Glued laminated timber beam reinforced with composite strips

Authors

DOI:

https://doi.org/10.32347/2410-2547.2025.115.43-62

Keywords:

composite strips, deformations, electrostrain measurement, glued laminated timber, glued timber structures, reinforcement of glued laminated timber, stress–strain state, stresses

Abstract

Abstract. Modern trends in the development of the construction industry demand increased attention to environmental aspects. This leads to the growing popularity of materials that are environmentally friendly and have minimal negative impact on the environment. At the same time, such materials must possess high strength and resistance to external influences and loads. In this context, timber structures are gaining widespread use. They are made from renewable natural resources and are characterized by relatively high strength and low weight, which qualifies them as sustainable building materials. Despite certain disadvantages of wood, such as shrinkage, decay, and anisotropic physical and mechanical properties, these drawbacks can be almost completely eliminated in glued laminated timber structures. In particular, glued laminated timber beams are key elements in many structures and are widely used in construction. Therefore, the issue of increasing their stiffness and strength through reinforcement with composite materials is especially relevant.

This paper proposes a reinforcement technology, a methodology for determining the stress–strain state, and a calculation method for glued laminated timber beams reinforced with composite strips. The results of deformation parameters of the experimental model are presented, including actual flexural modules of elasticity, maximum longitudinal stresses at mid-span, at the load application axis, and at the support axis. The actual maximum load-bearing capacity of the experimental model reinforced with composite strips is determined and compared with numerical studies conducted in a modern software package.

Author Biographies

Denys Mykhailovskyi, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Professor of the Department of Metal and Wooden Structures

Oleksandr Panchenko, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor of the Department of Reinforced Concrete and Stone Structures, Director of SIKA Ukraine LLC

Mykola Komar, State Enterprise "State Scientific and Technical Center for Nuclear and Radiation Safety"

Doctor of Philosophy, Junior Researcher

References

Mykhailovskyi D.V. Svitovyi dosvid i perspektyvy rozvytku bahatopoverkhovoho budivnytstva z derevyny (World experience and prospects for the development of multi-storey wooden construction) // "Visnyk Odeskoi derzhavnoi akademii budivnytstva i arkhitektury" Vypusk 61, 2016; Odesa: ODABA, 2016. - 468 s. - S. 270 - 277.

Mykhailovskyi D.V. Zastosuvannia derevyny ta derevynnykh materialiv u budivnytstvi (Use of wood and wood-based materials in construction) // Mezhdunarodnыi ynformatsyonno-tekhnycheskyi zhurnal Oborudovanye y ynstrument dlia professyonalov (derevoobrabotka) - №4 / 199. Kharkiv, 2017. 80 s. S.40 – 44.

Surmai M. I. Mitsnist ta deformatyvnist doshchatokleienykh balok armovanykh skloplastykovoiu ta bazaltovoiu armaturoiu. Dysertatsiia na zdobuttia naukovoho stupenia kandydata tekhnichnykh nauk (Strength and deformability of glued laminated beams reinforced with fiberglass and basalt reinforcement. Dissertation for the degree of Candidate of Technical Sciences.) // Natsionalnyi universytet «Lvivska Politekhnika» // na pravakh rukopysu. Lviv. 2015. – 185 s.

Atlas dereviannikh konstruktsyi (Atlas of wooden structures) / K.-H.Hёtts, D. Khoor, K. Mёler, Yu. Natterer. – Stroiyzdat, 1985. – 272 s.

Monasevych A. D. Sostavnie derevyannie i zhelezo-derevyannie obolochki (Composite wooden and iron-wooden shells) / A. D. Monasevych. // Vestnik inzhenerov i tekhnikov. – 1937. – №1. – S. 12 – 17.

Borysiuk O. P., Melnyk S. V. Pidsylennia zghynalnykh zalizobetonnykh konstruktsii suchasnymy materialamy (Strengthening of bending reinforced concrete structures with modern materials) Resursoekonomni materialy, konstruktsii, budivli ta sporudy: zb. nauk. prats. Rivne, 2010. Vyp. 20. S. 459-465.

