Free vibrations of layered anisotropic thick-walled cylindrical shells

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.113.250-264

Keywords:

cylindrical anisotropic shells, free vibrations, three-dimensional system of equations of motion, Ky-Washizu variational principle, Bubnov–Galerkin method

Abstract

The article presents an approach to the calculation of free oscillations of thick-walled elastic layered anisotropic cylindrical shells. Anisotropy is due to the use of material whose elastic characteristics are in one plane parallel to the middle surface of the shell. This type of anisotropy arises due to the non-coincidence of the main directions of elasticity of the orthotropic fibrous composite with the axes of the cylindrical coordinate system.

Calculations describing the free oscillations of thick-walled cylindrical anisotropic shells are implemented by deriving a system of six differential equations of motion in partial derivatives of the spatial linear theory of elasticity. For this purpose, the authors modified the Hu-Washizu variational principle accordingly, which allows writing not only the equations of motion, but also the boundary conditions corresponding to them. When using the Bubnov-Galyorkin analytical method, an infinite one-dimensional system of differential equations of the normal Cauchy form is obtained, which allows finding the frequencies of free oscillations of thick-walled layered anisotropic cylindrical shells. The unknowns in the system of equations of motion describing the parameters of the stress-strain state of the shells are selected in the radial direction. To implement a one-dimensional solving system of differential equations of cylindrical shells, the numerical method of discrete orthogonalization was used, which was adapted accordingly by the authors. On this basis, an algorithm was written and a software complex was created for personal computers, which allows solving problems related to setting parameters of free oscillations of thick-walled layered anisotropic composite cylindrical shells.

The solutions of problems on the influence on the frequencies of free oscillations of an anisotropic thick-walled cylindrical shell are presented, taking into account: the angle of rotation of the main directions of elasticity of an orthotropic fibrous composite; increasing the number of cross-stacked layers; changes in the geometric parameters of the structure; four types of boundary conditions.

Author Biographies

Volodymyr Trach, National University of Water and Environmental Engineering

Doctor of Technical Sciences, Professor, Head of the Department of Bridges and Tunnels, Strength of Materials and Structural Mechanics

Andrii Podvornyi, National University of Water and Environmental Engineering

Doctor of Technical Sciences, Associate Professor of the Department of Bridges and Tunnels, Strength of Materials and Structural Mechanics

Nataliia Zhukova, S.P. Tymoshenko Institute of Mechanics, NAS of Ukraine

Candidate of Physical and Mathematical Sciences, Senior Researcher, Department of Computational Mechanics and Engineering

Oleksandr Bondarskyi, Lutsk National Technical University

Candidate of Technical Sciences, Associate Professor of the Department of Applied Mathematics and Mechanics

References

GrygorenkoY.M., BespalovaE.I., KytaygorodskyiA.B., ShinkarA.I. Svobodnyye kolebaniya elementov obolochechnykh konstruktsiy (Free vibrations of elements of shell structures). -Kyiv: Naukova Dumka, 1986.-171s.

Kubenko V.D., Babaev A.E., Bespalova E.I., etal. Kolebaniya anizotropnykh obolochek. V kn. Mekhanika kompozitov: V 12 t.: T.9. Dinamika elementov konstruktsiy (Vibrations of anisotropic shells. In the Mechanics of composites: In 12 vols. Dynamics of structural elements).- K.: A.S.K., 1999.- 379 s.

Grigorenko Y.M., Vlaikov G.G., Grigorenko A.Y. Chislenno-analiticheskoye resheniye zadach mekhaniki obolochek na osnove razlichnykh modeley (Numerical and analytical solution of problems of shell mechanics on the basis of various models). - Kyiv: Akademperiodyka, 2006. - 472 s.

4.Piskunov V.G., Marchuk A.V., Ilchenko Y.L. Free vibrations of thick layered cylindrical shells // Mechanics of composite materials, 2011, Vol. 47, N 2. - P. 257-266.

Marchuk A.V., Gniedash S.V., Levkovsky S.A. Free and Forced Vibrations of Thick-Wall Anisotropic Cylindrical Shells // Int. Appl. Mech., 2017,Vol.53, N 2. - P. 181-195.

Bespalova E.I., Boreiko N.P. Free Frequencies of Composed Anisotropic Shell Systems Based on Different Models of Stress // Int. Appl. Mech., 2019,Vol.55, N 1. - P. 41-54.

Grigorenko A.Ya., Borisenko M.Yu., Boichuk E.V., Prigoda A.P. Numerical Determination of Frequencies and Modes of Natural Oscillations of Thick-Walled Cylindrical Shell // Int. Appl. Mech., 2018,Vol. 54, N 1. - P. 75-84.

Grigorenko A.Ya., Borisenko M.Yu., Boichuk E.V. Free Vibrations of an Open Elliptical Cylindrical Shell // Int. Appl. Mech., 2022,Vol.56, N 4. - P. 389-401.

