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In this work an approach is proposed to solve the problem of free vibrations of layered thick-walled cylindrical shells made
of an anisotropic material, the elastic characteristics of which are in the same plane, tangent to the middle surface. A three-
dimensional system of homogeneous differential equations of motion of the linear theory of elasticity of an anisotropic body on
the basis of the modified Ky-Washizu variational principle was developed. It was recorded in the cylindrical coordinate system
for the appropriate boundary conditions on the surfaces and ends of the shell. Using the analytical Bubnov — Galerkin method to
reduce the dimension of a three-dimensional system, an approach to obtaining an infinite one-dimensional system of differential
equations is presented. It gives possible to determine the frequencies of free vibrations of thick-walled unsymmetric laminate
anisotropic cylindrical shell structures. Based on the developed approach to the calculation of free vibrations in the spatial
setting of a thick-walled anisotropic cylindrical shell, an analysis of the results of frequency determination was carried out. The
proposed approach significantly expands the possibilities of calculating shell structures from composite materials.
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Introduction

It is generally known that dynamic calculations of shell structures depend, among other things, on
the determination of their free vibration parameters. This is due to the requirements of practical needs
in various fields of mechanical engineering, instrument engineering, aviation and aerospace
engineering, construction, etc. The application of classical and refined theories in the study of shells
has made it possible to obtain approximate solutions to such problems. Paper [1] presents methods for
solving the problems of calculating the natural frequencies and corresponding vibration forms of
elastic shells when using isotropic, orthotropic, and one-plane elastic symmetry material models. The
effectiveness of the exact reduction of a two-dimensional eigenvalues problem to a sequence of
separate one-dimensional problems with their subsequent integration by the method of discrete
orthogonalization is proved. In the first chapter [2], using the theoretical principles [1], calculations are
given to determine the parameters of natural vibrations of anisotropic plates and a thin anisotropic
cylindrical shell. It is shown that a seven-layered anisotropic shell can be calculated with sufficient
accuracy as an orthotropic one. In the same paper, the author considers axisymmetric vibrations of
cylindrical shells with one surface of elastic property symmetry. The authors in their study [3]consider
approaches to solving linear and non-linear problems of shell mechanics based on discrete-continuum
methods in the classical, refined, and spatial models for isotropic and orthotropic inhomogeneous
shells with variable geometric and mechanical parameters. The authors present results of their studies
of the dynamic characteristics of shells of various shapes and end fixation.

Paper [4] present two approaches to the calculation of closed thick layered anisotropic cylindrical
shells based on the division of a cylindrical shell by thickness into a number of composite cylindrical
shells. Having satisfied the contact conditions on the surfaces between them, the authors determine the
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natural frequencies of bending vibrations of the original shell. In the first approach, the distribution of
functions by thickness is established on the basis of an analytical solution of the corresponding system
of differential equations. In the second approach, they are determined by approximation with
polynomial functions. In the paper [5] the authors use the theoretical foundations [4] to determine the
frequencies of free vibrations, and for their implementation they use a semi-analytical finite element
method in addition to the successive narrowing of the search interval method. An analysis of the
behavior of shells under free and forced vibrations was carried out.

The paper [6] proposes an approach to determining the frequencies and shapes of free vibrations of
systems composed of rotating shells of different geometry and relative thickness, continuously and/or
discretely inhomogeneous in thickness, made of isotropic, orthotropic and anisotropic materials with
one plane of elastic symmetry. The approach includes the creation of a mathematical model of
vibrations based on the classical Kirchhoff-Love theory, the refined Tymoshenko-type theory, and the
spatial theory of elasticity (partial case). Numerical-analytical approach to solving the corresponding
two-dimensional (three-dimensional) problems involves reducing their dimensionality and using the
methods of successive approximations and stepwise search along with the method of discrete
orthogonalisation. In the paper [7] the dynamic characteristics of a thick-walled steel cylindrical shell
were determined using the finite element method. A comparative analysis of the calculated frequencies
and forms of free vibrations with those obtained experimentally was carried out. The frequency
coefficients obtained by the authors indicate the dependence of the natural frequency on the material
characteristics. In the paper [8], the authors determined the frequencies and shapes of free vibrations of
a thick open steel cylindrical shell of elliptical cross-section for different variants of end fixation and
physical and mechanical parameters using the finite element method.

The authors of the paper [9] state that the introduction of the concept of variable stiffness has
expanded the scope of high-performance lightweight composite structures use. They consider dynamic
excitation of prestressed aerospace structures allowing for more efficient solutions with higher overall
stiffness and fundamental natural frequency. In this context, the Ritz method is used to analyze the
natural frequencies of prestressed multilayer plates and open variable-stiffness shells. The first-order
shear deformation theory is considered without further assumptions on the structure thinness. The
parametric studies demonstrate the flexibility provided by the variable stiffness concept in finding
compromise solutions for the analysis of natural vibration frequencies.

The use of modern composite materials and structural solutions leads to an increase in the
requirements for the construction of mathematical models of vibrations that would fully satisfy
practical use in terms of accuracy[10 - 13]. It is known that the development of such models for
solving, for example, dynamic problems of thick-walled anisotropic cylindrical shells is possible only
within the framework of the spatial theory of elasticity.

The anisotropy of shell structures considered in the work is determined by the mismatch of the
main elastic directions between the proper axes of the orthotropic material and the curvilinear
coordinate system of the shells (Fig. 1). This occurs, for instance, when manufacturing anisotropic
cylindrical shells by winding the fibers of the
original orthotropic material onto a mandrel. In
this case, the resulting shell material is considered
to have a single plane of elastic symmetry tangent
to the shell middle surface[1, 2, 10, 14 -16].

