Stochastic stability of parametric oscillations of elastic shells
DOI:
https://doi.org/10.32347/2410-2547.2024.113.63-74Keywords:
shell, random parametric load, stochastic stability, probability, moment functionsAbstract
There is a powerful mathematical apparatus which appeared up on the basis of the theory of Brownian motion of Markov processes and processes of diffusional type nowadays. It allows deciding intricate dynamic problems taking into account fluctuation processes. A classic result in this area is the article of O.O. Andronov, L.S. Pontryagin and O.A. Vitt, in which firstly the methods of the theory of Markov processes were applied to research of problems of statistical dynamics of the nonlinear systems. Later, the strict mathematical theory of stochastic differential equations of Ito was presented in an article of I.I. Gikhman and A.V. Skorokhodov. An important step in application of this theory to research of dynamic problems of the elastic systems was become researches of R.L. Stratonovich. These researches were based on combination of Krilov-Bogolyubov method of averaging with the method of theory of Markov processes. The strict ground of this approach was done by R.Z. Khasminski. A significant contribution to the development of the theory of stochastic systems and the introduction of probabilistic methods for the calculation of structures was made by V.V. Bolotin and his followers. V.V. Bolotin performed significant work on the application of probabilistic methods to the calculation of structures. Also important are studies of stochastic parametric oscillations of various systems by Dimentberg, V.I. Klyatskin and others. From the beginning of 80-th of the last century the scientists of Structural and Theoretical mechanics department of the Kyiv National University of Construction and Architecture were engaged in development of the numeral research of stochastic stability of elastic systems. Results of numerical researches of stability of parametric oscillations of the cylindrical and shallow shells under different stochastic influences were presented at this article. Parametric oscillations models of the shells were formed on the basis of the asymptotic or functional approaches and Monte-Carlo method using the calculation procedures of finite element analysis software. Stochastic stability of elastic shells was formulated as stability in probability, on average and with respect to the moment functions of different order. The critical values of stochastic load intensity and the regions of stochastic stability of shells were obtained by Runge-Kutta method of the fourth order and the continuation by parameter method.
References
Andronov O.O , Pontryagin L.S. and Vitt O.A. O statystycheskom rassmotrenyy dynamycheskykh system (On statistical consideration of dynamic systems). ZhTEF, T.3, №3, 1933.
Bogolyubov N.N., Mitropolskyi Yu.A. Asymptotycheskye metody v teoryy nelyneinykh kolebanyi (Asymptotic methods in the theory of nonlinear oscillations). M.: Nauka, 1974.
Bolotin V.V. Dynamycheskaia ustoichyvost upruhykh system (Dynamic stability of elastic systems). M.: Hosudarstvennoe yzdatelstvo tekhnyko-teoretycheskoi lyteratury, 1956.
Bolotin V.V. Sluchainye kolebanyia upruhykh system (Random vibrations of elastic systems). M.: Nauka, 1979.
Gikhman I.I. and Skorokhodov A.V. Teoryia sluchainykh protsessov (Theory of random processes). Tom 3, M.: Nauka, 1975.
Dimentberg M.F. Sluchainye protsessy v dynamycheskykh systemakh s peremennymy parametramy (Random processes in dynamic systems with variable parameters). M.: Nauka, 1989.
Klosek-Dygas M.M., Matkowsky BJ., and Schuss Z. Stochastic stability of nonlinear oscillators // SIAM J. Appl. Math., 1988, 48, 5, 1115-1127.
Klyatskin V.I. Stokhastycheskye uravnenyia y volny v sluchaino-neodnorodnykh sredakh (Stochastic equations and waves in randomy-inhomogeneous areas). M.: Nauka, 1980.
Labou M. On stability of parametrically excited linear stochastic systems // Int. Appl. Mech., 2011, 47(10), 1440-1453.
Lyapunov A.M. Obshchaia zadacha ob ustoichyvosty dvyzhenyia (General problem of motion stability) . M.-L.: Gosyzdat, 1950.
Stratonovich R.L. Uslovnye markovskye protsessy (Conditional Markov processes). M.: MGU, 1966.
Khasminski R.Z. Ustoichyvost system dyfferentsyalnykh uravnenyi pry sluchainykh vozmushchenyiakh ykh parametrov (Stability of systems of differential equations under random disturbances of their parameters). M.: Nauka, 1969.
Yakubovich V.A., Starzynskyi V.M. Parametrycheskyi rezonans v lyneinykh systemakh (Parametric resonance in linear systems). M.: Nauka, 1987.
