Optimization of a vibro-impact damper design using MATLAB tools

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.112.3-18

Keywords:

optimization, damper, parameter set, vibro-impact, nonlinear energy sink

Abstract

The paper studies the dynamics of a vibro-impact system consisting of a main (primary) structure and a vibro-impact damper coupled to it. A vibro-impact damper is a vibro-impact nonlinear energy sink (VI NES). The optimal damper design should provide the best vibration mitigation for the primary structure. The optimization procedures for finding the optimal NES design are carried out using standard MATLAB tools. We used different MATLAB programs, namely surf program, which graphically shows the ranges of parameter pairs to be optimized; fminsearch and fminconprograms, which search for local minima of the objective function. It is shown that the optimization procedure itself is ambiguous and contains a sufficient amount of arbitrariness. Its result is also ambiguous. It is due to the presence of the many possible sets of damper parameters that can provide maximum mitigation of the main structure vibrations. We do not use the genetic algorithm gabecause it selects random intermediate results and yields randomly selected parameter sets from the optimal parameters manifold. Setting the objective function and its parameters plays a crucial role in the optimization process. We have chosen the maximum total energy of the primary structure as the objective function. Each resulting variant of the damper parameter set should be carefully tested and analyzed. We compared the five obtained optimal designs for dampers with two different masses. When analyzing them, we observed different motion modes, namely periodic modes of different periodicity with different number of impacts per cycle, with different ratio of bodies motion periods: 1:1 resonance with resonance capture and 2:1 resonance; amulti-periodic mode with many impacts per cycle, which turned out to be an amplitude-modulated mode – Amplitude Modulated Signal . The final decision on the optimal damper design may be made taking into account various engineering considerations regarding its mass and other parameters. It should be based on the options obtained as a result of the optimization procedure.

Author Biographies

Petro Lizunov, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, professor, head of the Department of Construction Mechanics of KNUBA, director of the Research Institute of Construction Mechanics

Olha Pogorelova, Kyiv National University of Construction and Architecture

Candidate of Physical and Mathematical Sciences, senior researcher, leading researcher of the Research Institute of Construction Mechanics of KNUBA

Tetiana Postnikova, Kyiv National University of Construction and Architecture

Candidate of technical sciences, senior researcher, senior researcher of the Research Institute of Construction Mechanics of KNUBA

References

Kumar R., Kuske R., Yurchenko D. Exploring effective TET through a vibro-impact nonlinear energy sink over broad parameter regimes //Journal of Sound and Vibration. – 2024. – Т. 570. – С. 118131. https://doi.org/10.1016/j.jsv.2023.118131

Gendelman O. V. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators //Nonlinear dynamics. – 2001. – Т. 25. – С. 237-253. https://doi.org/10.1007/978-94-017-2452-4_13

Vakakis A. F., Gendelman O. Energy pumping in nonlinear mechanical oscillators: part II– resonance capture //J. Appl. Mech. – 2001. – Т. 68. – №. 1. – С. 42-48. https://doi.org/10.1115/1.1345525

Ding H., Chen L. Q. Designs, analysis, and applications of nonlinear energy sinks //Nonlinear Dynamics. – 2020. – Т. 100. – №. 4. – С. 3061-3107. https://doi.org/10.1007/s11071-020-05724-1

Saeed A. S., Abdul Nasar R., AL-Shudeifat M. A. A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types //Nonlinear Dynamics. – 2023. – Т. 111. – №. 1. – С. 1-37. https://doi.org/10.1007/s11071-022-08094-y

Lu Z. et al. Nonlinear dissipative devices in structural vibration control: A review //Journal of Sound and Vibration. – 2018. – Т. 423. – С. 18-49.http://dx.doi.org/10.1016/j.jsv.2018.02.052

Lee Y. S. et al. Passive non-linear targeted energy transfer and its applications to vibration absorption: a review //Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. – 2008. – Т. 222. – №. 2. – С. 77-134. http://dx.doi.org/10.1243/14644193jmbd118

Wierschem N. E. Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures. – University of Illinois at Urbana-Champaign, Newmark Structural Engineering Laboratory Report Series 045. 2014. https://www.ideals.illinois.edu/items/89701