This paper presents an approach to obtaining
three-dimensional differential equations of elasti-
city theory to determine the free vibration frequen-
cies of an anisotropic body based on the functio-
nality modification of the generalized Ky-Washizu
principle. Assuming that the anisotropic body is a
composite thick-walled hollow cylinder (Fig. 1),
we solve the obtained system of differential
equations by combining the following methods in
the computational process: analytical Bubnov —
Fig. 1. Thick-walled anisotropic cylindrical shell Galerkin and numerical discrete orthogonalization.
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1. Materials and Methods

1.1. Basic equations. Ky-Washizu's variational principle

In accordance with the Ky-Washizu variational principle [17], the equations of motion, elasticity
relations (equations of state), geometric relations, and the appropriate boundary conditions can be
obtained from the stationarity condition of the functional I1; which is determined from the integral for

dynamic problems:

HI—J{JH{ (e)-T )+ ()0 ,[e,-j—%(ui;,-+uj;l-)}}dv+gw<ui)ds-gpi<u,._ﬁ,.)ds (11

The displacements u; , deformations e;;, stresses o; and stresses p; on the surface S, caused by

the displacements u; vary without additional conditions. Also, in this functional W(e;) — is the
potential strain energy, 7'(1;) — kinetic energy, ®(u;), ¥(u;) — are the volume and surface load
potentials, u;, —are components of the displacement eigenvector, a semicolon before the parameters i, j

denotes the covariant derivative in the coordinate with the corresponding index i, j = 1, 2, 3. The
potential strain energy in the eigenvector-matrix representation is written as follows:

W(el.j)z%eTBe , (12)
where &' =(e_., €9, €,,, 26,9 2€,., 2£.5) , B — is the matrix of elasticity coefficients.

If we introduce a eigenvector o’ =(o_., Gyys G,.s Gy © ), then from the stationarity

1z0 Oz

condition 611, =0 we obtain the following equations:

o=Be¢, (1.3)
e=&u), (1.4)
0.+ /=0, (1.5)

as well as boundary conditions o;n; =F, on the surface S, and displacements u; =u, and stresses

p;=0un; onS,.

The deformation relationship (1.4) show the relationship between deformations and displacements.
Inverse of the elasticity relations (1.3), the strain-stress dependence is represented as:
€=A4o , (1.6)

where matrix 4=B".
The coefficients of the matrix 4 are denoted by a; and the matrices B — b; (i, j =1,6) . The

matrices 4 and B — are symmetric, since a;=a, b;=b;. In the following, we also establish the

relationship between the matrices 4 and B .

1.2. Modified mixed variational principle

Letus suggest that [10, 15, 18, 19, 20] derive the mixed variational principle modified to Ky-
Washizu and separate the eigenvectors ¢ and ¢ into two parts so that:

T T T
O :(Grr’ 7,05 Trz) > 03 :(622’600’ Tz@) ’ 81 (grr’gre’grz) > & :(822’890’820) . (17)
To shorten elasticity relation record (1.3), it will be expressed in matrix form:
g |_| An A‘lzj“:o-ljl 1.8
[52} [AZI Ay ]| 0y | (1.8)

where for the blocks 4; according to the accepted division (1.7), from the matrix 4 in (1.6) for an

anisotropic material whose elastic properties are in the same plane, we obtain:
a,,0 0 a,, a,, a a,00 a.a., a
33 32 “36 13 11 %12 %16
A1 0 ay ays [, Aul:g 0 % } Ayy-|ay, 00|, Ayy-lald dy | (1.9)
a, 00 A6 96 D6
From the matrix dependence £=Ao using (1.8), we obtain:

ISTESY

Qs Ass
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£ =4,,01+4,0, , (1.10)
&=4,01+4,0; , (1.11)
then from (1.11) we have an expression for:
0, = A58, — Ay 450, . (1.12)
We substitute the latter into (1.10) and then:
€= 4101+ Ay Ay € — Ay Ay 4,01 = Ay A€ +(A11_A12A2_21A21)0'1 . (1.13)
From (1.13) we find o; :
-1, \! -1, \*! -1
0 :(AII_A12A22A21) '51_(A11_A12A22A21) Ay - (1.14)
From the matrix dependence:
o=B-¢ (1.15)
Let us write down:
o1 |_| Bii B, }[31] 1.16
[02} [le Bylle]” (1.16)
For the considered type of anisotropic material, we have:
01 =B-€ +Bj,- &, (1.17)
By comparing (1.15) and (1.14), we establish the relationship between the matrices:
By =(dy =4 A 4y)) (1.19)
By =—(4y, _1‘1121‘12_211‘121)_1 A12A2_21 : (1.20)

In the expression for o, (1.12) we substitute (1.14) and then we obtain:

2p] =1‘12_21“32_1‘12_211‘121(1‘111_1‘1121‘12_211‘121)_1 & +A2_21A21 (An_Alez_zl —A21)A12A2_2152 =

=— Aoy Ay, (A= A Ay 4y)) ' € "{Az_zl + Ay Ay, (AII_A12A2_21A21)A12A2_21:|82 . (1.21)

In regard to (1.21) and (1.18), we have the following relationship between the matrices:
By ==y Ay (A= Aip Ay Ap)) (1.22)
Byy=Ayy + Ay Ay (A= Ay oy Ay)) ™ Aip s - (1.23)

Thus, expressions (1.19) and (1.20) and (1.22) and (1.23) establish the relationship between
matrices in the two forms of the generalized Hooke's law for an anisotropic material (1.3) and (1.6),
whose elastic properties are determined by a single plane of symmetry of the elastic characteristics.

In contrast to the Ky-Washizu principle, we assume that the displacements u,., u,, u,,
deformations &.,, €.4, &y and stresses O,,., 7,9, T,, in the functional (1.1) are independent. From
the equations:

01 =By 6 +Bjy- &, (1.24)
& =401+ 4,0, (1.25)

we find:
& = 31_11 "0 —31_11312 "€2,0, :Az_zl ) —A2_21A21 "O- (1.26)

The expression for the potential /¥ (e;) with new notations will be given the following form:
1
/40 :E(SIT B, &+&] B e, +¢h BlLe +el B2252) . (1.27)
From expression (1.27), taking into account (1.26), we exclude ¢;. Then we get:
1 _ _ _ _
W(UI,EZ)ZE[(Bl 10,-B] 1131282 )" B (By 01— By Byp&,)+

-1 -1 T T pT (p-l -1 T
+(Bi101=By1 B12&,)" Bin&y+&, By (B 01- By Bp€,)+&, Bzzng .
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After simple transformations, we'll get the final result:

