Mathematical model of the stress-strain state of multilayered structures with different elastic properties

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.113.131-138

Keywords:

building, multi-layer construction, concrete, reinforced concrete, load, mathematical model, stress-strain state, elastic properties, displacement, interpolation polynomials, integral equations, contact problem

Abstract

The article examines the features of stress-strain state of structures made of two and multilayer elements. The relevance of use of multi-layer load-bearing structures in rapidly constructed protective structures in Ukraine under conditions of possible shock-explosive and fire damage is justified.The method of interpolating trigonometric Lagrange polynomials in mixed plane problems of theelasticity theory is described. In the problems of elasticity theoryfor the regionunder conditions of planar setting, two of the four boundary conditions are known. It is proposed permissive system of integral equations relative to an unknown pair of boundary conditions on each side of the area under consideration, based on the solution of theorem on reciprocity of work and reciprocity of displacements for a plane under the influence of a unit force.Solutions for each of the sides of region are built by developing the Multopa-Kalandia collocation method. The boundary conditions are the result of solving the system of integral equations. Features on the contour, namely points of application of unit forces, boundary breaks, etc., are taken into account by additional functions that are introduced into the kernels of integral expressions in the form of coefficients of the required boundary conditions.To represent the cumbersome functions of movements and stresses of multilayer structures in a compact form, the apparatus of the theory of functions of a complex variable is used, which leads to compact expressions that are convenient for programming. To obtain more accurate solutions and reduce the duration of computer programs, all ordinary and singular integrals given in the work are calculated analytically, that is, the system of integral equations to be solved is reduced to a system of linear algebraic equations with unknown density functions at the interpolation points.The proposed mathematical model provides the universality inherent in general numerical methods and allows to study the general stress-strain state of multilayer structures and local effects in zones of junction of layers with different elastic properties.

Author Biographies

Gryhorii Ivanchenko, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor of the Department of Structural Mechanics

Galina Getun, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Professor of the Department of Architectural Structures

Iryna Bezklubenko, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor of the Department of ITPPM

Andrii Solomin, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Candidate of Physical and Mathematical Sciences, Associate Professor of the Department of Biosafety and Human Health

Serhii Getun, Kyiv National University of Construction and Architecture

postgraduate student of the Department of Structural Mechanics

References

Getun G.V., Kulikov P.M., Plosky V.O., Chernyshev D.O. Konstruktsiyi budivel I sporud. Knhyha 2. Nezhytlovi budivli. (Structures of buildings and structures. Book 2. Non-residential buildings). Textbook for higher educational institutions / Getun G. V., Kulikov P. M., Plosky V. O., Chernyshev D. O. – Kamianets-Podilskyi: «Ruta», 2023 – 900 p.: ill.

Getun G.V., Bezklubenko I.S., Solomin A.V., Balina O.I. Osoblyvosti ob’yemno-planuvalnykh zakhysnykh sporud tsyvilnoho zakhystu. (Peculiarities of volume-planning decisions of protective structures of civil defense) // Modern problems of architecture and urban planning. – 2023. – Issue 67, p. 216-225.

Getun G. V., Kolyakova V. M., Solomin A. V., Bezklubenko I. S. Osoblyvosti proyektuvannya stalevykh seysmostiykykh vysotnykh budivel. (Design features of steel earthquake-resistant structuresofhigh-risebuildings) // Building constructions. Theory and practice. – 2022. – Issue 11, p. 18-31.

Getun G.V., Butsenko Y., Balina O., Bezklubenko I., Solomin A. Dyfuziyni protsesy z nakopychuvalnymy kharakterystykamy pry ekspluatatsiyi budivel. (Diffusion processes with accumulative characteristics during the operation of buildings) // Strength of materials and theory of structures. – 2019. – Issue 102, p. 243-251.

Getun G.V., Butsenko Y., Labzhinsky V., Balina O., Bezklubenko I., Solomin A. Prohnozuvannya sytuatsiy ta optymizatsiya pryynyattya rishen na osnovi kintsevykh lantsyuhiv Markova v zonakh promyslovoho zabrudnennya. (Prediction of situations and optimization of decision-making based on finite Markov chains in industrial pollution zones) // Strength of materials and theory of structures. – 2020. – Issue 104, p. 164-174.

Getun G.V., Kolyakova V.M., Solomin A.V., Bezklubenko I.S. Konstruktyvni rishennya vybukhostiykykh budivel z prymishchennyamy tsyvilnoho zakhystu naselennya. (Structural solutions of explosion-proof buildings with premises for civil protection of the population) // Building structures. Theory and practice: Science and technology. collection. - K.: KNUBA, 2023. –Issue 13. – p. 27-35.

