Multi-criteria parametric optimization of the displacement and weight of a shell of minimal surface on a circular contour consisting of two inclined ellipses under thermal and power loading with consideration of geometric nonlinearity

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.112.209-221

Keywords:

optimization, parametric optimization, multicriteria optimization, objective function optimization, design variables, constraints, minimum surface envelopes, geometric nonlinearity

Abstract

Thin shells are well suited to optimal design problems, and the finite element method and gradient descent method make it possible to solve inverse problems in structural and applied mechanics. The calculation process takes into account geometric nonlinearity.

In modern numerical studies, a formulation taking into account geometric nonlinearity in the finite element method is used, namely, a stepwise loading procedure. It becomes necessary to take into account the relations between displacement vectors and their derivatives and strain increments. These relations help to determine the stiffness matrix of the finite element at each loading step, which leads to a qualitative study of real displacements in the structure.

The geometrically nonlinear calculation of a shell of minimum surface on a circular contour consisting of two inclined ellipses in a multi-criteria parametric optimization is performed by the finite element method. The finite element method is a universal variational method that is focused on solving the most complex problems of elasticity theory and applied and structural mechanics using separate calculation complexes.

Stiffness matrix - for the whole body is formed on the basis of the finite element stiffness matrix. The system of solving equations of the finite element method is formed using the Lagrange's variational principle, according to which the total potential energy P of a finite element model of a body in a state of stability and equilibrium has a minimum value.

As part of the sensitivity analysis, gradients of the design variables of the structure, displacements in the form of partial derivatives of these characteristics along the design variables, and shell thickness are calculated. The sensitivity information serves as the basis for building an optimal design algorithm using the gradient descent method of the objective function.

Standard multi-criteria parametric optimization allows for an average of 10% steel savings, with geometric nonlinearity increasing to 20%. At this study site, 24.4% of sheet steel was saved, which is a significant relative saving.

This methodology of the authors shows high results for innovative design and production of steel thin shells in Ukraine and around the world, and also makes it possible to apply several types of optimization to one research object.   

Author Biographies

Hryhorii Ivanchenko, Kyiv National University of Construction and Architecture

Doctor of technical sciences, professor of the department of construction mechanics, dean of the construction faculty

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

PhD, associate professor of department of theoretical mechanics

Gherman Zatyliuk, Kyiv National University of Construction and Architecture

PhD, associate professor of department of Structural mechanics

References

Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P. Chyselna realizatsiia bahatokryterialnoi parametrychnoi optymizatsii obolonky minimalnoi poverkhni na kvadratnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multicriteria parametric optimization of minimum surface shell on a square contour under therm force loading) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2022. – Issue 109. – P. 50-65.

Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P., Grigoryеva L.O. Chyselne doslidzhennia parametrychnoi optymizatsii vymushenykh chastot kolyvannia obolonky minimalnoi poverkhni na trapetsevydnomu konturi pry termosylovomu navantazhenn (Numerical study of the parametric optimization of the forced oscillation frequencies of the shell of a minimal surface on a trapezoidal contour under thermal and power loading) // Strength of Materials and Theory of Structures: Scientific-and-technicalcollected articles – Kyiv: KNUBA, 2023. – Issue 110. – P. 430-446.

Ivanchenko H.M., Cheverda P.P., Kushnirenko M.H., Kozovenko A.M. Analiz reaktsiy v elementakh prostorovykh skhem pry riznykh sposobakh zyednan (Analysis of reactionsinelements of spatialschemes with differentmethods of connections) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2012. – Vyp. 90. – P. 163-170.

Koshevyi O.O. Optymalne proektuvannya tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttya (Optimal design of cylindrical tanks with rigid coating shells) // Opirmaterialiv i teoriyasporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2019. – №. 103. – P. 253-265.

Koshevyi O.O. Optymizatsiya stalnoho zvarenoho rezervuaru pry obmezhenni: napruzhen, peremishchen, vlasnykh chastot kolyvannya (Optimization of steelweldedtank with limitations: stresses, displacements, naturalfrequencies of oscillations). // Budivelni konstruktsiyi. Teoriya i praktyka: nauk.-tekhn. zbirnyk. K.: KNUBA. 2018. №.3.– P.34 – 50.

Hotsulyak Ye.O., Koshevyi O.P., Morskov Yu.A. Chyselne modelyuvannya obolonok, utvorenykh minimalnymy poverkhnyamy (Numerical modeling of shells formed by minimal surfaces) // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.- P.47-51.

