Multicriteria parametric optimization of the strength and weight of a shell of a minimum surface on a circular contour consisting of two inclined ellipses, taking into account geometric nonlinearity under thermal and power loading

Authors

DOI:

https://doi.org/10.32347/2410-2547.2025.114.265-275

Keywords:

optimization, parametric optimization, multicriteria optimization, objective function optimization, design variables, constraints, minimum surface envelopes, geometric nonlinearity, finite element method

Abstract

In the modern design of building spatial structures of the thin shell type, a new method of multicriteria parametric optimization under thermal and power loading with consideration of geometric nonlinearity has been developed. This approach to the design of the structure can be coordinated with the method of calculation for two groups of limit states. The first group of limit states includes strength and stability. The second group of limit states includes deflections and, for reinforced concrete structures, crack resistance.

External loads are taken into account in accordance with state building codes, which allow for safety factors to be taken into account with regulated safety factors for a combination of static thermal loads applied to finite elements. The calculation is performed using the finite element method in the Femap with Nastran calculation package. The optimization study is performed by connecting additional modules of our own software, which specify a pair of target Mises stress functions and the weight of the structure. The design variables are represented by the shell thickness of the minimum surface. The constraints are in the form of Mises stresses of 240 MPa, corresponding to the corresponding steel grade.

This research paper considers the object of study - a shell of minimal surface on a circular contour consisting of two inclined ellipses. This type of spatial thin shells makes it possible to use several types of optimal design simultaneously. The first type of optimal design is the optimization of the shape of the minimum surface hull, which is performed using application programs. The second type of optimal design is parametric optimization, which makes it possible to use the optimal thickness of the minimum surface shell. This approach to the design of spatial thin shells makes it possible to use minimum weight while maximizing the strength characteristics of the structure.

Numerical studies were carried out taking into account geometric nonlinearity. By taking into account the geometric nonlinearity, it was possible to take into account the actual stresses and displacements, which gave an additional optimization effect of 3% compared to the linear formulation. This approach to structural design makes it possible to use the optimization technique to calculate and design thin steel shells with minimal surfaces on real objects. This methodology has been verified by other authors.

Author Biographies

Hryhorii Ivanchenko, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Dean of the Faculty of Civil Engineering

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

Doctor of Philosophy, Associate Professor, Associate Professor of the Department of Theoretical Mechanics

References

Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P. Chyselna realizatsiia bahatokryterialnoi parametrychnoi optymizatsii obolonky minimalnoi poverkhni na kvadratnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multicriteria parametric optimization of minimum surface shellon a square contour under thermforce loading)// Strength of Materials and Theory of Structures: Scientific-and-technicalcollectedarticles – Kyiv: KNUBA, 2022. – Issue 109. – P. 50-65.

Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P., Grigoryеva L.O. Chyselne doslidzhennia parametrychnoi optymizatsii vymushenykh chastot kolyvannia obolonky minimalnoi poverkhni na trapetsevydnomu konturi pry termosylovomu navantazhenni (Numerical study of the parametric optimization of the force doscillation frequencies of theshell of a minimal surfaceon a trapezoidal contour under thermal and power loading) // Strength of Materials and Theory of Structures: Scientific-and-technicalcollectedarticles – Kyiv: KNUBA, 2023. – Issue 110. – P. 430-446.

Perelmuter A.V., Perelmuter M.A. Enerhetychna otsinka hranychnoho stanu fizychno neliniinoi konstruktsii (Energy-Based Assessment of the Ultimate Limit State of a Physically Nonlinear Structure) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUCA, 2024. – Issue 113. – P. 56- 62.

Ivanchenko H.M., Koshevyi O.O., Zatyliuk Gh.A Bahatokryterialna parametrychna optymizatsiia peremishchennia i vahy obolonky minimalnoi poverkhni na kruhlomu konturi, shcho skladaietsia iz dvokh pokhylykh elipsiv pry termosylovomu navantazhenni z urakhuvanniam heometrychnoi neliniinosti (Multi-criteria parametric optimization of the displacement and weight of a shell of a minimum surface on a circular contour consisting of two inclined ellipses under thermal and power loading with consideration of geometric nonlinearity) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2024. – Issue 112. – P. 209-221.

Koshevyi O.O. Optymalne proektuvannia tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttia. (Optimal design of cylindrical tanks with rigid coating shells) // Opirmaterialiv i teoriyasporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2019. – №. 103. – P. 253-265.

