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Abstract. A review of studies of parametric oscillations of shells and their stability showed that most of them concern
parametric oscillations of shells excited by periodic loads. The problem of studying stochastic parametric oscillations of shell
structures remains relevant due to the complexity of forming calculation models of parametric oscillations and solving the problem
of their stochastic stability. Results of numerical researches of stability of parametric oscillations of the cylindrical and shallow shells
under different stochastic influences were presented at this article. Parametric oscillations models of the shells were formed on the
basis of the asymptotic or functional approaches and Monte-Carlo method using the calculation procedures of finite element analysis
software. Stochastic stability of elastic shells was formulated as stability in probability, on average and with respect to the moment
functions of different order. The critical values of stochastic load intensity and the regions of stochastic stability of shells were
obtained by the Runge-Kutta method of the fourth order and the continuation by parameter method.
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Introduction. There is a powerful mathematical apparatus which appeared up on the basis of the
theory of Brownian motion of Markov processes and processes of diffusional type nowadays [1-13]. It
allows deciding intricate dynamic problems taking into account fluctuation processes. A classic result
in this area is the article of O.0. Andronov, L.S. Pontryagin and O.A. Vitt [1], in which firstly the
methods of the theory of Markov processes were applied to research of problems of statistical
dynamics of the nonlinear systems. Later, the strict mathematical theory of stochastic differential
equations of Ito was presented in an article of I.I. Gikhman and A.V. Skorokhodov [5]. An important
step in application of this theory to research of dynamic problems of the elastic systems was become
researches of R.L. Stratonovich [11]. These researches were based on combination of Krilov-
Bogolyubov method of averaging with the method of theory of Markov processes [2]. The strict
ground of this approach was done by R.Z. Khasminski [12]. A significant contribution to the
development of the theory of stochastic systems and the introduction of probabilistic methods for the
calculation of structures was made by V.V. Bolotin and his followers. V.V. Bolotin performed
significant work on the application of probabilistic methods to the calculation of structures [3, 4]. Also
important are studies of stochastic parametric oscillations of various systems by Dimentberg [6], V.I.
Klyatskin [8] and others. Mathematical aspects of the theory of stochastic stability of oscillations of
elastic systems are given in books [2-6, 11, 23].

From the beginning of 80-th of the last century the scientists of Structural and Theoretical
mechanics department of the Kyiv National University of Construction and Architecture are engaged
in development of the numeral research of stochastic stability of shell parametric oscillations [14-26].
The stability areas of parametric oscillations of the elastic shells under actions of different random
loads, which were received by authors, were presented in a monograph [23]. The results of research of
stochastic stability of elastic shells, which is formulated as stability in probability, on average and with
respect to the moment functions of different order are presented at this article.

1. Mathematical definition of stochastic stability in probability, on average and with respect
to the moment functions of different order from phase variables. Let us consider the mathematical
aspect of the problem of stochastic stability of oscillations of an elastic system. Let the system be
stochastic in the sense that at each instant of time ¢ its state is described in some phase space U by a
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random vector X(¢) whose components are dynamic variables of the system and its velocities. Let's set

the dimension of the space U equal to 2. The stochastic nature of the system's behavior can be a
consequence of the random setting of the initial conditions, as well as the action of random factors in
the process of the system's movement. In the second case, the evolution of the system is described by a
differential equation for the realization of a random process

dx -

- = aat ) 1

i) 0
where f(f,t) = (fl (%.1), f5(%,1) s fon ()?,t)) — a vector function that determines the behavior of a
dynamic system.

Let X(1)=0 be the solution of this equation. We consider the initial condition x(#,)=x, to be

deterministic. By analogy with the classical definition of stability according to Lyapunov [10], we
introduce the following definition of stability according to probability.

The solution X(¢#) =0 of equation (1) is called stable in probability if for any one & >0, p >0 can find
such §(&,p)>0 that from %[ < &

P{ sup ([¥]) < e,} >1-p, 2)

fy<t<oo
Where the symbol || . || — is some norm in space U .

The meaning of equation (2) is that with a stable solution X(¢) =0, the initial perturbation can be
chosen in such a way that the probability of a predetermined small deviation of the system from the
initial coordinates at ¢ > ¢, will be less than any predetermined value p .