L rpe1 1
W(0,.&,)=501 Biloi+5¢; (B,~BLB'B,,)e, - (1.28)

Similarly, we transform the expression o ¢, . After comparing the matrix expressions:
it is easy to establish that 312822 = A4y, -
Then,

0,£;=0| B0y +£} (B,,~BLB B )¢, . (1.29)

Excluding the stress eigenvector component ¢, from the expression o, ¢, (1) , we obtain

O'jsij(u)z(slT(u)+82T(u)BszBl11)0'1+82T (u)(B BIZBHIBH) (1.30)

Assembling expressions (1.28 - 1.30), we write down the potential:

W =W(01.€,)-0; (3 —€ (u)) 251T3110'1 é T(Bzz 31231_11312)52

+(el (uyrel (u)BLB; )0+ €] (u)(B,,~BLB B, )é, - (1.31)
In (1.1), the symbol T'(u;) represents the kinetic energy. In terms of the accepted notation, we

write it as follows:
7)== [[[ pli2+ij+i2 )raoa: (1.32)
14

where i, , Uy, 1, — are velocities in the direction of the axes of the cylindrical coordinate system
r, 0,z (Fig. 1), and p — is the density of the material from which the structure is made.

The resulting equations are equations of motion, since after varying (1.32) and integrating in parts
over time, we obtain the variation of the kinetic energy of the anisotropic shell:

dS1 jmp ii, u, +ii g +ii ,Su, )V . (1.33)

LV

oT = [[ p it i, + 11y + azauz]
$
It is worth noting that in the work [21]the following expressions were used to approximate the
displacements:
u(r,e,z,t)=p-u(r,9, Z)-e_m” (1.34)
and stresses:
ol =0 ¢ =[0,,0,4,0,. ] ¢ . (1.35)

In (1.34) and (1.35) @ is the free vibration frequency of the anisotropic shell. Having performed
the operation of differentiation (1.34) in time, we obtain the expressions for the accelerations:

ii(r,0,z,t)=—pa’*-u(r,0,z)-e" . (1.36)
The final form of the functional I1; presented in (1.1), is as follows:

1, HHI[WUI, ~T(y )]dV}dt (1.37)

The expression for I, is a part of the functional (1.1), since it replaces the number of independent

parameters, due to the fulfillment of relations (1.28) and the condition & =&, (u). Then the variation of

the functional (1.37), which is caused by a change in the components of the displacement
eigenvector u and stresses o | takes the form:

oll, = {_W.{[ 501 Bjloy+ (31T (u)+& (U)BITIBI_ZI)O-I:|60-1_I:%EZT(BZZ_BITZBI_IIBIZ)EZ:|582+
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+[e§ (u)(B>, —BITZB;IIBIZ)52J5M—T(u)5u}dv}dt . (1.38)
Then we will use the linear geometric relations that are given in [22]:
err:%; erZ:%Jr%; erez%_l% Lou, (1.39)
or 0z or or r r o0’
In this casee,, — are the relative linear deformations along the direction of the coordinate axis 7 , and

e,. , e, —are relative shear strains tangent to the corresponding coordinate surfaces.
In accordance to the stationarity condition (1.38), when using the expressions for stresses
ol =(0,,,7,4.7,.) displacements u’ =(u,,uy,u.), geometric relations (1.39), dependencies for the

variation of kinetic energy (1.33), (1.34), (1.35), (1.36), as well as variations of external forces (1.38)

and equating the expressions for independentvariations of stresses 60,,, dt,y, O7,, and displacements

ou,, duy, ou, in the integral over the volume ¥, we obtain the following system of differential
equations:
d0,,  cytl 07, 10T Cp  Cpou, Cy U,  Cygduly Cyy Oy

2, .
o r O r89'2“"1’82‘#89‘1’az'rzaelpwu”
orT,, e o0, 1. ou, MU, coo 0, Cpytceg 07Uy }
P N oz 2 2 96° r 0200
, 536 90, ey du, 216 0u, Qug _cr 'ty Hpau. ;
F 00 ;200 r 0200 1632 2 062 ’
97,9 _Cy3 90, 2, _» du, _epptegs u, P ug ¢y 0’ug }
or —r 90 r ,2 90 r 0200 % oz 1 96?
00,, Cy0U, Q%u, cyg 0%, 2cy5 0y |
+C36 aZ r oz Ce 9z 2 2 892 , azaaupa)ug,
du, _ Ju_  c¢;du, . dug €23 duy |
E A At e A e T
ou, ou,
oy stz tdasTe T
du 10u, 1
a_r9= T (1.40)

And r —is the radius of the cylinder, which does not depend on the coordinates z and 6 (Fig. 1);

o,., T,., T,y are the components of the stress tensor (1.7); u,, uy, u, — are the movements of the

o “rzo r

shell respectively along the axes z, 8, 7 ; @is the frequency of free vibration; p — is the density of
the structure material. The constants c,; (k, [=1, 2, 3, 6) are the characteristics of the shell material

determined by the mechanical constants a,;, [14, 23]:

‘(aléa%_alzaéé) > € 2_‘
2

1 2. 1 2. 1 .
‘= (”22966_”26) > (2= (”11”66_“16) > C16= (”12”26_”22”16) ’
A Ay, 2 2

1 . 1 2.
€26 2_(‘112”16 —4 1”26) > Co6 2_(‘11 1922 _”12) ’
|4, |4,
Ay |= —ai, |+ - + -
22T o6\ 11920 — 12 | T A6\ A12816 — 1926 | T 16\ 12826 ~A 22016
C13 =130 T Ay3C0 T A3¢C165 Co3 = a13C12 T Ap3Co0 + A36C26 5
C36 =016+ (y3Cag + agCos C33 =33 — (@303 + Axstoz + “36‘336)- (1.41)
Thus, using the variational equation (1.38), the three-dimensional system (1.40) of six

homogeneous differential equations of motion of the linear theory of elasticity is derived. It is written
in partial derivatives with respect to the six components of the amplitude values of the eigenvectors
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T _ T _ . . . .
ol =(0,,7,9.7.) and u’ =(u,,uy,u,) to determine the frequencies of free vibration of an

anisotropic thick-walled composite cylindrical shell. To obtain it, we used the modified Ky-Washizu
variational principle, which allows us to write down the boundary conditionsappropriatefor the
equations. Using equations (1.40) and the appropriate boundary conditions, the frequencies of free
vibrations in the three-dimensional formulation of a thick-walled composite anisotropic
cylindricalshell can be determined. The derived system of homogeneous differential equations of
motion (1.40) practically corresponds to the one given in Chapter 4 of the paper [2]. A certain
difference lies in the use of Cauchy relations by the authors of this work according to [22].

