shelter design is proposed, with entrance groups separated from the main structure and a damping soil backfill, significantly reducing the blast wave’s impact and preserving structural integrity. To enhance resilience, it is recommended to position entrance groups at a maximum distance from the shelter, incorporating a system of two to three airlock chambers with hermetic armored doors, aligning with Swiss standards. Future research will involve full-scale tests to calibrate model parameters and refine finite element removal algorithms for more accurate simulation of physical processes.
References
Koval M.V., Koval V.V., Bilyk A.S., Kotsiuruba V.I., Kubrakov O.M. Osnovy inzhenernoho zakhystu obiektiv krytychnoi infrastruktury enerhetychnoi haluzi Ukrainy vid zasobiv povitrianoho napadu protyvnyka (monohrafiia) (Fundamentals of engineering protection of critical infrastructure facilities of the energy sector of Ukraine against enemy air attack (monograph)) // Vydavnytstvo Lira-K.- K.: 2023.Heneralnyi shtab Zbroinykh Syl Ukrainy. – 185 s. ISBN 978-617-520-660-7.
DBN V.2.2-5:2023. Zakhysni sporudy tsyvilnoho zakhystu (Civil defense structures). — Kyiv: Mininfrastruktury Ukrainy, 2023. — 78 s.
TWK 2017. Technische Weisungen für die Konstruktion und Bemessung von Schutzbauten. Bern: Bundesamt für Bevölkerungsschutz, 2017. — 180 s.
Federal Emergency Management Agency (FEMA 453). Safe Rooms and Shelters: Protecting People Against Terrorist Attacks. — Washington, D.C. FEMA, May 2006. 263 p.
Wytyczne Szefa Obrony Cywilnej Kraju z dnia 04.12.2018 р. Zasady postępowania z zasobami budownictwa ochronnego. Warszawa: Szef Obrony Cywilnej Kraju, 2018.
Gould, K.E. “High-Explosive Field Tests: Explosion Phenomena and Environmental Impacts.” DNA 6187F. Washington, DC: Defense Nuclear Agency. October 1981.
Cooper, P.W. Explosives Engineering. Hoboken, New Jersey: John Wiley & Sons, Inc. 1996.
Lee E.L., Hornig H.C., Kury J.W. Adiabatic Expansion of High Explosive Detonation Products / E.L. Lee, H.C. Hornig, J.W. Kury // Lawrence Livermore National Laboratory, University of California, Livermore. — Report UCRL-50422. — 1968. — 45 p.
Pan Z., Jiang N., Zhou J., Zhang P. Dynamic behavior of detonation waves in millimeter-scale tubes: Unraveling the influence of tube diameter, initial pressure, and mixture / Z. Pan, N. Jiang, J. Zhou, P. Zhang // Experiments in Fluids. — 2024. — Vol. 65. — Article 13. https://doi.org/10.1007/s00348-023-03744-2.
Sow S., Radulescu M.I. Minimum tube diameters for steady propagation of gaseous detonations / S. Sow, M.I. Radulescu // Shock Waves. — 2014. — Vol. 24. — P. 447–457. https://doi.org/10.1007/s00193-014-0505-8.
Lee J., Fenves G.L. Plastic-damage model for cyclic loading of concrete structures // Journal of Engineering Mechanics. – 1998. – Vol. 124. – P. 892–900.
Lubliner J., Oliver J., Oller S., Oñate E. A plastic-damage model for concrete // International Journal of Solids and Structures. — 1989. — Vol. 25, No. 3. — С. 299–329.
Chen L., Fang Q., Jiang X. Q., Zhang Y. X. Combined effects of high temperature and high strain rate on normal weight concrete // International Journal of Impact Engineering. — 2015. — Vol. 86. — С. 40–56.
Fang Q., Huan Y., Chen L., Zhang Y. X. Explicit analysis elements of strain rate type RC beam-column and its implementation in ABAQUS software // Engineering Mechanics. — 2013. — Vol. 30, No. 5. — С. 49–55.
Johnson, G.R., Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures // Proceedings of the 7th International Symposium on Ballistics. – 1983. – P. 541–547.
Sirigiri, V.K.R., Gudiga, V.Y., Gattu, U.S., Suneesh, G., Buddaraju, K.M. A review on Johnson Cook material model // Materials Today: Proceedings. – 2022. – Vol. 62. – P. 3450–3456. DOI: https://doi.org/10.1016/j.matpr.2022.02.016.
Dassault Systèmes Simulia Corp. ABAQUS Analysis User’s Manual, Version 6.12. — Providence, Rhode Island : Dassault Systèmes Simulia Corp., 2012.
DOD. “Fundamentals of Protective Design for Conventional Weapons.” TM 5–855–1. Arlington, Virginia: Department of Defense. 1986.
Chowdhury A. H. Characterizing Explosive Effects on Underground Structures / A. H. Chowdhury, T. E. Wilt. — Washington, DC : U.S. Nuclear Regulatory Commission, 2015. — 97 p. — (NUREG/CR-7201). https://www.nrc.gov/docs/ML1524/ML15245A640.pdf.
Nagy, N., M. Mohamed, and J.C. Boot. “Nonlinear Numerical Modelling for the Effects of Surface Explosions on Buried Reinforced Concrete Structures.” Geomechanics and Engineering. Vol. 2. pp. 1–18. 2010.
Gould, K.E. “High-Explosive Field Tests: Explosion Phenomena and Environmental Impacts.” DNA 6187F. Washington, DC: Defense Nuclear Agency. October 1981.
Cooper, P.W. Explosives Engineering. Hoboken, New Jersey: John Wiley & Sons, Inc. 1996.
Rehman S. U. Finite Element Analysis of Impact-perforated Reinforced Concrete Slabs / S. U. Rehman. — Espoo : Aalto University, 2017. 72 p. https://aaltodoc.aalto.fi/bitstream/ handle/123456789/29336/ master_Rehman_Safi_2017.pdf? isAllowed=y&sequence=2.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.