A solution X(¢) =0 is called asymptotically stable in probability if it is stable in probability and for
any ¢ >0

limP1||x||< e} =1. 3
limP {7 < e} G)
The solution X(¢) =0 of equation (1) is called stable according to the mathematical expectation of

the norm ||)?|| in the space U if for any one ¢ >0 can find such 5(8) >0 that from "fo” <o
sup ([ <. @
ty<t<oo

where the symbol ( . ) is an averaging operation over an ensemble of implementations.

If the solution X(z) =0 is stable according to the mathematical expectation of the norm ||)?|| in the
space U and a condition is executed

lim (|[X]|) =0, 5

lim ([1%]) )

then the solution is called asymptotically stable according to the mathematical expectation of the norm.
If the norm ||)?|| is in the form

on p
= P
=[St | ®
k=1
then they talk about p - stability of the system. If p =2, then stability in rms is considered.

The concept of stability with respect to moment functions of different order from phase variables
has received wide practical application. The moment functions of a vector random process X(z) are
considered, which are equal to the mathematical expectations of the components of the process and
their product at the same moment in time. There are moment functions of the first order —
mathematical expectation of components, moment functions of the second order — mathematical

expectation of squares and even products of components, etc.
A vector of moment functions of the 7 -th order is entered
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m, (6)={my,_y(@),my; ().}, ™
where my, (6)= <x O x, () x, (t)...>, here the number of indices is equal to the order of the moment

function. The corresponding vector space is denoted by M, , and the norm in this space is denoted by ||m, || .
The solution X(t)=0 of equation (1) is called stable with respect to moment functions of the r-th

order, if for each one £ >0 can be found such (&) >0 that from ||mr (to)" <0
sup (Jm, (1)) < . (8)
ty<t<oo
If the solution X(¢)=0 is stable with respect to moment functions of the r-th order and the condition
is fulfilled

tim (|m, ()]} = 0. ©)

then the solution is called asymptotically stable with respect to moment functions of the  -th order.

In some problems, moment functions of different orders are connected in such a way that it is
impossible to consider them separately in time. In this case, it is advisable to modify the definition of
system stability as follows. A vector is entered

my () ={m, (), my(t),...m, (1)}, (10)
the components of which are the moment functions of the process from the first to the »-th order
inclusively. The dimensionality of this vector is reduced taking into account the symmetry of the
moment functions.

We denote the corresponding vector space by M| , and the norm in this space by “m{ “ For
example, the Euclidean norm is written in the form

n k n ko1 12
=[zm§ +3 Y my, +...22..m§k,] : (11)
Jj=1 1k

Jj=1k=1 Jj=1k=1

,
[

A solution X(¢)=0 is said to be stable with respect to moment functions up to the r-th order if for

each ¢ >0 it is possible to find such 8(€) >0 that from ‘

m{ (to)” <€

sup <”m1 (t)“> <e (12)

ty<t<oo

If the solution )?(t) =0 is stable with respect to moment functions up to and including the r-th
order and the condition is fulfilled

fim ([ of)=o. =

then the solution is called asymptotically stable with respect to moment functions up to and including
the 7 -th order.

Parametric resonance occurs with such probabilistic characteristics of the random process, in which
the trivial solution of system (1) becomes unstable in the sense of the accepted definition of stochastic
stability in probability, on average, and relative to moment functions.

2. Stochastic stability in probability of a circular cylindrical shell under longitudinal loading.
A circular cylindrical shell had the following characteristics: radius R = 0.16 m, length /= 0.43 m,
thickness #= 0.005m, surface density ph=13.5kg/m’>, modulus of elasticity of the material

E=0.7-10"" Pa, Poisson's ratio v= 0.3. Fastening allowed free displacement of the edges in the
longitudinal direction, but limited the displacement in the circular direction. Along the ends of the
shell, a uniformly distributed longitudinal load was applied, which was given by a random function
P(1).
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The calculation model of stochastic parametric oscillations of the cylindrical shell can be
performed analytically according to the asymptotic method [3] and numerically [23]. The system of
equations that describes the dynamic stability of shell parametric oscillations was reduced to a system
of uncoupled equations of the form

3,0+ 28003, () + o, [1+ B()] y,()=0, i=12,...m, (14)

where y, (1), y,(¢) — the generalized coordinates and generalized velocities (m— the number of

&ib,
2
0i

retained base vectors); P (1) =2u,E(t), p; = — respectively, the longitudinal load and its

intensity, {(¢#) — a random function with variance D . =1/2, @), — the shell natural frequency, g, —

geometric stiffness coefficient, ¢ = 0,01 — the damping parameter, which was assumed to be the same
for all forms of shell natural oscillations.

