The influence of defects on the dynamic characteristics of three-layer cylindrical shell structures

Authors

DOI:

https://doi.org/10.32347/2410-2547.2025.114.183-192

Keywords:

natural frequency spectrum, three-layer cylindrical shell, inhomogeneous aggregate, circular thickness, boundary conditions, finite element method, effect of cracks

Abstract

With repeated use of shell structures, specific problems arise in theoretical studies of the influence of the appearance of various structural cracks on the dynamic characteristics of three-layer cylindrical elements with inhomogeneous filler under different boundary conditions. Studies of the influence of such cracks on the dynamic characteristics of shell elements with inhomogeneous filler are quite important and relevant.The theoretical study of the natural frequency spectrum of a three-layer cylindrical shell with a discretely symmetric light, ribbed filler in the presence of annular cracks has been conducted. The finite element method solves the current problem of determining the natural frequencies of a three-layer element of special equipment under different boundary conditions.When studying such cylindrical shells, two types of defects were considered - through-through circular cracks in the reinforcing ribs of structures and three cases of their location. Frequency spectra are given for different types of boundary conditions. For typical cases of rigid clamping without foam plastic and hinged fastening with foam plastic, the shapes of the corresponding natural frequencies are additionally given for visualization.The analysis of the obtained numerical results made it possible to determine the nature of the influence of cracks of different lengths on the frequency spectra of three-layer cylindrical shells with a inhomogeneous filler.Frequency analysis of a three-layer cylindrical element for the presence of defects showed that the presence of a crack in the edge of the structure is a significant factor affecting the natural frequency of such an element and essentially leads to structural changes in this element.The obtained theoretical results indicate that small cracks have a small influence on the natural frequency of the structure. When relatively large cracks occur, a significant change in the frequency spectrum of an almost new three-layer structure is observed.

Author Biographies

Kostiantyn Kotenko, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor, Professor of the Department of Theoretical Mechanics

Mykola Klymenko, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor of the Department of Machines and Equipment of Technological Processes

Serhii Orlenko, S.P. Timoshenko Institute of Mechanics

Candidate of Technical Sciences, Researcher, Department of Structural Mechanics of Thin-Walled Structures

References

Akimov D.V., Grishchak V.Z., Gomenyuk S.N., ta іn. Matematicheskoe modelirovanie i issledovanie prochnosti silovyh elementov konstrukcij kosmicheskih letatel'nyh apparatov (Mathematical modeling and research of strength of power elements of spacecraft structures) – Vіsnik Zaporіz'kogo unіversitetu. Fіziko-matematichnі nauki. 2015.– №3. P. 6-13

Akimov D.V., Klimenko D.V., Larionov I.F., ta іn. Konechnoelementnyj analiz i eksperimental'noe issledovanie prochnosti trekhslojnoj sotovoj konstrukcii perekhodnogo otseka kosmicheskogo letatel'nogo apparata (Finite element analysis and experimental study of the strength of a three-layer honeycomb structure of a spacecraft transition compartment) // Problemy prochnosti, 2016. №3 - P. 52-57.

Akimov D.V., Grishchak V.Z., Gomenyuk S.I., ta іn. Eksperimental'noe issledovanie deformirovannogo sostoyaniya i prochnosti mezhstupenchatogo otseka raketonositelya pri staticheskom vneshnem nagruzhenii (Experimental study of the deformed state and strength of the interstitial compartment of a raketonositelya under static external loading) // Novi мaterialy i tekhnolohii v metalurhii ta mashynobuduvanni, 2016. №1 – P. 82-89.

Akimov D.V., Grishchak V. Z., Gomenyuk S.I., ta іn. Chislenno-eksperimental'nyj analiz napryazhenno-deformirovannogo sostoyaniya toplivnogo baka tret'ej stupeni raketonositelya (Numerical and experimental analysis of the stress-strain state of the third stage fuel tank of a launch vehicle) // Novi мaterialy i tekhnolohii v metalurhii ta mashynobuduvanni, 2018. №2, – P. 98-105.

Alifanova O.A. Ingul'cev V.L. Ustojchivost' i sobstvennye kolebaniya trekhslojnyh obolochek vrashcheniya (Stability and natural oscillations of three-layer shells of revolution) // Soprotivlenie materialov i teoriya sooruzhenij.– K.: Budivel'nik, 1977.– №31. – P. 12-16.

Bekher S. A., Bobrov A. L. Osnovy nerazrushayushchego kontrolya metodom akusticheskoj emissii (Fundamentals of non-destructive testing using acoustic emission method)// ucheb. posobie — Novosibirsk: Izd-vo SGUPSa, 2013. — 145 p.

Budak V.D., Grigorenko A.Ya., Borisenko M.Yu., Bojchuk E.V. Opredelenie sobstvennyh chastot ellipticheskoj obolochki postoyannoj tolshchiny metodom konechnyh elementov (Determination of natural frequencies of an elliptical shell of constant thickness using the finite element method) // Mat. metodi ta fіz.-mekh. polya, 2014. –57, № 1. – P. 145-152.

Budak V.D., Hryhorenko O.Ya., Borysenko M.Yu., Boichuk O.V. Vplyv ekstsentrysytetu eliptychnoi obolonky na rozpodil yii dynamichnykh kharakterystyk (Influence of the eccentricity of an elliptical shell on the distribution of its dynamic characteristics) // Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka, seriia: «Fizyko-matematychni nauky», 2015. – 2. – S. 23-28.

