Some approaches to modeling blast wave impact on structures in LIRA-FEM
DOI:
https://doi.org/10.32347/2410-2547.2024.113.241-249Keywords:
blast wave, stability, excessive pressure, dynamic load case, direct dynamic method, finite element method, nonlinear analysis, critical loads, plastic joints, force redistribution, LIRA-FEMAbstract
The article is devoted to the methodology of modeling the calculation of structures for the action of dynamic loads caused by the impact of a blast wave and considers in detail the process of applying these dynamic loads to building structures in the LIRA-FEM software. This article describes the main stages of the calculations, starting from the calculation of the main parameters of the blast wave to the collection and application of dynamic loads to structural elements to perform the calculation by the direct dynamic method.
One of the key aspects of the article is to determine the main parameters of the blast wave that affect the magnitude and nature of the effects of the explosion loads. These parameters include pressure peak, blast wave duration, blast wave impulse, and wave front shape. The article discusses the typical values of these parameters depending on the explosion conditions, such as the type of explosive and the distance to the explosion epicenter.
The preference is given to modeling the effect of explosive loads on a structure as a dynamic impact. Such an impact can lead to significant deformations of structures and reveal additional features of the structure.
The article also describes the sequence of analysis of structures for explosive loads, which includes several stages. The first step is to determine the type of explosive device and its parameters, as well as the distance from the epicenter of the explosion to the structure. Next, the static load (pressure) from the blast wave is calculated and applied to the structural elements. The next step is to set the dynamic parameters of the blast wave, which are determined using special methods or regulatory documents. At the final stage, calculations are performed using the Time Dynamics module of the LIRA-FEM software package, which allows taking into account dynamic effects and assessing the behavior of the structure during the blast wave action.
References
Barabash M.S. Kompiuternoe modelyrovanye protsessov zhyznennoho tsykla obektov stroytelstva: Monohrafyia. (Computer modeling of life cycle processes of construction projects: Monograph.) – K.: Yzd-vo «Stal», 2014. – 301 p.
Barabash M.S. Gorodetskiy A.S. Nekotorie aspekti rascheta zdanii na ustoichivost k progressiruyushchemu razrusheniyu (Some aspects of calculation of buildings for resistance to progressive destruction). Stroitelstvo. Materialovedenie. Mashinostroenie. Seriya: Innovatsionnie tekhnologii zhiznennogo tsikla obektov zhilishchno-grazhdanskogo, promishlennogo i transportnogo naznacheniya. - 2009. - Vip. 50. - P. 157-162. - Link: http://nbuv.gov.ua/UJRN/smmit_2009_50_27.
Maksymenko, V.P., Barabash, M.S., Kostyra, N.O., Barmin, I.V. Modeliuvannia dynamichnykh navantazhen vybukhovoho typu v zadachakh doslidzhennia mitsnosti budivelnykh konstruktsii z vykorystanniam PK LIRA-SAPR (Modeling of dynamic loads of the explosive type in the tasks of researching the strength of building structures using PC LIRA FEM). Nauka ta budivnytstvo, 2024. – Vyp.38(4). – P. 20-27. DOI: https://doi.org/10.33644/2313-6679-4-2023-3.
Romashkina, M.A., Pisarevskyi, B.Iu., Zhuravlov, O.V. Rozrakhunok budivli na vplyv dii povitrianoi udarnoi khvyli priamym dynamichnym metodom z vykorystanniam PK LIRA-SAPR (Calculation of the building on the impact of the action of the air shock wave by the direct dynamic method using PC LIRA FEM). Budivelni konstruktsii. Teoriia I praktyka, 2024. – Vyp.14. – P. 147–160. DOI: https://doi.org/10.32347/2522-4182.14.2024.147-160.
Henzerskyi Yu.V, Barabash M.S., Trusov I.O., Pervushova L.F. Metodyka otsinky seismostiikosti budivelnykh konstruktsii ta sporud atomnykh elektrostantsii v PK Lira SAPR (Methodology for assessing the seismic resistance of building structures and structures of nuclear power plants in PC Lira FEM). Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk – K.:KNUBA, 2023. – Vyp. 111. – P. 125-139. DOI: https://doi.org/10.32347/2410-2547.2023.111.125-139.