Equation (14) is a stochastic analogue of the Mathieu-Hill equation. The question of the occurrence
of parametric resonance is reduced to the problem of the stability of trivial solutions of equation (14).
Using the finite element method, which is implemented in the NASTRAN software [27], a finite
element model of a circular cylindrical shell was constructed. Natural frequencies were determined
numerically by the Lanczos method using the computational procedure of the NASTRAN software:

o) = @ = 4734 1adls, oy, = @y, = 5263 radls, oy, = oy, = 7275 rad/s.
Natural frequencies were compared to analytical ones [3]:

[0

o) = 4764,21 radls, 0\ = 64789,28 radls, @5 =111703,9 radss,
') = 5341,46 radls, o) = 82885,32 radss, @) =142599,6 radss,
) @ @)

) , = 7278,66 rad/s, @, , = 48390,12 rad/s, @, ; = 82364, 68 rad/s.
The values of the elements of the geometric stiffness matrix were determined numerically using the
NASTRAN software [27] g, = 3,953931 kg and compared with the analytical values [3]:

8,,=8,,=3:513, g,,=¢,,=3.689, g, = g, =3,136.
The random function of the parametric loading P(t) was given with the spectral density

205 o(w*+6?)
T (@-6% *+Q2awy’

Gp(w)= (15)

8Py

22

where a — correlation parameter, 6 — characteristic load frequency, o, = ,ux/i = standard

deviation of a random process.

In the case of a broadband random process according to the Stratonovich-Khasminsky approximate
theory [11, 12], the condition of asymptotic stability in terms of the probability of parametric
oscillations of the envelope can be written by the expression

GpQwy) = SE

S (16)

By substituting the function (15) into the relation (16), was obtained the boundary equation of the
region of stability of the shell parametric oscillations. In the coordinates of the relative frequency
n=6/(2m,) and reduced intensity u , when o, = a/®, the following equation takes the form

(1-1°) +0f
=2 12e—mM———— . 1
N P (47
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It is possible to determine the limits of the loss of stability numerically by direct simulation of the
oscillatory process. For this, the realization of a stationary random function was modeled by the
spectral density (15) and equation (14) was integrated using the Runge-Kutta method for some small
initial disturbances. In the range of values of the external influence parameters, which correspond to
the stability region of parametric fluctuations, the initial disturbances during the integration of equation
(14) were attenuated. Beyond this region, the initial perturbations increase. Results of analytical and
numerical studies of stability according to the probability of shell parametric oscillations the under
longitudinal loading with the corresponding values of «;=0,1 and & =1 were presented in Fig. 1. The

study showed that the lowest values of the critical load intensity correspond to equation (14) with the

M

natural frequency @, = @,, = o, 5 . The solid line shows the boundaries of the stability region of this

01

form of oscillations under parametric loading with different values «, constructed according to the

0
analytical formula (17). As a result of the numerical study, points corresponding to shell stable
oscillations (empty markers) and points corresponding to un stable oscillations (colored markers) were
obtained. The dashed line shows the experimental boundary of the stability region of shell parametric
oscillations.
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A better agreement between the analytical and numerical results can be seen in Fig. 2 than in Fig. 1.
This can be explained by the better fulfillment of the condition a, >> & necessary for the application

of formula (17). There is also a better convergence of the results of analytical and numerical studies
nearby 7 = 1. This is explained by the fact that formula (17) has an approximate character, that is, it is
valid in the immediate vicinity of the main parametric resonance, when the characteristic frequency of
the load 6 coincides with the frequency of the main parametric resonance of the shell 2, .

