Contribution of system elements to its static indeterminacy

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.112.108-124

Keywords:

redundancy, static-kinematic analysis, survivability, sensitivity, reliability

Abstract

The article contains an overview of the main ideas regarding the new direction of construction mechanics, which considers the issue of survivability and is intensively developing. From the point of view of redundancy, as the ability of the system to provide alternative ways of transferring the load, which is one of the main possible strategies for designing reliability and survivability, the static-kinematic analysis of rod systems is also considered.

The fundamental measure of the level of redundancy of rod systems is the degree of static uncertainty. But this numerical sign does not contain information about the role of each element of the system in forming the degree of static uncertainty. This role is performed by a specially constructed distributed static indeterminacy matrix (DSI-matrix), which contains comprehensive information about the contribution of system elements to its static and kinematic properties.

Using the fundamental provisions of linear algebra, the properties of the matrix of coefficients of the system of linear equilibrium equations as an operator over the vector spaces of forces and displacements are analyzed. The mechanical content of the four fundamental subspaces associated with this matrix is indicated. This analysis determines the mathematical properties of the RSN matrix and its mechanical interpretation.

Methods of forming the DSI-matrix are considered both for the case of a geometrically constant system and for the analysis of geometrically variable systems, when it is necessary to resort to singular decomposition of the matrix of equilibrium equations. All theoretical explanations are accompanied by illustrative examples, although the issue of numerical implementation of the considered methods of analysis is not considered. It is obvious that they deserve independent consideration.

Information is provided on the possibility of using the DSI -matrix to assess the reliability and survivability of the structural complex and its use to analyze the sensitivity of the system to the inaccuracy of manufacturing elements.

Author Biography

Anatolii Perelmuter, Scientific and industrial company SCAD Soft

Doctor of technical sciences, chief researcher

References

Kanno Y., Ben-Haim Y. Redundancy and robustness, or when is redundancy redundant? // Journal of Structural Engineering, 2011, 137 — Р. 935–945.

Frangopol D.M., Curley J.P. Effects of damage and redundancy on structural reliability // Journal of Structural Engineering, 1987, 113, 1533–1549.

Pandey, P.C., Barai S.V. Structural sensitivity as a measure of redundancy // Journal of Structural Engineering, 1997, 123 — Р. 360–364.

Linkwitz K. Fehlertheorie und Ausgleichung von Streckennetzen nach der Theorie elastischer Systeme. Dissertation, Universitдt Stuttgart, Deutsche Geodatische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 46 — Munchen: Beck Verlag, 1961.

Bahndorf J. Zur Systematisierung der Seilnetzberechnung und zur Optimierung von Seilnetzen.Dissertation, Universitдt Stuttgart, Deutsche Geodatische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 373 — Munchen: Beck Verlag, 1991.

Ströbel D. Die Anwendung der Ausgleichungsrechnung auf elastomechanische Systeme.Dissertation, Universitдt Stuttgart, Deutsche Geodatische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 478 — Munchen: Beck Verlag, 1995.

Tibert A.G. Distributed indeterminacy in frameworksм // Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures , 2005, Salzburg, Austria.

Tibert A.G. Flexibility evaluation of prestressed kinematically indeterminate frameworks — The 18th Nordic Seminar on Computational Mechanics, 2005, Helsinki, Finland.

Ströbel D., Singer P. Recent developments in the computational modelling of textile membranes and inflatable structures // Oñate E., Kröplin B. (Eds.), Textile Composites and Inflatable Structures II — Springer Netherlands, 2008 — Р. 253-266. [doi:10.1007/978-1-4020-6856-0_14]

Jiang M., Kou X.J., Li Z.M. The redundancy matrix of rigid-frame structure and its application // Journal of Donghua University, 2012, 29 — Р. 107-110.

Kou X.J., Chen Q., Song J. Reliability estimation involving indirect load effects // Proceeding of the 4th Asian-Pacific Symposium, 2008, Hong Kong— Р.137-140.