In the case of problem to determine the frequencies of free vibrations, the solution of the system

(1.40) must meet the conditions on the side surfaces when r =17 :
0 . 0 _0N- 0 —
Urr(rl’z’g)zo’ TVZ(?’I,Z,H)—O, Tr@(rl’z’g)_

and 7 =r,
" (r,2,0)=0; ©(r,2,0)=0; 77(r,,2,60)=0. (1.42)
Conditions at the ends when z =0, z=L (Fig. 1) are assumed to be:
o, =u,=uy;=0. (1.43)

Then we will ensure that the layers are in rigid contact for stresses and displacements:
i i+1 . i _ i+l . i i+1
o, ()= (n): 7.(3) =705 70(5)=776'(n):

()= 0) s ()=l ()5 ()= up™ (). (1.44)

In this case, it is thenumber of the shell layer.

The conditions (1.43) correspond to the presence of a diaphragm at the edges of the cylinder that is
absolutely rigid in its plane and flexible out of it from papers [2, 16].

2. Methodology for solving the problem

2.1. Reducing a three-dimensional system of equations of the theory of elasticity to a one-
dimensional one

To solve the three-dimensional system of equations (1.40) under the appropriate conditions on the
surfaces and ends (1.42), (1.43) of the cylindrical shell, we use the Bubnov—Galerkin method.
According to it, we will expand all the functions into trigonometric series [16] along the cylinder's
generative line z so that they satisfy the boundary conditions (1.43):

o,.(r.z,0)= ZZ[yl’Pk 7)coskO+y, e (r smkGJsmlmz ;

m=1k=0

(.2,0) =22[y2,pk )cosk0+y2,mk ska}coslmz;
m=0k=0

Trg(r,z,0)=ii[y3 ,pk(r)sink0+y§,mk coskO}sm 1.z,
m=1k=0

“r(r’zﬁ):ii[y i (7)coskO+ v, (r) SlnkGJsmlmz :
m=1k=0

u,(r,z,0)= i i[ys i (F)coskO+ 4, (r ska}cos 1z,

tg(r,2.0)= X D[ Vs i (F)SinkO+ 3,4 (r)o0skO [sin 1,z . 2.1)
m=1k=0

In this wise, y;, » y,-/ . (i=1-6) are the components, decomposed by trigonometric Fourier series,

of the parts of the stress-strain state of the shell: o,,, 7,., 7,9, u,, u,, u, and p, m, k are the wave

numbers in Fourier series, kis also the parameter of wave formation in the circumferential direction. The
parameter /,, =mn/L , where L — is the length of the cylinder's generating surface (Fig. 1).
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After mathematical transformations and separation of variables in equations (1.40) using relations
(2.1), we obtain for each i-th layer an infinite system of ordinary differential equations in the normal
Cauchy form:

e B .
=Ty, T()=1,4(), CI=c,y (), n=10, 1 =10, (2.2)

T = . . . . . N LT O LY S : :
where ¥ —{yl p3Y25p5 Y3305V 45p3 Y55 p3V6 0 s Vo> Y2msV3om>YasmsVssms yé,m} — is the solving

eigenvector function, 7(r) — is a square matrix with variable coefficients that depends on the argument
r, C(r) — is a matrix characterizing the inertial properties of the shell, @ is the frequency of free
vibration. Non-zero elements of the matrix 7(r) and the coefficients with unknowns of system (2.2)

t,,(r) have the following form.

__centl __k € 5P
hhy==——"— s ho=l,, h3==,»ha= 2 > bs= _lpT’ he= —k2 2 ’1111—2(/’(17 m)k

m=l1

r112—2¢(p, — 261

m=1

1 €12 2, 12 Ce6 C1p + G
_ _ _ _ _ 6
Ly=casl,, thy == bha __Tlp’ hs=cnl,+k 2 byg=~ p KL, t,, = Z<p(m P)k
m=0

f10 =—Z<p(m P 2 s by = Z«p(m p)2ae s b = Z«p(m pleigly + Z«p(m p 26k2

m=0 m=0 m=0 m=0

¢y +C c S
12+ Cos 2 Cp g2
Sty =y + B 1= D0 pm el

m=l

C C
__ % _ _» __
Li=——=k,liy=——,t,=—%k,l35=
r r r

310 = —zfﬁ(P m) Ly> t311 = Z(p(p,m)(cléli 2 k J’ B = Z<P(P m)2

m=1 m=1 m=l

s
l41=C335 lgg =T lys=—Cialy» lag —k s Ly —zfﬁ(P m)k_’ 412 —ZWP m)csel,y, »

m=1 m=1

> k 1
tsy=ass, tsq ==Ly, tsg =D @(M,plags, le3 = aug> lea=—» log = les = ZWP m)ays »

m=0 m=1
e+l _k Cy
f7s=—z<P(P m k<% 2 ) 176—Z<P(19 m)_lm’ 77 =~ s tig =1y, t7,9—7, 710 = 2
m=1 m=1

C C
12 22
to,=—1 —= ¢ k==
7,11 > °7,12 >
P, 2

Iy, =—Z<p(m p)k—, lyy = Z«p(m P 2 s lgs =—Z<p(m PR G614,
m=0 m=0 m=0

0

1 ‘12 2, 2 C66
lye = Z‘P(m PJcighn + Z‘P(m P)—k ls7 =03l Igg = fg10 =—Tl sl =conl, +k
m=0 m=0