3. Stochastic stability of the shallow shell under surface delta-correlated disturbance. The
question of stochastic stability of parametric oscillations of a shallow shell was formulated with respect
to moment functions of phase coordinates of the second order. A square shallow shell with the
following geometric and mechanical characteristics was considered: sides a = b = 0,48 m, thickness

h=0,004m, modulus of elasticity E =7,2:10'° Pa, specific gravity p = 2700 kg/m’, Poisson's ratio

1
u =0,3. The maximum deflection in the middle of the shell was f < §a=0.096 m. The main

curvatures of the middle surface of the shell along the forming axes were assumed to be the same
k. :ky =const .

The reduced model of shell parametric oscillations has the form of a system of linearized ordinary
differential equations

M 5,0+ Cy,(0)+ K y,(t)+qOK sy, (1) =0, i =1,2,...,m, (18)
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where M *, c', K " and K; — reduced matrices of masses, damping, stiffness and geometric stiffness

of the dimension mxm respectively (m —the number of basic vectors retained); y,(¢), v;(f) — the
generalized coordinates and generalized velocities of the nodes of the shell finite element model.

In equation (18) q(¢)=q, +g(¢) is the surface distributed stochastic load, where g, — the constant
component of the load, g(¢) — the delta-correlated random component of the load with the correlation
function

K(7t)=05e"" (cos 0,7+ eisin Gar], (19)
o
and a finite radius of correlation
1 | P o . o o o 20
T, =— [K(7)dT=—[02e | cosO T+—sin0, T |dT = +—= = , (20)
0 gj () (;gj 0 ( “ e, "‘J o’ +6, ea(a2+9§] o’ +6,

where 0'3 — the intensity of stochastic influence; a — the correlation parameter, 8, — the frequency of
the hidden periodicity.

If we enter a 2m-dimensional vector of phase variables Z(t)=(§l(t),fz(t),...,CZm(t))T=

=( V1@, 05 (8) stV @), 91 (), D5 ()5 D, (t))T , then system (18) can be rewritten in normal form

d - - -
EC(¢)=AC(t)+q(t)BC(t)- 21)

Matrices A and B are calculated by formulas

0 E 0 0
A= * ] % CNES I B= * ] o * )
-M YK M)y C -M )Y K; O
where E — unit matrix with dimension mxm .

For system (21), we consider the Cauchy problem with initial conditions f 0)= EO, where the

vector &, = (501’502,...,502m)r is considered deterministic.

The question about the loss of dynamic stability of the shell is equivalent to the question about the
stability of trivial solutions of equations (21). When averaging over the ensemble of realizations of
system (21), the equations take the form

%@» = A+ B0, (0)) =&y - (22)
System (22) is open with respect to the variables (Z’ )= ((4’ HO)X(SI()) (e (t)))T, as contains

new unknown features {(g(t){(0)) = ({g(D& (1)), (G()C (D)), s <q(r)§2m(r)>)T, which are the
correlations at the instant of time ¢ of the random process ¢(t) with the solution of system (21), the
components of which are functionals of the random process ¢(¢) in the interval [0, t]. When
considering system (22), the approach of splitting the average product of two functionals is used. If

R[q(t)] is a functional from a Gaussian centered process, then the Furuttsu-Novikov formula holds for

the average product (q(t)R[q(1)]) [15, 23]

4 5R[q]
HRq)|)=]|dTK(t —T){(—=). 23
(GOR[qO)=]deK (1 =1)Co" 0 (23)
Here K(¢) — the correlation function of the process ¢(¢), (ZR—?)]) — the average of the variational
q(T

derivative of the functional R[g] at ¢ the point 7 .
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As a result of the given approach, system (22) takes the form of a connected infinite sequence of
equations for moment functions of the second order

5 P T 5 P =T ¢ 52 P =T
PO (’))>=A< (Co¢ (t)))+BdeIK(t—Tl)+< (Eod o)
dt 0z(7) 0z(7) 0 0z(1)0z(1))
L [GISNG) N s (Ew o),
+<T(T)>A +'([dTIK(t—Tl)<W B (24)
with initial conditions
52 = =T 5 P =T 5 P =T 52 = T
el @) olod @), sfwd) . &0 o) 0 ier 09

0z(7)dz(1)) B 0z(7) i 0z(7) ’ 0z(7)0z(1)) )

The question of stochastic stability of system (22) is reduced to the study of stability of trivial
solutions of integral-differential equations (25). Taking into account the parametric load, which is
applied to the hollow shell, in the form of a delta-correlated random process with correlation function
(19), finite correlation time (20) and variance of stochastic influence, the matrix differential equation
for second-order moments (24) becomes closed, and other equations of the infinite system become
redundant. The resulting system of equations will represent the equations of the first Markov
approximation for the second moment functions

%<5(r)ZT(t)>=(A+DBz)<Z(r>ZT(r>>+<E(r)ZT<t>>(A+DBZ)T +2dDBE WS )8 (26)
with initial conditions (Z(0)Z7 (0)) = (EOEOT ) .