Koshevyi O.P. Koshevyi O.O. Chyselne doslidzhennya vlasnykh kolyvan roztyahnutykh obolonok utvorenykh minimalnymy poverkhnyamy. (Numerical study of natural oscillations of stretched shells formed by minimal surfaces) // Mistobuduvannya ta terytorialne planuvannya, №. 55. – Kyiv, KNUBA, 2015. – P. 215-227.

Koshevyi O.P. Koshevyi O.O. Vlasni kolyvannya obolonok minimalnykh poverkhon na kruhlomu ta kvadratnomu konturi. (Own oscillations of shells of minimal surfaces on a round and square contour) // Mistobuduvannya ta terytorialne planuvannya, №. 59. – Kyiv, KNUBA, 2016. – P. 234-244.

Koshevyi O.O., Koshevyi O.P., Hryhoryeva L.O. Chyselna realizatsiya bahatokryterialnoyi parametrychnoyi optymizatsiyi obolonky minimalnoyi poverkhni na pryamokutnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multi-criteria parametric optimization of minimum surface shell on a rectangular contour under thermforced loading) // Opirmaterialiv i teoriyasporud: nauk.-tekh.zbirnyk. – K.: KNUBA, 2021. – Vyp. 108. – S. 309–324.

Koshevoy A.P. Ustoychivost plastin i obolochek slozhnoy formi (Stability of plates and shells of complexshape) // Strength of Materials and Theory of Structures: Scientific-and-technicalcollectedarticles. – K.: KISI, 1991. – Vip. 59. – P. 65–71.

Manyta L.A. Usloviya optymyzatsyi v konechnomernykh nelyneynykh zadachakh optymyzatsyi. (Optimization conditions in finite-dimensional nonlinear optimization problems). – M.: Moskovskiy hosudarstvenniy instytut élektronyky i matematiki, 2010. – 81 p.

Melkumova E.M. O nekotorykh podkhodakh k reshenyyu mnohokryteryalnykh zadach. (About some approaches to solving multicriteria problems) // Vestnyk VHU. Seryya Systemnyy analyz y ynformatsyonnye tekhnolohyy. – V.: VHU– №2– 2010– 3 p.

Peleshko I.D., Yurchenko V.V. Optymalne proektuvannya metalevykh konstruktsiy na suchasnomu etapi (ohlyad prats). (Optimal design of metal structures at the present stage (review of works)). // Metalevi konstruktsiyi: zbirnyk naukovykh prats. – 2009. – №15 – P. 13–21.

Peleshko I.D., Baluk I.M. Optymizatsiyapoperechnykhpererizivstryzhnivstalevykhkonstruktsiy. (Optimization of crosssections of rods of steelstructures). // Zbirnyknaukovykhprats UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stalʹ, №. 4. – 2009. – P. 142–151.

Peleshko I.D., Lisotskyy R.V., Baluk I.M. Optymalne proektuvannya stalevoyi stryzhnevoyi konstruktsiyi pokryttya torhovo-rozvazhalnoho kompleksu. (Optimaldesign of a steelrodcoverstructure of a shopping and entertainmentcomplex). // Zbirnyk naukovykh prats UkrNDIPSKim. V. M. Shymanovskoho. – K.: Stal, №. 5. – 2010. – P. 181–191.

Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Altenbakh Y., Habbert U., Dankert YU., Keppler KH., Kochyk Z. Metod konechnykh élementov v mekhanyke tverdykh tel. (Finite element method in solid mechanics) // Vydavnytstvo Vyshcha shkola. Holovnoe yzdatelstvo – Kyev – 1982. – 480 p.

17. Bazenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiply connected ribbed shells and platesin a magnetic field. // Journal of Soviet Mathematics 66(6). –1993. – С. 2631–2636.

Cheung Y. K. The Finite Strip Method. Them. – Boca Raton. : CRC Press, 1997. – 416 p.

Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. // International Journal forNumericalMethodsin Engineering, 2004. –61(2) – P.238–254.

Kroese D.P., Taimre T., Botev Z.I. Handbook of Monte Carlo Methods. — NewYork: JohnWiley and Sons, 2011. — 772 p.

Lobo M.S., Vandenbeghe L., Boyd S. Applications of second-order cone programming // LinearAlgebra and itsApplications. – 1998. – Vol. 284, no. 1. – P. 193–228.

Yonekura K., Kanno Y. Second-order cone programming with warm start for elastoplastic analysis with von mises yield criterion. // Optimization and Engineering. – 2012. – Vol. 13, no. 2. – P. 181–218.

Wasiytynski Z., Brandt A. The present state of knowledge in the field of Optimum design of structures // Appl. Mech. Rew. – 1963. Vol. 16 no. 5. – P. 341-35.

Published

2024-04-17

Issue

Section

Статті