Bilyk S., Bashynska O., Bashynskyi O. Determination of changes inthermal stress state of steel beams in LIRA-SAPR software. Strength of materials and theory of structures. 2022. – №108. – P. 189-202. DOI: https://doi.org/10.32347/2410-2547.2022.108.189-202.
Perelmuter A.V. Udar padaiuchykh ulamkiv po zalizobetonnii plyti (Impact of falling debris on reinforced concrete slab). Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk. – K.: KNUBA, 2023. – Vyp. 110. – P. 36-46.DOI: https://doi.org/10.32347/2410-2547.2023.110.36-46.
Maksymenko V.P., Barabash M.S., Pysarevskyi B.Iu. Metodyka otsinky napruzheno-deformovanoi struktury konstruktsii na osnovi metodu Pidsystemy (Methodology for assessing the stress-strain structure of the structure based on the Subsystem method). Budivelne Vyrobnytstvo. 2021. – Vyp. 71. – P. 40-46. DOI: https://doi.org/10.36750/2524-2555.71.40-46.
Nemchynov Yu.I. Budivnytstvo ta zabezpechennia seismichnoi bezpeky v Ukraini z urakhuvanniam rekomendatsii Yevrokodiv (Construction and provision of seismic safety in Ukraine, taking into account the recommendations of Eurocodes). Nauka I budivnytstvo, 2021. – Vyp. 29(3). – P. –3–14. DOI: https://doi.org/10.33644/2313-6669-14-2021-12
Nemchynov Yu.I., Mariienkov N.H., Khavkin A.K., Babik K.M. Proektuvannia budivel iz zadanym rivnem seismostiikosti (Design of buildings with a given level of seismic resistance). Kyiv: Hudymenko S. V. (2012).
Emelyanov, S., Nemchinov, Y., Kolchunov, V., Yakovenko, I. Details of large-panel buildings seismic analysis. Enfoque UTE, 7(2), 2016, - pp. 120 – 134. DOI: https://doi.org/10.29019/enfoqueute.v7n2.100
Klovanych S.F., Malyshko L., Maksymenko V.P. Teoriia plastychnosti v budivelnomu proektuvanni (Theory of plasticity in construction design). – Odesa: ONMU, 2017. – 154 p.
Graham Powell. Progressive Collapse: Case studies Using Nonlinear Analysis: Structures Congress: Metropolis and Beyond. 2005.
J. R. Gilmour and K. S. Virdi. Numerical Modeling of the Progressive Collapse of Framed Structures as a Result of Impact or Explosion. 2nd International PhD Symposium in Civil Engineering, 1998.
G. Kaewkulchai and E. B. Williamson. Beam Element Formulation and Solution Procedures for Dynamic Progressive Collapse Analysis. Computers and Structures, Vol. 82, No. 7-8, 2004, pp. 639-651. DOI: http://dx.doi.org/10.1016/j.compstruc.2003.12.001.
A. J. Pretlove, M. Ramsden and A. G. Atkins. Dynamic Effects in Progressive Failure of Structures. International Journal of Impact Engineering, Vol. 11, No. 4, 1991, pp. 539-546.
DBN V.2.2-5:2023. Zakhysni sporudy tsyvilnoho zakhystu (DBN V.2.2-5:2023. Protective structures of civil defense). –Kyiv: MinrehionUkrainy, 2023. – 112 p.
European Standard EN 1991-1-7 (Ievrokod 1 "Diia nakonstruktsii. Chastyna 1-7: Zovnishnivplyvy. Vybukhy").
American Society of Civil Engineers (ASCE): ASCE/SEI 59-11 "Blast Protection of Buildings".
USA Department of Defense (DoD), UNIFIED FACILITIES CRITERIA (UFC) 3-340-02: Structures to Resist the Effects of Accidental Explosions, 2008.
Kingery C.N., Bulmash G. Technical report APBRL-TR-02555: air blast parameters from TNT spherical air burst and hemispherical burst. 1984. AD-B082, Aberdeen Providing Ground, MD: U.S. Army ballistic Research Laboratory.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.