Cyy +C
12 66

> c
fy; = Z<P(P m)csgly, > lo 4 = —ZWP m) Lystos= Z(P(p’m)(cléli +%k2}

m=1 m=1 m=l

_ 26 2 _ » _CintCee 2 sz 2
196——2¢(P’m)2 ki, 197— 2k, tyg=—, f9,1o——r—2k’ lon==—"7—"" ki, , t9,12_C661p —5k°,

m=l1
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oo 0
_ C36 _ _ _ _ 153
fos ——sz(P,m)kT, loe = Z<p(p,m)c3(,lm, o7 =335 hojo == tign1 = —C13lp 5 Lo =—k—,
m=1 m=1 r r
0
hi3= Z‘P(W’P)%s’ hig =dsss tijo=—1p>
m=0
> k 1
too =D @(p.m)ags s ting = das tao = H212 = (2.3)

m=1
Functions ¢@(p,m) and ¢@(m,p) depend on the integer parameters p and m and are defined by the
following formulas:

0, when p+m — even number,
,m)=
o(p.m) E( ! + ! J when p+m —odd number;
T\ p-m p+m
0, when p+m —even number,
p(m,p)=:2( 1 1
—(— J when p+m —odd number.
z\m—-p m+p

The non-zero elements of the matrix C(r) have the form:

Ca=Ps Cs5=Ps CGe=Py Cri0=P> Gu=P, Cpn=pP- 24

To the system of equations (2.2), it is necessary to attach the corresponding equations
characterizing the conditions for fixing the shell surfaces perpendicular to the integration direction:

By(r,w)=0; r=r; 2.5)

B,y(r,@*)=0; r=r,, (2.6)
where B, B, — are rectangular matrices formed on the basis of the given boundary conditions on the
shell surfaces (1.42).

The solution of the boundary value problem (2.2), (2.5) - (2.6) involves finding the natural
frequencies of free vibrations @ and their corresponding forms 3(7;), i=1, 2 as harmonic components
of the dynamic state. In the matrix 7 the decomposition of the sought eigenvectors into Fourier series
in the circular coordinate is taken into account by the parameter £=0, 1, 2,... of the shell wave
generation. As a result, the problem (2.2), (2.5), (2.6) according to [1, 2, 6, 10, 11, 24] leads to the

solution of one-dimensional sequence of boundary value problems for eigenvalues of the following
form:

dyy

& =G )=0CE); @7
By (r,@*)=0; r=n; 2.8)
By, (r@’)=0; r=n, 2.9)

Thus, the determination of the eigenvalues of the problem (2.7 = 2.9) is carried out by selecting
the values A =@ at which it has a non-trivial solution y # 0. This corresponds to the fulfillment of
the condition detD =0, where D — is the matrix of a homogeneous system of linear algebraic
equations satisfying the boundary conditions (2.9). For each given value 4 by the method of discrete
orthogonalization [1, 2, 3, 16], the boundary value problem is solved and det D is determined until its
minimum value is found |detD| , which is closest to zero, in accordance with the specified accuracy of

solving the problem.

This approach was also used by the authors in the papers [10, 11, 15], where it was accordingly
adapted to solve the problems of calculating stress-strain states, stability, and determining the
parameters of free vibrations of anisotropic thin and thick-walled composite cylindrical shells.
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3. Results

The results of the reliability of determining the free vibration frequencies will be tested on the
example of thin cylindrical shells made of isotropic and orthotropic materials [1] for:

1. A one-layer shell made of an isotropic material with the following geometric and mechanical
characteristics: length along the generating axis L=2,0m; radius of the median surface R=1,0m;
thickness #=0,01m; £E=E;v=0,3; p=p,.

2. A one-layer shell made of orthotropic material with the following characteristics: length
L=3,0m; radius of the middle surface R=1,0m; thickness #=0,01m; E.=176E,;, Ey~=176E), E,=TEy;,
G.=3.,5E); G=G,5=1,4E ) v:p=v,-=v,x=0,25; p=2 p,, .

Table 1 shows the values for the considered shell structures @=’ P/ E0)~107 corresponding to the

natural vibration frequencies and wave formation parameters k in the circular direction obtained
according to [1] and the proposed approach.

Table 1
Comparison of the results of the study of free vibrations of cylindrical shell
. Result from [1] Proposed approach Convergence
Shell variant — — 5
@ k @ k A, %
1 13,8 13,8 5 0,0
2 214 3 214 3 0,0

The analysis of the comparison of the results of natural vibrations and their corresponding forms,
presented in Table 1, show the coincidence of the parameters under comparison.

We also compared the capabilities of the proposed approach with the results of the spatial
calculation presented in the paper [6]. We considered a cylindrical shell with a length of L=0,6m, an
inner surface radius 7,=0,26m of a layered structure with geometric and mechanical characteristics of
the layers presented in Table 2. Moreover, layers 2 and 3 are reinforced rubber cords stacked in such a
way that the main elastic directions of these layers are located at cross/angle-plyy =+65° to the

cylinder's base. The minimum frequency of natural vibrations of an anisotropic cylinder was
determined and the case of axisymmetric natural vibrations when k=0 wasconsidered. A comparison of
the results of the approach [6] with the proposed one is given in Table 3.
Table 2
Geometrical and mechanical characteristics of an anisotropic cylindrical shell

Ne layer| 4-10°,m | E.., MPa | Eg, MPa Ve G., MPa | G.=G,5, MPa | p-107, kg/m’
1 0,75 58110° | 1,1810 0,42 4,33 3,01 1,00
2 1,40 1,84 10° 7,36 0,47 2,08 1,88 1,54
3 1,40 1,84 10° 7,36 0,47 2,08 1,88 1,54
4 5,86 5,00 5,00 0,49 1,68 1,68 1,00
Table 3
Results of comparison of frequencies of free vibrationsand parameters of wave formation
The number of waves According to [6] Proposed approach A,
in a circular direction, k o/ 27w o/ 27 %
0 5,208 5,203 0,1
4 0,693 0,681 1,7

Comparison of the results presented in Table 3, since their maximum discrepancy does not exceed
2%, indicates a satisfactory coincidence of the frequencies of natural vibrations obtained by the
proposed approach compared to the data presented in the paper[6].
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A comparative analysis of the obtained results of determining the minimum frequencies of free
vibrations with the values of the quantities given in [25] was carried out. In this article, to determine
the frequencies of free vibrations of orthotropic shell structures in the refined formulation, shear
deformations along the thickness were taken into account.When comparing our results with [25], a
cylindrical graphite/epoxy orthotropic shell with the following mechanical material properties was
considered: E.=138 GPa; E4~8,9 GPa; E,=8,9 GPa; G.~G,=5,17 GPa; G,~2,89 GPa; v,,=0,3;
p=1600 kg/m’. The geometric characteristics are as follows: the radius of the middle surface
R=0,1905 m, the ratio of the length to the radius of the median surface L/R=1,0; ratio of radius to
thickness R/#=25. Table 4 shows a comparison of the reduced values @ of the minimum frequencies of
vibrations and waves in the circular direction & of such a shell.