Ziatiuk Yu. Yu. Operatsiinist tekhnolohii vykonannia robit pry pidsylenni doslidnykh zalizobetonnykh zrazkiv (materialamy firmy Sika) (Efficiency of work execution technology during the strengthening of experimental reinforced concrete specimens (using Sika company materials)) Resursoekonomni materialy, konstruktsii, budivli ta sporudy: zb. nauk. prats. Rivne, 2016. S. 466-475.

Melnyk S. V. Doslidzhennia nesuchoi zdatnosti pokhylykh pereriziv zalizobetonnykh balok, pidsylenykh nakleienymy vuhleplastykovymy materialamy (Investigation of the load-bearing capacity of inclined sections of reinforced concrete beams strengthened with bonded carbon fiber materials) Haluzeve mashynobuduvannia, budivnytstvo: zb. nauk. prats Poltavskoho natsionalnoho tekhnichnoho universytetu im. Yu. Kondratiuka. Poltava, 2012. Vyp. 2(32). T. 1. S. 151

Homon S., Polishchuk M. Vlashtuvannia kombinovanoho armuvannia balok iz kleienoi derevyny (Installation of combined reinforcement in glued laminated timber beams) // Visnyk Lvivskoho Natsionalnoho Ahrarnoho Universytetu Arkhitektura i silskohospodarske budivnytstvo № 20 - 2019 r. st. 44-49.

Bashynskyi O. I., Bodnarchuk T.B., Peleshko M.Z. Nesucha zdatnist ta vohnestiikist derevianykh balok armovanykh zovnishnoiu strichkovoiu armaturoiu (Bearing capacity and fire resistance of wooden beams reinforced with external strip reinforcement) // Visnyk Lvivskoho derzhavnoho universytetu bezpeky zhyttiediialnosti. - 2014. - № 9. - S. 184-189.

Mykhailovskyi D.V., Komar M.A. Analiz doslidzhen zastosuvannia kompozytnykh strichok dlia pidsylennia derevianykh konstruktsii (Analysis of research on the use of composite tapes for strengthening wooden structures) / Mykhailovskyi D. V., Komar M. A. // Budivelni konstruktsii, teoriia i praktyka №10 KNUBA, 2022. – 165 s. DOI: https://doi.org/10.32347/2522-4182.10.2022.4-10 - S. 4 - 10.

Mykhailovskyi D.V., Komar O.A., Komar M.A. Engineering method of calculating laminated timber elements reinforced with composite tapes // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2022. – Issue 109. – S. 239-262.

EN1995-1-1:2008: Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings, European Committee for Standardization CEN, Bruxelles, Belgium, 2008. 121 p.

DBN V.2.6-161:2017 «Dereviani konstruktsii. Osnovni polozhennia.» (Wooden structures. General provisions) / kerivnyk rozrobky: Fursov V.V., vidpovidalnyi vykonavets: Mykhailovskyi D.V., Naichuk A.Ia. ta inshi // - Kyiv, "Ukrarkhbudinform" 2017. – 125 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206040010000001 (Technical data sheet of the material. Identification number №: 020206040010000001) Sikadur® -30. Klei, 2-kh komponentnyi epoksydnyi klei dlia nakleiuvannia armuvannia. Liutyi 2022, Versiia 04.01, 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206040010000004 (Technical data sheet of the material. Identification number №: 020206040010000004) Sikadur® -330. Tyksotropnyi epoksydnyi klei dlia imprehnatsii konstruktyvnykh poloten SikaWrap®. Berezen 2022, Versiia 04.01. 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206010010000040 (Technical data sheet of the material. Identification number №: 020206010010000040) Sika® CarbDur ® S Strichky z vuhletsevykh volokon dlia pidsylennia konstruktsii - skladova chastyna systemy Sika® CarboDur® System. Berezen 2018, Versiia 05.01. 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206020010000025 (Technical data sheet of the material. Identification number №: 020206020010000025) SikaWrap® -230 C/45. Tkanyna z odnonapriamlenykh vuhletsevykh volokon dlia pidsylennia budivelnykh Konstruktsii, chastyna systemy pidsylennia SIKA®., Liutyi 2018, Versiia 02.01. 4 s.