The system of equations (26) can be presented in the form of a system of three deterministic
differential equations of the first Markov approximation with respect to moment functions of the

second order in the phase variables &, (¢)=y;(¢), &§,(¢)=y;(t) for each frequency of natural
oscillations of the shallow shell [8] with initial conditions £;(0)= y,y, {,(0) =y,

%<4§(r)>= 2AGOE W),
%<cl(r>§2(r>>=<c§(r>>—w?<:f<r>>—2eiw,-<cl<r>:2<t)>,

CAG ) =28 () -207C, (06, (D + a'0'q (& (1) + awlorz, (&} (). @7)

Here @, — the shell natural frequencies, &, — damping parameter, a, = g;; / w} — coefficients that
characterize the influence of the constant component of the parametric load on the shell stiffness
characteristics, which is determined using the approach [15]; 7, — the finite correlation time, which is
determined by formula (20), D = 637, — the variance of the stochastic parametric influence.

The modes (Fig. 3) and frequencies of the shell natural oscillations were determined using the
NASTRAN software:

o 5 =[1243,4;2486,8,2493,2;3906,2;4402,3] rads.

Mode 2 Mode 3

Fig. 3. The modes of natural oscillations of the shallow shell
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Using the Runge-Kutta direct method, the system of differential equations (27) was integrated
under the action of a parametric load with different values of its intensity 0'3 . In Fig. 4 presents the

phase trajectories and dynamic behavior of the solution {,’12 (¢) : in stable (Fig. 4, a), unstable (Fig. 4, b)
and at the border of the stability region (Fig. 3, c) regimes of oscillations of the shell according to the
first form of natural oscillations. In a stable regime of stochastic oscillations, the solution {,’12 (t) of
system (27) decreases over time, in an unstable regime, it increases. In Fig. 4, d presents the critical
values of the intensity of the stochastic component of the load 0'3 according to the first form of shell
natural oscillations with a variable coefficient =6, /®, . The region of instability of the parametric
oscillations of the shallow shell lies above the curve.
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o002
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0,000 4 0,000 4
00 o

(2) (b)

&(t), a8 &(1), a7

03 05 1.0 15

(@

Fig. 4. Stable (a), unstable (b), at the boundary of the instability region (c) modes of shell oscillations; critical values of the
intensity of the stochastic component of the parametric disturbance (d)

If we rewrite the system of deterministic differential equations with respect to moment functions of
the second order (27) in the form of a linear autonomous system

LG (G0
o (GO0 ) =G ()G OGO ¢ 5 (28)
(&) (£1G)
where G(f) — matrix whose coefficients are 277/w; — periodic functions
0 2 0
G(t)=| -} 26w, 1 |, (29)

doloyt, 207 -4g0o,
then the analysis of the shell stability is reduced to the problem of the stability of trivial solutions of
system (28). With the help of the method of generalized Hill determinants, when solving an algebraic
problem for eigenvalues, the characteristic indicators are determined and the boundaries of the region
of shell instability are constructed. In Fig. 5 presents the behavior of the characteristic Hill indicators
of the system (29) under the influence of stochastic load with the frequency of the hidden periodicity
0, = w,, the correlation parameter o = gw, =0,0276w, , and the correlation radius 7, =0,0552/ @, .