Lu, Z., Wang, Z., Masri, S. F., & Lu, X. Particle impact dampers: Past, present, and future //Structural Control and Health Monitoring. – 2018. – Т. 25. – №. 1. – С. e2058.http://dx.doi.org/10.1002/stc.2058

Wang, J., Wierschem, N. E., Spencer Jr, B. F., & Lu, X. Track nonlinear energy sink for rapid response reduction in building structures //Journal of Engineering Mechanics. – 2015. – Т. 141. – №. 1. – С. 04014104. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000824

Dekemele K., Habib G. Inverted resonance capture cascade: modal interactions of a nonlinear energy sink with softening stiffness //Nonlinear Dynamics. – 2023. – Т. 111. – №. 11. – С. 9839-9861. https://doi.org/10.1007/s11071-023-08423-9

Al-Shudeifat M. A., Saeed A. S. Periodic motion and frequency energy plots of dynamical systems coupled with piecewise nonlinear energy sink //Journal of Computational and Nonlinear Dynamics. – 2022. – Т. 17. – №. 4. – С. 041005. https://doi.org/10.1115/1.4053509

Kang, X., Tang, J., Xia, G., Wei, J., Zhang, F., & Sheng, Z.Design, Optimization, and Application of Nonlinear Energy Sink in Energy Harvesting Device //International Journal of Energy Research. – 2024. – Т. 2024. doi:10.1155/2024/2811428. 615 URL http://dx.doi.org/10.1155/2024/2811428

Al-Shudeifat, M. A., Wierschem, N., Quinn, D. D., Vakakis, A. F., Bergman, L. A., & Spencer Jr, B. F. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation //International journal of non-linear mechanics. – 2013. – Т. 52. – С. 96-109. https://doi.org/10.1016/j.ijnonlinmec.2013.02.004

Pennisi G. Passive vibration control by using Nonlinear Energy Sink absorbers. Theoretical study and experimental investigations :дис. – INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE (ISAE), 2016. https://hal.science/tel-01471929

Liu R., Kuske R., Yurchenko D. Maps unlock the full dynamics of targeted energy transfer via a vibro-impact nonlinear energy sink //Mechanical Systems and Signal Processing. – 2023. – Т. 191. – С. 110158. https://doi.org/10.1016/j.ymssp.2023.110158

Boroson E., Missoum S. Stochastic optimization of nonlinear energy sinks //Structural and Multidisciplinary Optimization. – 2017. – Т. 55. – С. 633-646. https://doi.org/10.1007/s00158-016-1526-y

Snoun C., Bergeot B., Berger S. Robust optimization of nonlinear energy sinks used for mitigation of friction-induced limit cycle oscillations //European Journal of Mechanics-A/Solids. – 2022. – Т. 93. – С. 104529. https://doi.org/10.1016/j.euromechsol.2022.104529

Theurich T., Krack M. Experimental validation of impact energy scattering as concept for mitigating resonant vibrations //Journal of Structural Dynamics. – 2023. – Т. 2. – С. 1-23.https://doi.org/10.25518/2684-6500.126

Costa D., Kuske R., Yurchenko D. Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro-impact energy harvester //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2022. – Т. 32. – №. 10. https://doi.org/10.1063/5.0101050

Feudo, S. L., Job, S., Cavallo, M., Fraddosio, A., Piccioni, M. D., &Tafuni, A. Finite contact duration modeling of a Vibro-Impact Nonlinear Energy Sink to protect a civil engineering frame structure against seismic events //Engineering Structures. – 2022. – Т. 259. – С. 114137. https://doi.org/10.1016/j.engstruct.2022.114137

Okolewski A., Blazejczyk-Okolewska B. Hard vs soft impacts in oscillatory systems' modeling revisited //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2021. – Т. 31. – №. 8. https://doi.org/10.1063/5.0057029

Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T. Classification principles of types of mechanical systems with impacts–fundamental assumptions and rules //European Journal of Mechanics-A/Solids. – 2004. – Т. 23. – №. 3. – С. 517-537. https://doi.org/10.1016/j.euromechsol.2004.02.005

Andreaus U., Chiaia B., Placidi L. Soft-impact dynamics of deformable bodies //Continuum Mechanics and Thermodynamics. – 2013. – Т. 25. – С. 375-398. https://doi.org/10.1007/s00161-012-0266-5