Table 4
Results of comparison of frequencies of free vibrationsand parameters of wave formation
The number of waves According to [25] Proposed approach A,
in a circular direction, k& 7} 7} %
4 18,426 17,521 4,9

A comparison of the presented results indicates the coincidence of the results obtained by the
proposed approach with those obtained according to the refined theory.

4. Discussion

As an implementation of the capabilities of the approach proposed in this paper, we consider the
problem of determining the minimum frequencies of free vibrations for a cylindrical anisotropic shell
generated from unsymmetric lay-ups. The minimum frequencies depending on the angle-ply y of the
main directions of elasticity of a unidirectional fiber composite relative to the system of the structure's
own axes. At the same time, we investigate the change in the frequencies of free vibrations with an
increase in the number of layers, when orthotropy axes are located at cross/angle-ply ti relative to
the cylinder base. We compare the obtained frequencies with those obtained in the calculation of the
same anisotropic shell according to the orthotropic scheme, when the mechanical constants (1.41) of

the accepted generalized Hooke's law is ¢ =c,4 = C35=0a,5=0.

The geometric dimensions of the structure are as follows: length L=1,2 m, radius of the central
surface =0,6 m. Figures 2 and 3 present the results for the ratio of the thickness 4 to the radius of the
middle surface #/R=1/5 and A/R=1/10, respectively. Mechanical characteristics of the material in its
own axes of orthotropy: E.,=280F,, Eg=FE,=31Ey, G.y=G,~10,5Eq, G,.=21,2E,, v4,=0,25, v,4~0,0277,
E,=1000 MPa, p=2118 kg/m".

The results of the studies of the reduced values of the free vibration frequencies

o=0181-L10%/p/E, of  an

anisotropic  thick-walled cylindrical @ 190
shell are shown in Fig. 2 and 3, where
number 1 (solid line)indicates the 175
graphs of the results obtained for an
anisotropic  one-layer cylinder, 2 160
(dashed line) — indicates a two-layer
cylinder, 4 (dotted line)is for four-layer 145
cylinder, and 8 (dash dotted line) -
eight-layer cylinder. Curve 1'(solid 130
line) characterizes the orthotropic
approach to the calculation (OPR) of a 115 4
thick-walled cylinder.
100 ; . .
0 30 60 90

]

Fig. 2. Values of minimum frequencies
of free vibrations of layered shells at 4/=1/5
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From the analysis of Fig. 2, 3 the
following conclusions can be drawn;
the minimum frequencies of free
vibrations @ depend on the change
in the angle-ply w of the main

@ 140

125

directions of material elasticity. At
the same time, regardless of the
number of layers and thickness, the
highest wvalues of free vibration
N frequencies @ for the considered
95 / N anchoring conditions, occur for

110

20° <y <40° both for the case when

considering the components of the
80 - - - generalised Hooke's law for this type

0 30 v 60 90 of anisotropy and for the orthotropic

calculation.

It should be mentioned that the
values of the free vibration
frequencies are solved using the orthotropic approach and do not depend on the number of layers, i.e.,
they are unchanged and higher than those found when taking into account all components of the
generalized Hooke's law for the reduced type of anisotropy and all considered structural layered
packages except for the two-layer one, where the opposite effect is observed at y=80" for the

Fig. 3. Values of minimum frequencies
of free vibrationsof layered shells at 4/=1/10

considered thicknesses. In this case, the maximum differences between the frequency values in the
anisotropic calculation of a one-layer package compared to the orthotropic approach are 9,0%, and for
a two-layer package they reach 11,6%. A further increase in the number of layers cross/angle-ply 1y
(Fig. 1) of a thick-walled cylindrical shell to seven or eight leads to a decrease in the discrepancy to
0,9% between the anisotropic and orthotropic approaches to determining the minimum firee vibration
frequencies. This is, to some extent, a confirmation of the results presented in the papers [2, 15] for the
calculations of thin anisotropic cylindrical shells for stability and free vibration, respectively. Thus,
thick-walled anisotropic cylindrical shells can be calculated as orthotropic when the number of
theircross/angle-ply layers increases to seven or more.

Figure 4 shows graphical dependences obtained for one-, two-, three- and four-layer anisotropic
composite laminates generated from unsymmetric lay-ups, as well as orthotropic cylindrical shells
constructed for the ratio of length to the radius of the middle surface L/R=2; 4; 10.The radius of the
middle surface =0,6m is unchanged, the ratio of the shell thickness h to its radius of the middle

surface r is equal to 1/5. The

@ 200 conditions for fixing the ends
180 4 4 correspond to (1.43).
160 1! SR In Figure 4 the curves 1 (solid
] /// 7\ line) describe the values of minimum
1401 / ; a \\\\ frequencies of free vibrations @ for
120 4 2 = Sy single-layer cylindrical shells
1004 3 generated from unsymmetric lay-ups
60 uq of composite laminates.
] /..____Q\ In Figure 4 the curves 2 (dashed
60 - Yz \f\\L/R=4 line) characterize the results of the
40 4. 1 study of two-layer structures, and the
20 ‘_,d\\ curves 4 (dashed line) - four-layer
] 12 T L/R=10 ones. These graphs are constructed
0 ; ; according to the values obtained
0 30 60 90 .
v according to the proposed approach.
Fig. 4.Values of the minimum frequencies of free vibrations @ for shells The curves 1’ (solid line) characterize

with a ratio of length to radius L/R=2; 4; 10 the results of determining the
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minimum frequencies for such shells according to the orthotropic approach (OPR). At the Figure 4 are
presented the results of calculations for shells with ratios of length to the radius of the middle surface
L/R=2,4,10.