The real parts of the characteristic indicators are shown by a solid line, the complex ones by a dashed
line. The positive real parts of the characteristic indicators, which correspond to the unstable mode of
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oscillations, lie in the upper half-plane. The R.Im
points of intersection of the solid curve of the
coordinate axis correspond to the critical values 1
of the stochastic component of parametric 254
fluctuations. 154: 1
4. Stochastic stability relative to moment .
functions of different order from phase :
variables. Let us consider the results of 054
determining the boundaries of the regions of :

2
stochastic ~ stability of shell parametric U %,
oscillations with respect to moment functions of 05 -
different orders (7). A circular cylindrical shell

o i . Fig. 5. Dependence of Hill's characteristic indicators from
had the characteristics, which was consider the intensity of stochastic influence

bellow in item 2. Each equation of the system of
the differential equation that describes the shell parametric oscillations at each natural frequency

wf:ll)mz with the corresponding number of half-waves in the longitudinal and circular directions [3] is

the stochastic analogue of the Mathieu-Hill equation
(0 + 280, 5(0) + 05 (1+ 11 (1) y =0, (30)
(i)

where y= yfy’;l)mz — the generalized coordinate, @, = Dy, ~ the frequency of the shell natural
oscillations, ¢ — the damping parameter, which is determined using the logarithmic decrement of the
oscillations 6 =0,05; f(t) — stationary normal process of white noise type, x4 — intensity of random
parametric disturbance.

The stochastic stability of a cylindrical shell was investigated numerically by the continuation by
parameter method [14]. The boundaries of the regions of shell dynamic stability with respect to the
second moments under the parametric influence of the type of white noise for various natural modes
are presented in Fig. 6, a. The graphs corresponding to frequency @, =@y =4764,205 rad/s for moment
functions of various orders are shown in Fig. 6, b. The dependence of critical values x on the order of

moments is such that, when considering moments of even and odd orders, as the order of moments
increases, the regions of stability become narrower. The curves corresponding to moments of different
parity intersect at certain values f'(¢).

410" 250000

(3)
3410" @4 200000
/ /
/ 150000 ]
r=3
2 +10% /

/ o7 100000 e :”rj—i
| —
"] r=6
S

1+10% [— | ——
50000 —— 10

1
o

(@) (b)

Fig. 6. Boundaries of the regions of shell dynamic stability with relative to different moment functions: =2 (a) and r=2-10 (b)

Analysis of the results shown in Fig. 6, b demonstrates the following: as the frequency decreases,
the region of dynamic stability narrows and for all & the critical values u are the smallest for the

lowest frequency «,.
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Conclusion. A review of studies of parametric oscillations of shells and their stability showed that
most of them concern parametric oscillations of shells due to the action of periodic disturbances. The
problem of studying stochastic parametric oscillations of shell structures remains relevant due to the
complexity of forming calculation models of parametric oscillations and solving the problem of their
stochastic stability. Currently, calculation models of parametric oscillations of shells can be formed on
the basis of the asymptotic and functional approaches using the calculation procedures of finite
element analysis software. Stochastic stability of elastic shells can be formulated as stability in
probability, on average and with respect to the moment functions of different order. The critical values
of stochastic load intensity and the regions of stochastic stability of shells can be obtained by Runge-
Kutta method of the fourth order and the continuation by parameter method.
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JIyk’anuenko O.0., Ilowueau /].B., Kapa I.]].
CTOXACTHYHA CTIMKICTh MAPAMETPUYHUX KOJIMBAHB MPYKHUX OBOJIOHOK

