Universal three-dimensional finite element for analyzing of elastic inhomogeneous shells under thermomechanical loads
DOI:
https://doi.org/10.32347/2410-2547.2024.112.93-107Keywords:
three-dimensional multilayer isoparametric finite element, unidirectional fiber composite material, micromechanical characteristics, elastic shell, thermomechanical load, moment finite element schemeAbstract
The work is devoted to the development of a new modification of the finite element intended for the calculation of inhomogeneous composite shells of thin and medium thickness. The element is constructed on the basis of a universal three-dimensional isoparametric 8-node multilayer finite element of a continuous medium. The layers of the modified finite element are made of composite materials reinforced with continuous unidirectional fibers. Within the framework of a finite element model of a multilayer shell of stepwise variable thickness, a technique for modeling the properties of a unidirectional fibrous composite material has been developed, based on a method for structuring material inhomogeneities iby thickness and by plan. The shell can consist of an arbitrary number of layers of varying thickness bonded into a single piece. Each layer can have its own type of material: traditional or composite. Effective physical and mechanical characteristics of the layer material are determined using known micromechanical methods for predicting the thermoelastic constants of a fiber composite through the known physical characteristics of the matrix and fiber. The fibrous material of the layer is presented as homogeneous transversely isotropic with planes of isotropy normal to the direction of reinforcement. Additional variable parameters of the "basic" universal finite element are supplemented with new attributes that determine the thermoelastic properties of the composite components. The new parameters are related to the choice of the type of fibrous composite material in the layer of the finite element, to the setting of structural micromechanical parameters of its components, and to the setting of the reinforcement orientation angle. This allows the calculations to use both traditional and fiber-composite materials in layers of inhomogeneous shells. Numerical examples demonstrate the effectiveness of the developed approach.
References
Bondar V.G., Bychkov S.A., Korol V.N. Resheniye problemy sozdaniya aviakonstruktsiy iz polimernykh kompozitsionnykh materialov na ANTK "Antonov" (Solution of the problem of creating aircraft structures from polymer composite materials at the Antonov ASTC) // Aviatsionno-kosmicheskaya tekhnika i tekhnologiya: nauchno-tekhn. zhurnal. Khar'kov: KHAI, 2003. – Vip. 8 (43). – S. 5-13. (in Russian).
Dobrydenko O.M., Sklyar O.I., Turchyn V.M., Byelinsʹka R.B. Analiz isnuyuchykh kompozytnykh materialiv ta otsinka yikh zastosuvannya u konstruktsiyakh planeriv litalʹnykh aparativ viysʹkovoyi aviatsiyi Ukrayiny (Analysis of existing composite materials and assessment of their use in airframe structures of military aviation of Ukraine) // Zb. nauk. pratsʹ Derzhavnoho naukovo-doslidnoho instytutu aviatsiyi, 2012. – Vyp. №15. – S. 147-152 (in Ukrainian).
Kondratenko A.N., Golubkova T.A. Polimernyye kompozitsionnyye materialy v izdeliyakh zarubezhnoy raketno-kosmicheskoy tekhniki (Obzor) (Polymer composite materials in products of foreign rocket and space technology (Review)) // Konstruktsii iz kompozitsionnykh materialov, 2009. – № 2. – S. 24-35. (in Russian).
Kopan V.S. Kompozytsiyni materialy (Composite materials). – Kyiv: Pulsary, 2004. – 196 s. (in Ukrainian).
Narusberg V.L., Teters G.A. Ustoychivost' i optimizatsiya obolochek iz kompozitov (Stability and optimization of composite shells) – Riga: Zinatne, 1988. – 297 s. (in Russian).
Rikards R.B., Teters G.A. Ustoychivost' obolochek iz kompozitnykh materialov (Stability of shells made of composite materials). – Riga: Zinatne, 1974. – 310 s. (in Russian).