Grigorenko A.Ya., Puzyrev S.V., Volchek E.A. Issledovanie svobodnyh kolebanij nekrugovyh cilindricheskih obolochek s pomoshch' metoda splajn-kollokacii (Study of free vibrations of non-circular cylindrical shells using the spline collocation method)// Mat. metodi ta fіz.-mekh. polya, 2011. – 54, № 3. – P. 60-69.

Gulgazaryan G.R. Formula raspredeleniya chastot cilindricheskoj obolochki s proizvol'no napravlyayushchej (Frequency distribution formula for a cylindrical shell with an arbitrary guide) // Izv. AN SSSR. Mekhanika tverdogo tela, 1979. – № 2. – P. 139-143.

Drozdov O.V., Harchenko V.V., Dzyuba V.S., ta іn. Mnogofunkcional'naya informacionno-izmeritel'naya sistema PMX-TEST dlya osnashcheniya stendov i ustanovok pri provedenii prochnostnyh ispytanij materialov, modelej i elementov konstrukcij iz kompozicionnyh materialov (Multifunctional information and measuring system PMX-TEST for equipping stands and installations during strength testing of materials, models and structural elements made of composite materials) // Problemy prochnosti, 2016. №5, –P. 52-60.

Efimova T.L. Reshenie zadach o svobodnyh kolebaniyah tolstostennyh ortotropnyh neodnorodnyh cilindrov (Solution of problems on free vibrations of thick-walled orthotropic inhomogeneous cylinders) // Mat. Metodi ta fіz.-mekh. polya, 2009. – T.52. – S. 92-100.

Zajcev B.F., Protasova T.V., Klimenko D.V. ta іn. Dinamicheskij analiz kompozitnogo obtekatelya rakety pri otdelenii s uchetom rassloeniya struktury (Dynamic Analysis of a Composite Missile Fairing During Separation Taking into Account Structural Delamination) // Aviacionno-kosmicheskaya tekhnika i tekhnologiya. – 2020. – № 8/168. – P. 19–26.

Lekomcev S.V. Konechno-elementnye algoritmy raschyota sobstvennyh kolebanij tryohmernyh obolochek (Finite element algorithms for calculating natural vibrations of three-dimensional shells) // Vychislitel'naya mekhanika sploshnyh sred, 2012. – T.5, №2. – P. 233-243.

Luhovyi P.Z., Sirenko V.M., Kotenko K.E., Luhovyi P.M. Dynamika trysharovykh neodnoridnykh tsylindrychnykh obolonok na pruzhnii osnovi pry nestatsionarnykh navantazhenniakh (Dynamics of three-layer inhomogeneous cylindrical shells on elastic foundation under nonstationary loadings ) // Prykl. Mekhanika. 2024. 60, № 3. P. 32-44.

Marchuk M., Klymenko D., Kharchenko V., Khom’iak M. Matematychna model ta metod rozrakhunku sharuvatykh kompozytsiinykh obolonok obertannia z rozsharuvanniamy (Mathematical model and method for calculating layered composite shells of rotation with delaminations) // Matematychni problemy mekhaniky neodnoridnykh struktur. – Lviv: IPPMM im. Ya. S. Pidstryhacha NANU, 2014, P. 66-69.

Rychkov S. P. Modelirovanie konstrukcij v srede Femap with NX Nastran (Modeling of structures in the Femap with NX Nastran environment) – M.: DMKPress, 2016. – 784 p.

Ali M. Al-Shammari M. A. Effect of Cracks on the Natural Frequency of Cylindrical Shell Structures // Engineering and Technology Journal. 2020. 38(12A). Р. 1808-1817.

Bespalova E. I., Urusova G. P. Determining the natural frequencies of highly inhomogeneous shells of revolution with transverse strain // Int. Appl. Mech. 2005.– 41, №4. – P. 980 - 987.

Budak V.D., Grigorenko A.Ya., Horushko V.V., Borisenko M.Yu. Holographic Interferometry Study of the Free Vibrations of Cylindrical Shells of Constant and Variable Thickness // Int. Appl. Mech. – 2014. – 50, № 1. – P. 68 - 74.

Hudramovich V.S., Sirenko V.N., Klimenko D.V., et аl. Розробка нормативної методики обґрунтування залишкового ресурсу пускових конструкцій корпусів ракет-носіїв // Strengths of Materials, 2019. V5. P. 333 – 340.

Lugovoi P.Z., Sirenko V.N., Skosarenko Yu.V., Batutina T.Ya. Dynamics of a Discretely Reinforced Cylindrical Shell Under a Local Impulsive Load // Intern. Appl. Mech. – 2017, 53, № 2 – Р. 173–180.

Lugovoi P. Z , Prokopenko N. Ya., Orlenko S.P. Effect of the Number of Ribs on a Transient in a Cylindrical Shell under a Disturbing Load // Int. Appl. Mech. – 2021. – 57, N 3. – Р. 290 – 296.

Lugovyi P. Z., Sirenko V. M. Klimenko D.V., Kotenko K.E. Transient Processes in Three-Layer Cylindrical Elements with Inhomogeneous Core Under Combined Nonstationary Loads // Int. Appl. Mech. – 2023. – 59, № 5. – Р. 573 – 584.

Solodov I., Rahammer M., Gulnizkij N. & Kreutzbruck M. Noncontact Sonic NDE and Defect Imaging Via Local Defect Resonance // 2016. Volume 35, article number 48.

Zarutskii V. A., Prokopenko N. Ya. Natural Vibrations of Ribbed Cylindrical Shells with Low Shear Stiffness // Int. Appl. Mech. 2005.– 41, №4. – P. 392 – 396.

Published

2025-04-25

Issue

Section

Статті