Komar M.A., Mykhailovskyi D.V. Definition of the stress-strain state of a glued laminated timber beam reinforced with composite strips using experimental method / Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2024. – Issue 112. – P. 43-51.

Mykhailovskyi D.V. Vrakhuvannia diisnoho napruzheno-deformovanoho stanu u vuzlakh ta elementakh konstruktsii z kleienoi derevyny (Consideration of the actual stress-strain state in the joints and elements of glued wooden structures) / Dysertatsiia na zdobuttia naukovoho stupenia doktora tekhnichnykh nauk // Kyivskyi natsionalnyi universytet budivnytstva i arkhitektury// na pravakh rukopysu. Kyiv. 2020. – 420 s.

DSTU-N B V.2.6-184:2012 “Konstruktsiyi z tsilʹnoyi i kleyenoyi derevyny. Nastanova z proektuvannya” (Structures made of solid and glued wood. Design guidelines) - Kyiv, “Ukrarkhbudinform” 2013. – 120s.

Kumar V., Smith J., Lee H. Environmental impact assessment of mass timber buildings / ScienceDirect. – 2024. – P. 112-120.

Goodwin J. Strengthening of glued-laminated timber beams using near-surface mounted reinforcing bars / ScienceDirect. – 2025. – P. 58-67.

Wdowiak-Postulak A., Kowalski P., Nowak M. Application of composite bars in wooden, full-scale beams / PMC. – 2024. – P. 33-45.

Toumpanaki E., Stylianidis K., Voulgaridis E. Glued-in CFRP and GFRP rods in block laminated timber beams / ScienceDirect. – 2021. – P. 77-88.

Roos A. Beliefs on environmental impact of wood construction / Taylor & Francis Online. – 2023. – P. 101-110.

Celik H.K., Sakar G., Isleem H.F. A comparative study of the analysis model for timber structures: Addressing nonlinearities and connection behaviour / BioResources. – 2025. – Vol. 20, Issue 2. – P. 3587–3603.

Alkhudery H.H., Alhajali S., Alhajali M. Experimental and theoretical investigation of the structural performance of unreinforced glulam beams under bending / De Gruyter Brill. – 2023. – P. 1–10.

He M., Zhang L., Zhang X. An experimental and analytical study on the bending performance of unreinforced glulam beams / Frontiers in Materials. – 2021. – Vol. 8. – Article 802249.

Kossakowski P.G., Wdowiak-Postulak A., Kowalski P. New advances in strengthening of structural timber / PubMed Central. – 2024. – Article PMC11173611.

Danzer J., Blass H.J., Grosse C.U. Reinforcement of timber structures versus unreinforced timber structures: A comparative study / Proceedings of the 12th World Conference on Timber Engineering. – 2022. – P. 1–10.

Brashaw B.R. Wood as a Renewable and Sustainable Resource / Forest Products Laboratory, USDA Forest Service. – 2019. – P. 1–10.

Firoozi A.A., Firoozi A., Oyejobi D.O., Avudaiappan S., Flores E.S. Emerging Trends in Sustainable Building Materials: Technological Innovations, Enhanced Performance, and Future Directions / Results in Engineering. – 2024. – Vol. 24. – Article 103521.

Tupenaite L., Kanapeckiene L., Naimaviciene J., Kaklauskas A., Gecys T. Timber Construction as a Solution to Climate Change: A Systematic Literature Review / Buildings. – 2023. – Vol. 13, Issue 4. – Article 976.

Ramage M.H. The Wood from the Trees: The Use of Timber in Construction / Renewable and Sustainable Energy Reviews. – 2017. – Vol. 68. – P. 333–359.

Downloads

Published

2025-10-30

Issue

Section

Статті