When analyzing the results shown in Figure 4 it should be noted, that relatively short anisotropic
cylinders with a ratio of length to radius L/R=2 for each individual case of the structural structure of
the shell wall (one-, two-, four-layer) along the entire numerical axis{/ have the highest values of the

minimum frequencies of free vibrations compared to the ratios L/R=4 and L/R=10. In the case of shells
with L/R=4, the minimum frequency values are between the same as those obtained for cylinders with
L/R=2 and L/R=10 ratios.

5. Conclusions

In this paper, a three-dimensional system of homogeneous partial differential equations of motion of
the linear theory of elasticity of an anisotropic body in the cylindrical coordinate system was obtained,
based on the modified Ky-Washizu variational principle. To reduce it to a one-dimensional principle,
double trigonometric series were used, where the unknowns along the generating and circumferential
directions of the thick-walled shell were approximated using the Bubnov — Galerkin analytical method.
The numerical method of discrete orthogonalization was applied to solve the resulting one-dimensional
problem in the direction perpendicular to the middle surface of the shell structure.

The dependence of the minimum frequencies of free vibrations of an anisotropic cylindrical shell
on the number of layers with the main elasticity directions located at cross/angle-ply -y to the parent

one, from the thickness and length of the shell is investigated. It is proved that when the number of
layers exceeds seven, the frequencies of free vibration of a thick-walled orthotropic and anisotropic
cylindrical shell are practically the same.
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Tpau B.M., I[loosopnuii A.B., Kykoea H.b., bonoapcexuii O.1.
BIJIBHI KOJIUBAHHSI IHAPYBATHUX AHI3OTPOITHUX TOBCTOCTIHHUX HUJITHAPUYHUX OBOJIOHOK

B craTri npeacraBieHo MiXia MOA0 Ppo3paxyHKy Ha BiIbHI KOJIMBAHHSA TOBCTOCTIHHUX NPYXKHUX IIAPYBATUX aHI30TPOIHUX
LWIHIPUYHUX 000JIOHOK. AHI30TpoIisi 00yMOBJI€HA BUKOPUCTAHHAM MaTepialy, NPY>KHI XapaKTEPHUCTHKU SKOT0 3HAXOJAThCS B
OJHIH TUIONMHI, IO NapajeibHa CEepeiMHHIA MoBepxHi 000JOHKM. Takuil BHA aHI3OTPONIl BUHMKAE 3-32 HE CHIBMAIiHHA
TOJIOBHUX HAIPSAMIB HPYKHOCTI OPTOTPOITHOTO BOJIOKHMCTOrO KOMITO3HTA 3 OCSMHU LIHJIIHAPUYHOI CUCTEMH KOOPJMHAT.

Po3paxyHKH, 11O ONKUCYIOTh BiJIbHI KOJIMBAaHHS TOBCTOCTIHHMX LMJIIHAPUYHUX AaHI30TPOIHMX OOOJIOHOK, peai3oBaHi
LUISIXOM BHMBEIEHHS CHCTEMHM 3 IIecTH Au(pEepeHLiabHUX PIBHAHb PyXy B YAaCTMHHMX IOXIJHHMX IPOCTOPOBOI JIIHIKHOI Teopil
npyxHocTi. [y 1bOro aBTOpaMH, BiANOBIAHMM YMHOM, MOaM(iKOBaHO BapiauiiiHuii npuHuun Xy-Bacigsy, mo mo3poise
3aIMCyBaTH HE JIMIIE PIBHAHHA PyXY, a i BiInoBiaHi iM rpanuuHi ymoBu. [Ipu BUKOpHCTaHHI aHaniTH4HOrO Metoay byOHoBa —
lanpopkiHa, OTPMMaHO HECKIHYEHY OJIHOBHUMIPHY CHUCTeMY Au(EepeHIiaIbHUX PiBHAHB HOpMasbHOro Buay Ko, mo 1o3Bosse
3HAaXOAUTH YAaCTOTH BUIBHMX KOJMBaHb TOBCTOCTIHHMX IIAPYBATHX AaHI30TPONHUX ILMIHAPUYHUX 000J0HOK. Hemimomi B
cucTeMi PIBHSAHb PyXy, L0 ONHCYIOTh IapaMeTpH Hanpy>KeHOo-1eOpPMOBAHOTO CTaHy OOOJOHOK, BUOpaHi 3a  pajiajbHUM
HanpsMkoM. [lid peanizaiuii OJHOBHMIPHOI pO3B’S3YH0UOi CHCTEMM IU(EpeHLialbHUX DPIBHSAHb LMJIIHIPUYHUX OOOJOHOK
BUKOPUCTAHO YMCIIOBUI METOJ JMCKPETHOI OpTOroHamizauii, skuii aBropamu OyJo BiANOBIZHUM YMHOM ajantoBaHo. Ha mii
OCHOBI HaIlMCaHO AJTOPUTM 1 CTBOPEHO MPOrpaMHUII KOMIUIEKC IS MEPCOHAILHUX KOMII'IOTEPIB, IO JI03BOJISIE PO3B’A3yBaTH
Mpo0JIEMUCTOCOBHO BCTaHOBJICHHS IapaMeTpPiB BUIBHUX KOJMBaHb TOBCTOCTIHHHMX IIAPYyBAaTHX aHI30TPOIHUX KOMITO3MTHUX
LWIHIPUYHUX 000JIOHOK.