Sciascia G., Oliveiri V., Weaver P.M. Eigenfrequencies of Prestressed Variable Stiffness Composite Shells // Composite Structures, 2021, Vol. 270. - Article 114019.

Trach V.M., Podvornyi A.V., Bondarskyi O.G. Variatsiynyy pryntsyp stosovno vstanovlennya parametriv vilnykh kolyvan tovstostinnoyi pruzhnoyi anizotropnoyi tsylindrychnoyi obolonky (Variational principle for determining the parameters of free vibratons of a thick-walled elastic anisotropic cylindrical shell) // Resursoekonomni materialy, konstruktsiyi, budivli ta sporudy, Rivne, 2021, Issue 40. P. 197-212.

Trach V.M., Podvornyi A.V., Bondarskyi O.G. Vilni kolyvannya anizotropnykh obolonok obertannya nulovoyi hausovoyi kryvyzny iz materialu z odniyeyu ploshchynoyu pruzhnoyi symetriyi (Free oscillations of anisotropic shells of rotation of zero Gaussian curvature made of a material with one plane of elastic symmetry) //Mizhvuzivskyy zbirnyk «Naukovi notatky», Lutsk, 2007, Issue 20 (2). - P. 222-226.

Lizunov P.P., Pogorelova O.S., Postnikova T.G. Dynamic Behavior of the Platform-Vibrator with Soft Impact. Part 3. Effect of Stiffness Parameters. Transient Chaos. The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 2023. -P. 823-836.

Lizunov P., Pogorelova O., Postnikova T. Comparison of the performance and dynamics of the asymmetric single‐sided and symmetric double‐sided vibro‐impact nonlinear energy sinks with optimized designs. International Journal of Mechanical System Dynamics, 2024. - P. 303-316.

Ambartsumian S.A. Teoriya anizotropnykh obolochek (Theory of anisotropic shells). -M.: Gosudarstvennoye izdatel'stvo fiziko-matematicheskoy literatury, 1961. - 384 s.

Bazhenov V.A., Semenyuk M.P., Trach V.M. Nelinijne deformuvannia, stijkist' I zakrytychna povedinka anizotropnykh obolonok (Nonlinear deformation, stability and critical behavior of anisotropic shells): Monograph. - K.: Karavela, 2010. - 352 s.

Grygorenko Y.M., Vasilenko A.T., Pankratova N.D. Zadachi teorii uprugosti neodnorodnykh tel (Problems of the theory of elasticity of inhomogeneous bodies). - K.: Nauk. dumka, 1991. - 216 s.

Washizu K. Variatsionnyye metody v teorii uprugosti i plastichnosti (Variational methods in the theory of elasticityand plasticity). - M.: Mir, 1987. - 542 s.

Semenyuk M. P., Trach V. M., Zhukova N. B. Modyfikatsiya pryntsypu Khu-Vasydzu stosovno odnoho metodu rozvyazannya zadach teoriyi pruzhnosti (Modification of the Hu-Washizu principle in relation to the method of solving problems of elasticity theory) // Dop. NAN Ukrayiny. - 2006,N 12. - P. 52 - 59.

Trach V.M. Ob odnom varyatsyonnom pryntsype teoryy upruhosty (About one variational principle of the theory of elasticity) // Visnyk Donetskoho universytetu. Seriya A. Pryrodnychi nauky,Donetsk, 2006,N 1. - P. 126-130.

Shulga N.A. Osnovy mekhaniki sloistykh sred periodicheskoy struktury (Fundamentals of mechanics of layered environments of periodic structure). - K.: Naukova Dumka, 1981. - 200 s.

Rasskazov A.O., Sokolovskaya N.I., Shulga N.A. Teoriya i raschet sloistykh ortotropnykh plastin i obolochek (Theory and calculation of layered orthotropic plates and shells). - Kyiv: Higher Education, 1986. - 191 s.

Novozhilov V.V. Teoriya uprugosti (Theory of elasticity). - Sudpromgiz, 1958. - 374 s.

Lechnitsky S.G. Teoriya uprugosti anizotropnogo tela (Theory of elasticity of an anisotropic body). 2nd ed. -M.: Nauka, 1977. - 415 s.

Trach V.M., Podvornyi A.V. Vilni kolyvannya tsylindrychnykh obolonok iz materialu z odniyeyu ploshchynoyu pruzhnoyi symetriyi (Free oscillations of cylindrical shells made of a material with one plane of elastic symmetry) // Materialy VII mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi «AVIA-2007» 25-27 kvitnya, T.1, Kyiv, 2007, - P. 14.62-14.65.

Najafov A., Sofiyev A., Kuruoglu N. Vibration Analysis of Nonhomogeneous Orthotropic Cylindrical Shells Including Combined Effect of Shear Deformation and Rotary Inertia //Meccanica,2014, Vol.49. -P. 2491-2502.

Downloads

Published

2024-11-29

Issue

Section

Статті