Stress state of a laminated beam under normal load

Authors

DOI:

https://doi.org/10.32347/2410-2547.2025.114.276-283

Keywords:

layered beam, load, deformation, stress, Eri stress function, mechanical properties of the layer material

Abstract

An analytical method for determining the bending stresses of a beam of a layered structure with an arbitrary number of layers, including the last layer of semi-infinite thickness, is proposed. The method consists in taking the indicators of the stress-strain state of the layers using the Eri stress functions of the linear theory of elasticity. They are taken in the form of sums of products of exponential and trigonometric functions and such products multiplied by the coordinate of the axis normal to the beam. Based on the boundary conditions, conditions of compatibility and continuity of deformation of the connected layers, a system of linear algebraic equations is formulated. The solutions of the systems are found to the values of the coefficients of the stress functions. The known coefficients of the Eri functions allow determining the stress-strain state of the layers of the beam. The cases of supporting the beam by parts of its surface and its holding by the ends are considered. The following is established. Compressive deformations are small relative to deflection deformations provided that the length of the beam significantly exceeds its thickness. The calculated deflection of the lower surface of the beam is close to parabolic in nature. The dimensions of the supporting surfaces exceeding 1% of its length significantly affect its deflection - they reduce it. The analytically determined average deflection of the beam is 0.7% less than the deflection calculated by the methods of material resistance. Beam deflections also depend on the properties of the material of the beam layers, so the increase in Poisson's ratio from a minimum, equal to zero, to a practically maximum, taken equal to 0,45, leads to a decrease in the deflections of the surfaces of the layers. The decrease does not exceed 10%. The proposed method is based on the provisions of the linear theory of elasticity. The transformations are carried out without simplifications. The results obtained do not contradict the results obtained by the methods of material resistance, within the limits of the linear formulation have a sufficiently high level of reliability. They can be used to calculate the stress-strain state of beams of a layered structure of rectangular cross-section, including beams on an elastic base.

Author Biographies

Ivan Belmas, Dnipro State Technical University

Doctor of Technical Sciences, Professor, Head of the Department of Mechanical Engineering Technologies and Engineering

Olena Bilous, Dnipro State Technical University

Candidate of Technical Sciences, Associate Professor of the Department of Industrial Mechanical Engineering

Anna Tantsura, Dnipro State Technical University

Candidate of Technical Sciences, Associate Professor of the Department of Industrial Mechanical Engineering

Dmytro Kovriga, Dnipro State Technical University

PhD student

Serhii Chumak, Dnipro State Technical University

PhD student

References

Baida D. M., Voitsekhivskyi O. V., Popov V. O., Kotenko V. V. Nesucha zdatnist zalizobetonnykh mostovykh balok za pokhylymy pererizamy (Bearing capacity of reinforced concrete bridge beams by inclined sections.) // Nauk.-tekh. zbirnyk. Suchasni technologii, materialy i constructii v budivnyztvi. – 2024. – Tom. 21. – No. 1. – P. 6–13. DOI 10.31649/2311-1429-2024-1-6-13

Shvabyuk V. I., Rotko V. O., Rotko S. V. Utochnenny rozrakhunok pidsylenykh balok metodom pryvedenykh pereriziv (Refined calculation of reinforced beams by the method of reduced sections.) // Nauk.-tekh. zbirnyk. Suchasni technologii ta matody rozrakhunkiv u budivnyztvi. – 2017. – No. 7. – P. 273–278.

Shvabyuk V.I., Rotko S.V., Shvabyuk V.V., Uzhegova O.A., Kyslyuk D.Ya. Do problem vyznachennia zalychkovoi miznosti balok, pockodgenykh trichynamy (On the problem of determining the residual strength of beams damaged by cracks.) // Nauk.-tekh. Zbirnyk. Suchasni technologii ta matody rozrakhunkiv u budivnyztvi. – 2019. – No. 12. – P. 229–236. Doi : 10.36910/6775-2410-6208-2019-2(12)-28

Gomon S. S., Gomon P. S., Pavlyuk A. P. Rozrakhunok kosozignutykh derevianykh balok z vykoryctanniam deformaziinnoi modeli (Calculation of obliquely bent wooden beams using a deformation model). // Resursoekonomni materialy, konstrukzii budivli, ta sporudu. – 2018. – Vyp. 36. – P. 87–95. http://nbuv.gov.ua/UJRN/rmkbs_2018_36_13