Bazhenov V.A., Busetta M., Dekhtyaruk Е.S., Otrashevska V.V. Dynamichna stiikist pruzhnykh system pry stokhastychnomu parametrychnomu zbudzhenni (Dynamic stability of the elastic systems under stochastic parametric influence) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2000. − Issue 67. − P. 51-59 (ukr).
Bazhenov V.A., Dekhtyaruk Е.S., Lukianchenko O.O, Kostina O.V. Chyslennoe postroenye redutsyrovannыkh modelei stokhastycheskykh parametrycheskykh kolebanyi polohykh obolochek (Numerical construction of reduce models of parametric vibrations of the shallow shells) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2011. − Issue 72. − P. 51-59.
Bazhenov V.A., Lukianchenko O.O., Vorona Yu.V., Kostina O.V. Dynamichna stiikist parametrychnykh kolyvan pruzhnykh system (Dynamic stability of parametric vibrations of the elastic systems) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2015. − Issue 95. − P. 159-185 (ukr).
Bazhenov V.A., Luk’yanchenko O.A., Vorona Yu.V., Kostina E.V. On Stability of Parametric Oscillations of a Shell in the Form of Hyperbolic Paraboloid // International Applied Mechanics. –2018, Volume 54, №3. – P. 36-49.274-286.
Dekhtyaruk Е.S., Lukianchenko О.О., Otrashevska V.V. Dynamichna stiikist pruzhnykh system pry kombinovanomu stokhastychnomu navantazhenni (Dynamic stability of the elastic systems at combained stochastic load) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2003. − Issue 72. − P. 51-59 (ukr).
Goncharenko M.V., Poshyvach D.V. Doslidzhennia umov dynamichnoi stiikosti pruzhnykh system pry stokhastychnomu parametrychnomu vplyvi (Study of conditions of dynamic stability of elastic systems under stochastic parametric influence) // Vibratsii v tekhnytsi ta tekhnolohiiakh. − 2006. − Issue 2(44). − P. 14-19. (ukr)
Gotsulyak Е.А., Dekhtyaruk Е.S., Lukianchenko О.О., Poshyvach D.V. Doslidzhennia dynamichnoi stiikosti ploskoi formy zghynu pruzhnykh system pry kombinovanomu rezonansi (Research of dynamic stability of the flat bending shape of the elastic systems at combined resonance)// Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2007. − Issue 81. − P. 33-42 (ukr).
Gotsulyak Е.А., Dekhtyaruk Е.S., Lukianchenko О.О. Pobudova redukovanoi modeli parametrychnykh kolyvan tsylindrychnoi obolonky pry chystomu zghyni (A construction of reduce model of parametric oscillations of cylindrical shell bending) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2009. − Issue 84. − P. 11-19 (ukr).
Lukianchenko О.О., Paliy O.M. Chyselne modeliuvannia stiikosti parametrychnykh kolyvan tonkostinnoi obolonky vidiemnoi hausovoi kryvyzny (Numeral design of vibrations stability of the thin-walled shell with negative gaussian curvature) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2018. − Issue 101. − P. 45-59 (ukr).
Lukianchenko O.O., Kostina O.V. Kolyvannia parametrychno zbudzenyh pruznyh obolonok (Oscillations of parametric excited elastic shells). – Kyiv: Vyd-vo ”Karavela”, 2022. – 164 s (ukr).
Poshyvach D.V. Chyselynyi analiz dynamichnoi stiikosti kruhovoi tsylindrychnoi obolonky pry vypadkovomu parametrychnomy zbudzhenni (Numerical analysis of the dynamic stability of a circular cylindrical shell under random parametrical excitation) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2002. − Issue 71. − P. 115-124. (ukr)
Poshyvach D.V., Lukianchenko O.O. Doslidzhennia stokhastychnoi stiikosti parametrychnykh kolyvan konstruktsii metodom Monte-Karlo (Research of stochastic stability of constructions parametric vibrations by the Monte-Carlo method) // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2024. – Issue. 112. – Р. 327-331. (ukr)
Vorona Yu.V., Lukianchenko О.О., Kostina O.V. Stokhastychni parametrychni kolyvannia pruzhnykh system z urakhuvanniam yikh poperednikh staniv (Stochastic parametric vibrations of elastic systems with regard to their previous states)// Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2014. − Issue 92. − P. 102-113 (ukr).
Jaecheol Koh. Siemens NX Nastran: Tutorials for Beginners and Advanced Users. ASIN: B0B19ZBZCM, 2022. – 566 p.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.