Bazhenov V. A., Pogorelova O. S., Postnikova T. G. Comparison of two impact simulation methods used for nonlinear vibroimpact systems with rigid and soft impacts //Journal of Nonlinear Dynamics. – 2013. – Т. 2013. https://doi.org/10.1155/2013/485676

Bazhenov V., Pogorelova O., Postnikova T. Crisis-induced intermittency and other nonlinear dynamics phenomena in vibro-impact system with soft impact //Nonlinear Mechanics of Complex Structures: From Theory to Engineering Applications. – 2021. – С. 185-203. https://doi.org/10.1155/2013/485676

Goldsmith W. Impact: the Theory and Physical Behavior of Colliding Solids, Edward Arnold Ltd //London, England. – 1960.

Johnson K. L. Contact mechanics. – Cambridge university press, 1987.

Lizunov P., Pogorelova O., Postnikova T. The synergistic effect of the multiple parameters of vibro-impact nonlinear energy sink //Journal of AppliedMath. – 2023. – Т. 1. – №. 3. https://doi.org/10.59400/jam.v1i3.199

Lizunov P. P., Pogorelova O., Postnikova T. Vibro-impact damper dynamics depending on system parameters. – 2023. Research Square. https://doi.org/10.21203/rs.3.rs-2786639/v1

Lizunov P., Pogorelova O., Postnikova T. Selection of the optimal design for a vibro-impact nonlinear energy sink //Strength of Materials and Theory of Structures. – 2023. – №. 111. – С. 13-24.https://doi.org/10.32347/2410-2547.2023.111.13-24

Al-Shudeifat, M. A., Wierschem, N., Quinn, D. D., Vakakis, A. F., Bergman, L. A., & Spencer Jr, B. F. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation //International journal of non-linear mechanics. – 2013. – Т. 52. – С. 96-109. https://www.sciencedirect.com/science/article/pii/ S0020746213000322

Lizunov P., Pogorelova O., Postnikova T. The Influence of Various Optimization Procedures on the Dynamics and Efficiency of Nonlinear Energy Sink with Synergistic Effect Consideration //Available at SSRN 4663138.https://doi.org/10.2139/ssrn.4663138

Saeed, A. S., AL-Shudeifat, M. A., Cantwell, W. J., &Vakakis, A. F. Two-dimensional nonlinear energy sink for effective passive seismic mitigation //Communications in Nonlinear Science and Numerical Simulation. – 2021. – Т. 99. – С. 105787. https://www.sciencedirect.com/science/article/pii/ S1007570421000988

Youssef B., Leine R. I. A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode //Journal of Sound and Vibration. – 2021. – Т. 501. – С. 116043. https://doi.org/10.1016/j.jsv.2021.116043

AL-Shudeifat M. A., Saeed A. S. Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs //Meccanica. – 2021. – Т. 56. – С. 735-752. https://doi.org/10.1007/s11012-020-01193-3

Javidialesaadi A., Wierschem N. E. Optimal design of rotational inertial double tuned mass dampers under random excitation //Engineering Structures. – 2018. – Т. 165. – С. 412-421. https://doi.org/10.1016/j.engstruct.2018.03.033

Li T. Study of nonlinear targeted energy transfer by vibro-impact :дис. – Toulouse, INSA, 2016. https://doi.org/10.1007/s11071-016-3127-0

Gourdon, E., Alexander, N. A., Taylor, C. A., Lamarque, C. H., & Pernot, S. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results //Journal of sound and vibration. – 2007. – Т. 300. – №. 3-5. – С. 522-551. https://doi.org/10.1016/j.jsv.2006.06.074

Gendelman O. V. Targeted energy transfer in systems with external and self-excitation //Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. – 2011. – Т. 225. – №. 9. – С. 2007-2043. https://doi.org/10.1177/0954406211413976

Gendelman O. V., Alloni A. Forced system with vibro-impact energy sink: chaotic strongly modulated responses //Procedia IUTAM. – 2016. – Т. 19. – С. 53-64. https://doi.org/10.1016/j.piutam.2016.03.009

Starosvetsky Y., Gendelman O. V. Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry //Physica D: Nonlinear Phenomena. – 2008. – Т. 237. – №. 13. – С. 1719-1733. https://doi.org/10.1016/j.physd.2008.01.019

Downloads

Published

2024-04-17

Issue

Section

Статті