Ha renepimHiii 4ac icHye 10CTaTHBO MOTYXHUI MaTEMaTUUHUN anapat, IKUM BUHUK Ha OCHOBI OPOYHIBCBKOI'O PyXy Teopil
MapkiBcbKHX IpoLECiB 1 mpouecis audysiiiHoro Tumy. Bin 1o3Bosie po3B’sa3yBaTH CKJIaJHI AMHAMIYHI 33124l 3 ypaxyBaHHAM
duykTyaniinux npouecis. KiacuuHuMm pe3ysnbTaToM B Lii 00aacTi MoxHa BBaxaTu crartio O.0. Annponosa, JI.C. ITonTpsrina
ta O.A. Butra, B siKiii Buepiie MeToau Teopii MapkiBchbKHX IporeciB 0yJ10 3aCTOCOBAHO [0 AOCII/DKEHHS 3aJa4 CTaTUCTUYHOL
JNMHaMIKM HemmiHifHuX cucreM. IlisHime Oyna po3poOsieHa CTpora MaTeMaTH4HAa TEOpis CTOXAaCTHMYHUX AU(EpEeHIiaTIbHUX
piBHsHb IT0, sika mpezcraBineHa B po6oti L.I. Iixmana Ta A.B. Ckopoxoza. BaxinBuMm KpokoM B 3acTOCYBaHHI 1€l Teopii 10
JOCTI/DKEHHS! 3aj[ad JMHAMIKM TPYXHHX cHcTeM crtami poGoti P.JI CrtpatoHoBmua. Moro mocmimkeHHs GasyBamich Ha
MoeTHaHHI MeTony ycepenaHeHHs Kpuiosa-boromo0GoBa 3 meromom Teopii MapkiBcbkux mporeciB. Ctpore oOIpyHTYBaHHS
nporo miaxomy Oyno 3pobseno P.3. XacbMiHCbKMM. 3HauHMH BHECOK Yy PO3BUTOK TEOpii CTOXAaCTUYHMX CHUCTEM Ta
BITPOBA/KEHHIO IMOBIPHICHUX METO/IIB 10 PO3PAaXyHKY KOHCTPYKLii Oyio 3podseno B.B. BosnorinuM Ta #oro nocinigoBHUKaMu.
Takox BaXJIMBUMH OyJM JOCIIIPKEHHS CTOXaCTHYHUX MapaMeTpuuHuX BiOpawii pisuux cucrem B.1. [lumenOepra, B.1.. Kisaukina ta
iHmmx. 3 moyatky 80-X pOKiB MMHYJIOro CTOJITTS BYeHi kadeap OyaiBenbHOl i TeopernuHoi MexaHiku KwuiBcbkoro
HaIllOHAJILHOI'O YHIBEPCUTETY OyIIBHUITBA i apXiTEKTypH pO3POOIAIM 1 YIOCKOHATIOBAIM YHCEIbHI METOIM JOCIIIKEHHS
CTOXaCTUYHOI CTIMKOCTI MapaMEeTPUYHMX KONHMBAaHb IMPYXHHX CHCTEeM. B cTarTi mpeacTaBieHi pe3ylbTaTH HHCIOBHX
JIOCJIKEHb CTIMKOCTI NMapaMeTpUYHHUX KOJMBAHb LMIIHAPUYHOI 1 MOJIOroi OOOJNIOHOK NpPU PI3HUX CTOXaCTHYHMX BIUIMBAX.
Po3paxyHKkOBI Mozeni napaMeTpUYHMX KOJMBaHb OOOJOHOK C(OpMOBaHI 3a JIONOMOrOK ACHMIITOTHYHOro abo
(dyHKuioHaneHOrO Minxony, Meroxy MonTe-Kapio i3 3acTocyBaHHSAM OOUYMCIIOBAIBHUX MPOLELYP MPOrPaMHOrO KOMILIEKCY
CKIHYEHHO-EJIEMEHTHOro aHaiizy. CToXacTHyHa CTiiKiCTh 000710HOK chopMyIIbOBaHA 3a IMOBIPHICTIO, y CEPEJHBOMY 1 BiTHOCHO
MOMEHTHUX (YHKLIH pi3HOro mnopsaaxky. KpuTH4HI 3HA4YeHHS IHTEHCMBHOCTI CTOXAaCTHYHOIO HaBaHTaKeHHA 1 oOaacti
HecTaOUIBHOCTI O0OJIOHOK OTPMMAaHi i3 3acTocyBaHHAM MeToliB PyHre-KyTTn dyerBeproro mopsijaky i HpPOJOBXKEHHS 3a
apaMeTpoM.

KuarouoBi cjoBa: 000s10HKa, BUIIAJIKOBE MapaMETPUYHE HABAHTAKEHHs, CTOXACTHMYHA CTiMKICTb, IMOBIPHICTb, MOMEHTHI
dyHKil.