Ugrimov S.V. Modeluvania naprugenno-deformovannogo ctanu sharuvatykh sharuvatykh ortotropnykh plastin na prugnii osnovi (Modeling of the stress-strain state of layered orthotropic plates on an elastic base) /S. V. Ugrimov, Yu. M. Tormosov, V. A. Kutsenko, I. V. Lebedinets // Wostokhno-Evropeyski gurnal peredovykh technologii. – 2014. – No. 5(7). – P. 4–9. http://nbuv.gov.ua/UJRN/Vejpte_2014_5%287%29__2

Opanasovych V. K., Slobodyan M. S. Bilash O. V. Chystyi zgyn polosy (balky) z dovilno orientovannoiy naskriznoiy trichynoiy. (Pure bending of a strip (beam) with an arbitrarily oriented through crack.) // Visnyk Kyivskogo Nationalnogo University. Sekzia fysico-mathematyhni nauky. – 2019. – No. 1. – P.142–145

Kozak R. P. Nesucha zdatnist tonkykh bagatocharovykh sklianovykh balok: dis…doktora filosofii: 192 – Budivnyztvo ta zyvilna ingeneria (Bearing capacity of thin multilayer glass beams: Diss… Ph.D.: 192 – Construction and civil engineering.) // Nationalnyi Universytet “Lvivska polytechnica”. – Lviv. – 2023. – 189 p.

Polishchuk M. V. Naprugenno-deformovannyi ctanzgynalnykh elementiv z kleenoi derevyvy: dis. doktora filosofii: 192 – Budivnyztvo ta zyvilna ingeneria (Stress-strain state of bending elements made of glued wood with combined reinforcement: Diss… Ph.D.: 192 – Construction and civil engineering.) // Nationalnyi Universytet wodnogo gospodarstva ta pryrodokorystuvannia. – Rivne. – 2023. – 168 p.

Gezentsvei Yu. I., Olevsky V. I., Volchok D. L., Olevsky O. V. Rozrakhunok vdoskonalenykh stalevykh balok budivel i sporud hirnycho-metalurhiinoho kompleksu (Calculation of improved steel beams of buildings and structures of the mining and metallurgical complex) // Opir materialiv i teoriia sporud: nauk.-tekh. zbirnyk – K.: KNUBA – 2021. – Vyp. 106. – P. 54-67.DOI: 10.32347/2410-2547.2021.106 54-67.

Biks Yu. S. Porivnialnyi analiz metodyk vyznachennya nesuchoi zdatnosti zalizobetonnykh balok za riznymy zalegnostyamy «naprugennya-deformazii» zgidno DBN B.2.6U98:2009.) (Comparative analysis of methods for determining the bearing capacity of reinforced concrete beams according to different dependencies of “stress - deformation” according to DBN V.2.6U98:2009.) // Nauk.-tekh. zbirnyk. Suchasni technologii, materialy i constructii v budivnyztvi. – 2022. – Vyp. 19. – No. 1. P. 21-31.DOI 10.31649/2311-1429-2022-1-21-31

Homeniuk S.I., Spitsya O.G. Analitykhny ta khyselnyi pidhody do rozvyannya zadakh teorii prugnosti dlya bagatocharobykh seredovych: monografya. Wydavnykhyi dim "Helvetica" (Analytical and numerical approaches to solving problems of the theory of elasticity for multilayer media: monograph. Publishing house "Helvetica".) – Kherson. –– 2018. – 128p.

Y. Luchko, I. M. Dobryansky. Utochnennyi rozrakhunok i doslidgennya naprugenno-deformovannogo ctanu balky pry zgyni (Refined calculation and study of the stress-strain state of a beam during bending.) // Visnyk Dnipropetrovskogo nationalnogo university zaliznykhnogo transportu. – 2010. – Vyp. 33. – P.155–160.

Luchko Y. Y., Dobryansky I. M., Ivanyk E. G. Vyznachennya naprugennogo ctanu balky metodamy teorii prugnosti (Determination of the stress state of a beam by methods of the theory of elasticity.) // Nauk.-tekh. zbirnyk. Suchasni technologii, materialy i constructii v budivnyztvi. – 2010. – Tom. 9. – Vyp. № 2. – P. 23-36.

Belmas I.V., Bilous O.I.¸ Tantsura G.I. Vyznachennia naprugenno-deformovannogo ctanu bagatocharovogo kompozytu (Determination of the stress-strain state of a multilayer composite.) // Opir materialiv i teoriia sporud: nauk.-tekh. zbirnyk – K.: KNUBA 2022. – Vyp. 109. – P. 426 – 440.DOI : 10.32347/2410-2547.2022.109.426-440.

Published

2025-04-25

Issue

Section

Статті