Getun G. V., Balina O. I., Bezklubenko I. S., Botvinovska S. I., Solomin A. V. Oob’yemno-planuvalni ta konstruktyvny rishennya sporud tsyvilnoho zakhystu naselennya. (Volumetric planning and constructive solutions of protective structures of civil protection of the settlement) // Nauka and education: Scientific and technical collector – XVIII InternationalScientificConferenceinHajduszoboszló, Hungary, 2024 – p. 55-62

DBN V.1.1-7-2016. Tekhnichni normy, pravyla I standarty. Zahalnotekhnichni vymohy do zhyttevoho seredovyshcha ta produktsiyi budivelnoho pryznachennya. Zakhyst vid nebezpechnykh heolohichnykh protsesiv, shkidlyvykh ekspluatatsiynykh vplyviv, vid pozhezhi. Pozhezhna bezpeka ob’yektiv budivnytstva. Zahalni vymihy. (Technical regulations, rules and standards. General technical requirements for the living environment and construction products. Protection from unsafe geological processes, harmful operational influences, and fire. Fire safety of construction sites. Generalrequirements). - K.: Ministry of Regional Development of Ukraine, 2017. – 41 p.

DBN V.1.2-7-2021.Tekhnichni normy, pravyla I standarty. Zahalnotekhnichni vymohy do zhyttevoho seredovyshcha ta produktsiyi budivelnoho pryznachennya. Systema zabezpechennya nadiynosti ta bezpeky budivelnykh ob’yektiv. Osnovni vymohy do budivel I sporud. Pozhezna bezpeka. (Technical regulations, rules and standards. General technical requirements for the living environment and construction products. A system for ensuring the reliability and safety of construction objects. Basic requirements for buildings and structures. Fire Security). - K.: Ministry of Regional Construction of Ukraine, 2022. – 13 p.

DBN V.2.2.5:2023. Tekhnichni normy, pravyla I standarty. Ob’yekty budivnytstva ta promyslova produktsiya budivelnoho pryznachennya, Budynky, sporudy. Zakhysni sporudy tsyvilnoho oborony. (Technical regulations, rules and standards. Construction objects and industrial products for construction purpose. Buildings and structures. Protective structures of civildefense). - K.: Ministry of Regional Construction of Ukraine, 2022. - 133 p.

DSTU 9195:2022. Shvydkosporudzhuvani zakhysni sporudy tsyvilnoho zakhystu modulnoho typu. Osnovni polozhennya. (Quick-build protective structures of modular civil protection. Substantive provisions). – K.: SE "Ukr NDNC", 2023. – 12 p.

Ivanchenko G. M. Getun G. V., Bezklubenko I. S., Solomin A. V. Vplyv vybukhovykh navantazhen na budivli ta sporudy tsyvilnoho zakhystu naselennya. (Impact of explosive loads on buildings and structures of civil protection of the population) // Strength of Materials and Theory of Structures. – 2023. – issue 110, p. 108-117.

Kovneristov G.B. Integralnyye uravneniya kontaktnoy zadachi teorii uprugosti dlya zaglublennykh shtampov. (Integral equations of the contact problem of the theory of elasticity for sunken stamps) // Collection of scientific works. – K.: KNUBA, 1962. –issue 20, p. 200-213.

Kovneristov G.B. Vzaimodeystvye shtampa i balochnoy plity. (The interaction of a stamp and a beam plate). // Resistance of materials and theory of structures. – K.: KNUBA, 1975. –issue 25, p. 165-171.

Kovneristov G.B. Korotkaya balka na granitse uprugoy poluploskosti. (A gentlebeamon the boundary of an elastic half-plane). // Resistance of materials and theory of structures. – K.: KNUBA, 1976. –issue 28, p. 42-51.

Kovneristov G.B., Shishov O.V. Shtamp, zaglublennyy v poluploskost s peremennym module uprugosti. (A stampembeddedin a half-plane with a variable modulus of elasticity) // Resistance of materials and theory of structures. - K.: KNUBA, 1971. –issue 15, p. 95-98.

Kulikov P.M., Plosky V.O., Getun G.V. Arkhitektura budivel ta sporud. Knyha 5. Promyslovi budivli. (Architecture of buildings and structures Book 5. Industrial buildings)/Text book for higher educational institutions / Kulikov P. M., Plosky V. O., Getun G. V. – Kamianets-Podilskyi: «Lira-K», «Ruta», 2020 – 820 pp.: il.

Kulikov P. M., Plosky V. O., Getun G. V. Konstruktsiyi budivel I sporud. Knhyha 2. (Constructions of buildings and structures Book 1: Textbook forhighereducationalinstitutions) / Kulikov P. M., Plosky V. O., Getun G. V. – Kamianets-Podilskyi: «Lira-K», «Ruta», 2021 – 880 pp.: il.

Lysenko E. F., Getun G. V. Proyektuvannya stalefibrobetonnykh konstruktsiy. (Design of steel fiber concrete structures).Training manual / Lysenko Y. F., Getun G.V. – K.: UMK VO. 1989 – 184 p.

Shtyerman I. Y. Kontaktna zadacha teoriyi pruznosti. (The contact problem of the theory of elasticity). M.: L.: Gostehizdat, 1949. –270 p.

Published

2024-11-29

Issue

Section

Статті