Rozhok L.S., Onishchenko А.M., Kruk L.A., Naidonova Z.М. Chyselnyi analiz napruzhenoho stanu netonkykh hofrovanykh tsylindrychnykh obolonok z neperervno-neodnoridnykh materialiv (Numerical analysis of the stress state of non-thin corrugated cylindrical shells made of continuous-inhomogeneous materials) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles – Kyiv: KNUBA, 2024. – Issue 113. – P. 108-115.

HotsulyakYe.O., Koshevyi O.P., MorskovYu.A. Chyselne modeliuvannia obolonok, utvorenykh minimalnymy poverkhniamy.. (Numerical modeling of shells formed byminimal surfaces). // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.- P.47-51.

Lizunov P.P., Pogorelova O.S., Postnikova T.G. Optymizatsiia konstruktsii vibroudarnoho dempfera za dopomohoiu instrumentariiu MATLAB (Optimization of a vibro-impact damper design using MATLAB tools) //Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA. 2024. – Issue 112. – P. 3-18.

Lizunov P.P., Lukianchenko O.O., Paliy O.M, Kostina O.V. Vlasni chastoty i formy parametrychnykh kolyvan obolonky rezervuaru z nedoskonalostiamy formy (Natural frequencies and modes of parametric vibrations of reservoir shell with shape imperfections) // Strength of Materials and Theory of Structures. – 2024. – Issue. 112. – Р. 58-66.

Dzyuba A.P., Safronova I.A., Levitina L.D. Chyslove ta eksperymentalne modeliuvannia povedinky hnuchkykh obolonkovykh elementiv konstruktsii (Numerical and experimental modeling of the behavior of flexible shell elements of structures) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUCA, 2023. – Issue 110. – P. 3-20.

Koshevoy A.P. Ustoychivost plastin i obolochekslozhnoyformi (Stability of plates and shells of complexshape) // Soprotivleniyematerialov i teoriyasooruzheniy: nauch.-tekhsbornik. – K.: KISI, 1991. – Vip. 59. – P. 65–71.

Manyta L.A. Uslovyia optymyzatsyy v konechnomernыkh nelyneinыkh zadachakh optymyzatsyy (Optimization condition sinfinite-dimensional nonlinear optimization problems). – M.: Moskovskiy hosudarstvenniy instytut élektronyky y matematiki, 2010. – 81 p.

Melkumova E.M. O nekotorыkh podkhodakh k reshenyiu mnohokryteryalnыkh zadach. (About some approa chestosolving multicriteria problems). // Vestnyk VHU. Seryya Systemnyy analyz y ynformatsyonnye tekhnolohyy. – V.: VHU– №2– 2010– 3 p.

Peleshko I.D., Yurchenko V.V. Optymalne proektuvannia metalevykh konstruktsii na suchasnomu etapi (ohliad prats). (Optimaldesign of metalstructuresatthepresentstage (review of works)). // Metalevi konstruktsiyi: zbirnyk naukovy khprats. – 2009. – №15 – P. 13–21.

Peleshko I.D., Baluk I.M. Optymizatsiia poperechnykh pereriziv stryzhniv stalevykh konstruktsii (Optimization of crosssections of rods of steelstructures). // Zbirnyk naukovy khprats UkrNDIPSKim. V. M. Shymanovskoho. – K.: Stal, №. 4. – 2009. – P. 142–151.

Peleshko I.D., Lisotskyy R.V., Baluk I.M. Optymalne proektuvannia stalevoi stryzhnevoi konstruktsii pokryttia torhovo-rozvazhalnoho kompleksu. (Optimal design of a steel rod coverstructure of a shopping and entertainment complex). // Zbirnyknaukovykhprats UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stal, №. 5. – 2010. – P. 181–191.

Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Altenbakh Y., Habbert U., Dankert YU., Keppler KH., Kochyk Z. Metod konechnыkh эlementov v mekhanyke tverdыkh tel (Finite element methodin solidmechanics). // VydavnytstvoVyshchashkola. Holovnoeyzdatelstvo – Kyev – 1982. – 480 p.

Bazenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiplyconnectedribbedshells and platesin a magneticfield. // Journal of SovietMathematics 66(6). –1993. – С. 2631–2636.

Cheung Y. K. TheFiniteStripMethod. Them. – BocaRaton.: CRC Press, 1997. – 416 p.

Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projectionfunctions. // International Journal for Numerical Methods in Engineering, 2004. –61(2) – P.238–254.

Kroese D.P., Taimre T., Botev Z.I. Hand book of Monte Carlo Methods. — NewYork: JohnWiley and Sons, 2011. 772 p.

Published

2025-04-25

Issue

Section

Статті