Chen Q., Kou X.J., Zhang Y. Internal force and de formation matrixes and their applications in load path // Journal of Zhejiang University- Science A (Applied Physics & Engineering), 2010, 11(8) — Р. 563-570. [doi:10.1631/ jzus.A0900630]

Chen, Q., Kou, X.J., A constraint matrix approach for structural ultimate resistance to access the importance coefficient values of rigid joints // Advances in Structural Engineering, 2013, 16(11) — Р. 1863-1870. [doi:10.1260/1369-4332. 16.11.1863]

Gao Y., Liu X.L. Weighted graph form of structures and its application in robustness analysis // Journal of Shanghai Jiaotong University (Science), 2013, 18(2) — Р. 216-223. [doi:10.1007/s12204-013-1385-2]

Perelmuter A.V. The Effect of Stiffness Variation on Force Redistribution in a Statically Indeterminate System // Structural Mechanics and Structural Analysis.— 1974.— No. 5.— p. 6467. (in Russian)

Perelmuter A.V. Assessment of Robustness of Load-Bearing Structures // Metal Structures: Works of Professor N.S. Streletskiy.— M.: MGSU, 1995.— p. 6268. (in Russian)

Holnicki-Szulc J., Gierlinski J.T. Structural analysis, design and control by the virtual distortion method. Chichester, UK: Wiley, 1995

Corradi dell Acua L., Maier J. A matrix theory of elastic-locking structures // Meccanica, 1969, 4(4) — P. 1-16.

Greene W.H., Haftka R.T. Reducing distortion and internal forces in truss structures by member exchanges — Hampton, Virginia: National Aeronautics and. Space Administration. Langley Research Center., 23665, 1989 — 26 р.

Perelmuter A.V., Slivker V.I. Numerical Structural Analysis: Models: Methods and Pitfalls.— Berlin-New York-London-Milan-Paris-Tokyo: Springer Verlag, 2003.— 600 p.

Strang G. Introduction to Linear Algebra — Wellesley: Cambridge Press, 2016 — 574 p

Pellegrino S., Calladine C.R. Matrix analysis of statically and kinematically indeterminate frameworks // International Journal of Solids and Structures, 1986, 22(4) — Р. 409-428. [doi:10.1016/0020-7683(86)90014-4]

Pellegrino S. Analysis of prestressed mechanisms // International Journal of Solids and Structures, 1990, 26(12) — Р. 1329-1350. [doi:10.1016/0020-7683(90)90082-7]

Pellegrino S. Structural computations with the singular value decomposition of the equilibrium matrix // International Journal of Solids and Structures, 1993, 30(21) — Р. 3025-3035. [doi:10.1016/0020-7683(93)90210-X].

Rabinovich I.M. On the theory of statically indeterminate trusses — Moskow .: Transzhellorizdat NKPS, 1933 - 119 p. (in Russian)

Golub G.H., Van Loan C.F. Matrix Computations — Baltimore: The Johns Hopkins Univercity Press, 1996 – 694 p.

Pellegrino S. Structural Computations with the Singular Value Decomposition of the Equilibrium Matrix // International Journal of Solids and Structures, 1993, 30(21) — Р. 3025–3035.

von Scheven M., Ramm E., Bischoff M. Quantification of the redundancy distribution in truss and beam structures // International Journal of Solids and Structures, 2021, 213 — Р. 41-49.

Krake T., Scheven M.V., Gade J., Abdelaal M., Weiskopf D., Bischoff M. Efficient Update of Redundancy Matrices for Truss and Frame Structures // ArXiv, abs/2205.12264, 2022 20 p. [doi:10.48550/arXiv.2205.12264]

Kassabian P.E., You Z., Pellegrino S. Retractable roof structures // ICE Proceedings Structures and Buildings, 1999, 134(1) — Р. 45-56. [doi: 10.1680/istbu.1999.31252]

Kou X., Li L., Zhou Y., Song J. Redundancy Component Matrix and Structural Robustness // International Journal of Civil and Environmental Engineering, 2017, №11 — Р. 1150–1155.

Pandey P., Barai S. Structural sensitivity as a measure of redundancy // Journal of Structural Engineering, 1997, 123(3), pp. 360–364. [doi: 10.1061/(ASCE)0733-9445(1997)123:3(360)]

Eriksson A., Tibert G. Redundant and force-differentiated systems in engineering and nature // Comput. Methods Appl. Mech. Engrg., 195 (41) (2006), pp. 5437-5453

Kolesnikov G.N. On accounting for random deviations of rod lengths from design dimensions when calculating trusses // Petrozavodsk State University, 1985.-15p. Deposited in VINITI 06/07/85, No. 3978-85. (in Russian)

Published

2024-04-17

Issue

Section

Статті