Lukianchenko O.O., Poshyvach D.V., Kara I.D.
STOCHASTIC STABILITY OF PARAMETRIC OSCILLATIONS OF ELASTIC SHELLS

There is a powerful mathematical apparatus which appeared up on the basis of the theory of Brownian motion of Markov
processes and processes of diffusional type nowadays. It allows deciding intricate dynamic problems taking into account
fluctuation processes. A classic result in this area is the article of O.O. Andronov, L.S. Pontryagin and O.A. Vitt, in which firstly
the methods of the theory of Markov processes were applied to research of problems of statistical dynamics of the nonlinear
systems. Later, the strict mathematical theory of stochastic differential equations of Ito was presented in an article of
L.I. Gikhman and A.V. Skorokhodov. An important step in application of this theory to research of dynamic problems of the
elastic systems was become researches of R.L. Stratonovich. These researches were based on combination of Krilov-
Bogolyubov method of averaging with the method of theory of Markov processes. The strict ground of this approach was done
by R.Z. Khasminski. A significant contribution to the development of the theory of stochastic systems and the introduction of
probabilistic methods for the calculation of structures was made by V.V. Bolotin and his followers. V.V. Bolotin performed
significant work on the application of probabilistic methods to the calculation of structures. Also important are studies of stochastic
parametric oscillations of various systems by Dimentberg, V.I. Klyatskin and others. From the beginning of 80-th of the last century
the scientists of Structural and Theoretical mechanics department of the Kyiv National University of Construction and
Architecture were engaged in development of the numeral research of stochastic stability of elastic systems. Results of numerical
researches of stability of parametric oscillations of the cylindrical and shallow shells under different stochastic influences were
presented at this article. Parametric oscillations models of the shells were formed on the basis of the asymptotic or functional
approaches and Monte-Carlo method using the calculation procedures of finite element analysis software. Stochastic stability of
elastic shells was formulated as stability in probability, on average and with respect to the moment functions of different order.
The critical values of stochastic load intensity and the regions of stochastic stability of shells were obtained by Runge-Kutta
method of the fourth order and the continuation by parameter method.

Keywords: shell, random parametric load, stochastic stability, probability, moment functions.
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Jlyk’anuenxo O.0., [Towueau [.B., Kapa I./]. CToXacTHYHA CTilKicTh MapaMeTPUYHUX KOJUBAHb NMPYKHUX 000J0HOK //
Onip matepiaiis i Teopist copya: Hayk.-tex. 30ipH. — K.: KHYBA, 2024. — Bun. 113. - C. 63-74.

TIpedcmasneni pesynbmamu Yucio8ux 0OCIIOHCEHb CIMIUKOCTI NAPAMEMPULHUX KOTUBAHb YUNTHOPUUHOI | NOI020T 060IOHOK npu
PpisHUX cmoxacmuuHux enausax. Pospaxynkogi mooleni napamempuuHux KOIUBaHb 0OONOHOK CHOPMOBAHI 3a OONOMOZ0I0
ACUMRIMOMUYHO20 | (YHKYIOHATbHO20 NIOX00Y [3 3ACMOCYSAHHAM OOHUCTIOBATLHUX NPOYEOYp NPOSPAMHO20 KOMNIEKCY
CKiHYeHHo-eneMenmno2o ananizy. Cmoxacmuuna cmiukicmbs 000JIOHOK COPMYIbOSAHA 3a IMOGIPHICMIO, y CepPeOHbOMY i
6IOHOCHO MOMEHMHUX (DYHKYIN BUCOKO20 NOPAOKY. Kpumuuni 3nauenHs iHMEHCUBHOCMI CIMOXACMUYHO20 HABAHMANCEHHS |
obnacmi HecmabinbHocmi 000IOHOK ompumaHi i3 3acmocysanuam memodie Moume-Kapno, Pynee-Kymmu uyemeepmozco
NOPAOKY I MemMooy NPOOOBIHCEHHS 3 NAPAMEMPOM.

Tab6u. 0. In. 6. bibaiorp. 27 Ha3s.
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Lukianchenko O.O., Poshyvach D.V., Kara 1.D. Stochastic stability of parametric oscillations of elastic shells // Strength of
Materials and Theory of Structures: Scientificand-technical collected articles. — K.: KNUBA, 2024. — Issue. 113. — P. 63-74.
Results of numerical researches of stability of parametric oscillations of the cylindrical and shallow shells under different
stochastic influences were presented. Parametric oscillations models of the shells were formed on the basis of the asymptotic
and functional approaches using the calculation procedures of finite element analysis sofiware. Stochastic stability of elastic
shells was formulated as stability in probability, on average and with respect to the moment functions of different order. The
critical values of stochastic load intensity and the regions of stochastic stability of shells were obtained by Monte-Carlo method,
Runge-Kutta method of the fourth order and the continuation by parameter method.
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