Yuskayev V.B. Kompozytsiyni materialy (Composite materials). – Sumy: Vyd-vo SumDU. 2006. 199 s. (in Ukrainian).
Semenyuk M.P., Zhukova N.B. Stability of Composite Cylindrical Shells with Geometrical and Structural Imperfections Under Axial Compression // International Applied Mechanics, 2022. – Vol. 58 (3). – Pp. 307-319.
Shahmohammadi M.A., Azhari M.M., Sarrami-Foroushani S. Stability of laminated composite and sandwich FGM shells using a novel isogeometric finite strip method // Engineering Computations: Int J for Computer-Aided Engineering, 2019. –Vol. 37 (4). –Pp. 1369-1395.
Semenyuk N.P., Trach V.M., Zhukova N.B. The Theory of Stability of Cylindrical Composite Shells Revisited // International Applied Mechanics, 2015. – Vol. 51 (4). – Pp.449-460.
Zhang H, Gao Y, He D, Yang W. Free vibration and buckling analysis of composite laminated shells using the refined zigzag theory // Journal of Theoretical and Applied Mechanics, 2022. – Vol. 60(3). – Pp. 435-48.
Bazhenov V.A., Krivenko O.P., Solovei M.O. Neliniine deformuvannia ta stiikist pruzhnykh obolonok neodnoridnoi struktury (Nonlinear deformation and stability of elastic shells with inhomogeneous structure). – K.: ZAT «Vipol», 2010. – 316 s. ISBN: 978-966-646-097-7 (in Ukrainian).
Bazhenov V., Krivenko O. Buckling and Natural Vibrations of Thin Elastic Inhomogeneous Shells. – LAP LAMBERT Academic Publishing. Saarbruken, Deutschland, 2018. – 97 p.
Krivenko, O.P.; Lizunov, P.P.; Vorona, Yu.V.; Kalashnikov, O.B. A Method for Analysis of Nonlinear Deformation, Buckling, and Vibrations of Thin Elastic Shells with an Inhomogeneous Structure // Strength of Materials and Theory of Structures: Scientific and Technical collected articles. – Kyiv: KNUBA, 2023. – Issue 110. – P. 131-149. doi.org/10.32347/2410-2547.2023.110.131-149
Krivenko, O.P.; Lizunov, P.P.; Vorona, Yu.V.; Kalashnikov, O.B. (2023). Application of the finite element moment scheme to the investigation of thin elastic shells of inhomogeneous structure // Management of Development of Complex Systems, 53, 52–62, DOI: 10.32347/2412-9933.2023.53.52-62. (in Ukrainian).
Krivenko, O.P.; Lizunov, P.P.; Vorona, Yu.V.; Kalashnikov, O.B. Comparative analysis of the stability and natural vibrations of shallow panels under the action of thermomechanical loads // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2023. – Issue 111. – Рp. 49-64. DOI: 10.32347/2410-2547.2023.111.49-64.
Metod konechnyh elementov v mehanike tverdyh tel / A.S.Saharov, V.N.Kislookij, V.V.Kirichevskij i dr. (The finite element method in solid mechanics) – K.: Visha shk. Golovnoe izd-vo, 1982. - 480 s (in Russian).
Solovei M.О., Krivenko О.P., Mishchenko О.О., Kalashnikov О.B. Vrakhuvannya kharakterystyk kompozytnoho materialu v skinchennoelementniy modeli neodnoridnoyi obolonky (Taking into account the characteristics of a composite material in a finite element model of a non-uniform shell) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2012. – Issue 89 – Р. 172-180.