IpencraBieHo po3B'a3kW 3aja4 MPO BIUIMB HAa YacTOTU BUIBHMX KOJMBAaHb aHI30TPOIHOI TOBCTOCTIHHOI IMJIIHIAPHUYHOL
00OJIOHKH TpH YypaxyBaHHi: KyTa IOBOPOTY TOJIOBHMX HANpsMIB HPYXHOCTI OPTOTPOIHOIO BOJOKHHCTOTO KOMIIO3UTA;
30UIbIIEHHS. KIIBKOCTI IEPEeXpEecHO-YKJIAJEHUX IIapiB; 3MIiHM TE€OMETPHYHHUX MapaMeTpiB KOHCTPYKLii; YOTHPbOX  BHIIB
IPaHUYHUX YMOB.

KarodoBi cioBa: nuiliHApPUYHI aHI30TPONHI OOOJIOHKH, BiJIbHI KOJNMBAHHS, TPUBHUMIPHA CcHCTEMa pIBHSAHb pYXY,
BapianiiHuil npuHuun Xy-Bacinzy, meron byonosa-I"anbopkina.

Trach V.M., Podvornyi A.V., Zhukova N.B., Bondarskyi O.G.
FREE VIBRATIONS OF LAYERED ANISOTROPIC THICK-WALLED CYLINDRICAL SHELLS

The article presents an approach to the calculation of free oscillations of thick-walled elastic layered anisotropic cylindrical
shells. Anisotropy is due to the use of material whose elastic characteristics are in one plane parallel to the middle surface of the
shell. This type of anisotropy arises due to the non-coincidence of the main directions of elasticity of the orthotropic fibrous
composite with the axes of the cylindrical coordinate system.

Calculations describing the free oscillations of thick-walled cylindrical anisotropic shells are implemented by deriving a
system of six differential equations of motion in partial derivatives of the spatial linear theory of elasticity. For this purpose, the
authors modified the Hu-Washizu variational principle accordingly, which allows writing not only the equations of motion, but
also the boundary conditions corresponding to them. When using the Bubnov-Galyorkin analytical method, an infinite one-
dimensional system of differential equations of the normal Cauchy form is obtained, which allows finding the frequencies of free
oscillations of thick-walled layered anisotropic cylindrical shells. The unknowns in the system of equations of motion describing
the parameters of the stress-strain state of the shells are selected in the radial direction. To implement a one-dimensional solving
system of differential equations of cylindrical shells, the numerical method of discrete orthogonalization was used, which was
adapted accordingly by the authors. On this basis, an algorithm was written and a software complex was created for personal
computers, which allows solving problems related to setting parameters of free oscillations of thick-walled layered anisotropic
composite cylindrical shells.
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The solutions of problems on the influence on the frequencies of free oscillations of an anisotropic thick-walled cylindrical
shell are presented, taking into account: the angle of rotation of the main directions of elasticity of an orthotropic fibrous
composite; increasing the number of cross-stacked layers; changes in the geometric parameters of the structure; four types of
boundary conditions.

Key words: cylindrical anisotropic shells, free vibrations, three-dimensional system of equations of motion, Ky-Washizu
variational principle, Bubnov—Galerkin method.
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3anpononosano nioxio 0o pose’si3Ky 3adaui npo GiNbHI KOJUBAHHA WAPYSAMUX MOSBCMOCMIHHUX YUTIHOPUUHUX OOONOHOK 3
AMI30MPONHO20 MAMePIany, NpylcHi XapaKmepucmuxi AKo20 3HAX00AMbCA 6 OOHIll NIOWUHI, WO € OOMUYHOIO cepeOUuHHIl
nosepxui. Cnupaioyuce Ha Mmoougikosanuil eapiayiinuti npunyun Xy-Baciosy, eusedena mpusumipHa cucmema 0OHOPIOHUX
oudepenyianoHux pieHAHb PYXY 6 YACMUHHUX NOXIOHUX JIHIIHOT meopii npyscHocmi aHi30MpoOnHO20 Mina 6 YUNIHOPUUHIl
cucmemi Koopounam i 6iON0GIOHI il epanuuni ymosu. Jsi NOHUMCEHHS POSMIDHOCMI MPUSUMIPHOI cUCmeMU 3ACMOCOBAHO
ananimuynutl memoo Bybuosa-I anvopxina. Lle 00360.15€ gusHavamu 4acmomu GIIbHUX KONUBAHL MOBCIMOCMIHHUX WAPYEAMUX
AHI30MPONHUX YUTNTHOPUUHUX 0DONOHKOBUX KOHcmpyKyitl.Ha ochosi po3pobienozo nioxo0y 00 po3paxyHKy GLIbHUX KOJUBAHb
MOBCMOCMIHHUX ~AHI30MPONHUX YUTNIHOPUYHUX OOONOHOK Y NPOCMOPOGill NOCMAHOGYI NPO6eOeHO aHali3 pe3ylbmamis
GU3HAYEHHS YACTOM GINbHUX KOJIUSAHb.3anponoHo8anuii nioxio Cymmeeo po3uupioc MOJICIUBOCTI PO3PAXYHKY 00O0NO0HKOGUX
KOHCMPYKYIU I3 KOMROSUYIUHUX MAmepianie.
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Trach V.M., Podvornyi A.V., Zhukova N.B., Bondarskyi O.G. Free vibrations of layered anisotropic thick-walled cylindrical
shells // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. — Kyiv: KNUBA, 2024. —
Issue 113.—P. 250-264.

In this work an approach is proposed to solve the problem of free vibrations of layered thick-walled cylindrical shells made of
an anisotropic material, the elastic characteristics of which are in the same plane, tangent to the middle surface. A three-
dimensional system of homogeneous differential equations of motion of the linear theory of elasticity of an anisotropic body on
the basis of the modified Ky-Washizu variational principle was developed. It was recorded in the cylindrical coordinate system
for the appropriate boundary conditions on the surfaces and ends of the shell. Using the analytical Bubnov — Galerkin method to
reduce the dimension of a three-dimensional system, an approach to obtaining an infinite one-dimensional system of differential
equations is presented. It gives possible to determine the frequencies of free vibrations of thick-walled unsymmetric laminate
anisotropic cylindrical shell structures. Based on the developed approach to the calculation of firee vibrations in the spatial
setting of a thick-walled anisotropic cylindrical shell, an analysis of the results of frequency determination was carried out. The
proposed approach significantly expands the possibilities of calculating shell structures from composite materials.
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