Krivenko O.P., Lizunov P.P., Vorona Yu.V., Kalashnikov O.B. Modelyuvannya termopruzhnykh vlastyvostey kompozytnoho materialu v zadachakh stiykosti bahatosharovykh obolonok (Modeling of thermo-elastic properties of composite material in stability problems of multilayered shells) // Management of Development of Complex Systems, 2023. – Issue 54. – P. 52 – 62. DOI: 10.32347/2412-9933.2023.53.52-62
Kucher M.K. Otsinka mikromekhanichnykh modeley prohnozuvannya efektyvnykh konstant pruzhnosti voloknystykh kompozytiv (Evaluation of micromechanical models for predicting effective elastic constants of fibrous composites) / M.M. Zarazovsʹkyy, M.K. Kucher. Visnyk Natsionalʹnoho tekhnichnoho universytetu Ukrayiny «Kyyivsʹkyy politekhnichnyy instytut». Seriya Mashynobuduvannya. 2010. №58. P. 24 – 29.
Solovei M.O., Kryvenko O.P., Mishchenko O.O. Vyznachennya efektyvnykh fizyko-mekhanichnykh kharakterystyk dlya odnospryamovanoho voloknystoho kompozytnoho materialu (Determination of effective physical and mechanical characteristics for a unidirectional fiber composite material) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2014. – Issue 92 – Р. 30-49.
Rubashevskyi, V.V. Analiz metodiv vyznachennya konstant pruzhnosti odnonapravlennoho sharu kompozytsiynykh materialiv (Analysis of methods for determining elasticity constants of a unidirectional layer of composite materials) / V.V. Rubashevskyi, M.M. Zarazovskyi, S.M. Shukaev // Mechanics and Advanced Technologies. – 2017. – №2 (80). – P. 107-112.
Kompozitsionnyye materialy: Spravochnik (Composite materials: Handbook) / Ed. D.M. Karpinos. – Academy of Sciences of the Ukrainian SSR. Institute of Problems of Materials Science. – Kyiv: Naukova Dumka, 1985. – 592 p.
Schapery, R.A. Thermal Expansion Coefficient of Composite Materials Based on Energy Principles. Journal of Composite Materials, 2, 1968, P. 380-404.
Harris B. Engineering Composite Materials. – The Institute of Materials, London, 1999. –195 p.
Richardson M. Promyshlennyye polimernyye kompozitsionnyye materialy. Per. s angl. pod red. Babayevskogo P.G. (Richardson M. Industrial polymer composite materials) – M.: Khimiya, 1980. – 472 s.. (in Russian).
Soden, P.D., Hinton, M.J. and Kaddour, A.S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Composites Science and Technology, 1998, № 58 p. 1011-1022.
Khoa N.N. and Thinh T.I. Finite element analysis of laminated composite plates using high order shear deformation theory // Vietnam Journal of Mechanics, 2007. – №29. P. 47–57. https://doi.org/10.15625/0866-7136/29/1/5590.
Sheikh A.H., Chakrabarti A. A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates // Finite Elements in Analysis and Design, 2003. Vol.39, Issue 9, P. 883-903 https://doi.org/10.1016/S0168-874X(02)00137-3.
Reddy, J.N. A Simple Higher-Order Theory for Laminated Composite Plates //Journal. Appl. Mech. (ASME), 1984. – 51(4). P. 745–752. https://doi.org/10.1115/1.3167719
Ghosh A.K., Dey S.S. A simple finite element for the analysis of laminated plates, // Computers & Structures, 1992. – Vol.44, Issue 3. P. 585-596, https://doi.org/10.1016/0045-7949(92)90391-C.
Pagano N.J. Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates // Journal of Composite Materials, 1970. Vol.4, P.20-34. doi:10.1177/002199837000400102
Panda S.C., Natarajan R. Finite element analysis of laminated composite plates. // International Journal Numerical. Methods. Engineering, 1979. – Vol.14. – P. 69-79. https://doi.org/10.1002/nme.1620140106
Mawenya A.S., Davies J.D. Finite element bending analysis of multilayered plates, // International Journal Numerical. Methods, 1974. – Vol.8 – P. 215- 225. https://doi.org/10.1002/nme.1620080203.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.