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1. Introduction

Vibro-impact dampers are devices for passive suppression of unwanted vibrations. They are
designed to reduce vibration of the main (primary) structure. During the oscillatory motion of a system
consisting of a main structure and a damper coupled with it, the damper takes up some of the main
structure energy. This is the so-called Targeted Energy Transfer (TET) [1-3]. By taking on some of the
main structure energy, the damper reduces the amplitudes and velocities of its vibrations. This
reduction is due to the significant system nonlinearity. Nonlinear dampers were proposed as an
evolution of devices known as Tuned Mass Dampers (TMD) [4,5], which were linearly coupled to the
main structure. The nonlinear dampers have been called Nonlinear Energy Sinks (NESs) [6-8]. Their
nonlinearity is of a different nature, ranging from cubic springs to impacts. The different NESs types
with different nonlinearity have been proposed and studied for two decades [9-12]. In the newest
survey [13], the authors show an increase in the number of publications on NES from the Web of
science database from 2009 to 2023. This review contains an extensive bibliography.

A vibro-impact NES (VI NES) is one of the NES types, widely discussed in the scientific literature
[1, 14, 16]. Selecting the optimal damper design is one of the main challenges in damper application. In their
works, the authors have proposed different algorithms to optimize the damper parameters [6,16-18]. These
algorithms are oriented to the specific problems considered in their research. However, no optimization
procedure provides or can provide an unambiguous result. This is due to the presence of a large number of
damper parameter sets that provide maximum mitigation of the main structure vibrations. Consideration of
synergistic effect is also important. It would be desirable to optimize as many parameters as possible
simultaneously. The sequence of actions of the optimization procedure itself is also ambiguous. This paper
shows the possibility of using standard MATLAB tools to optimize the vibro-impact damper parameters.
We show how using different combinations of these tools can produce different parameter sets. Naturally,
each damper design demonstrates different dynamics of a strongly nonlinear discontinuous 2-DOF (two
degrees of freedom) vibro-impact system consisting of a main structure and a vibro-impact damper coupled
with it. The actual dynamics must be analyzed to evaluate the feasibility of the application the damper with
the selected design. The work shows the changing of the oscillatory regimes for different damper designs
when the exciting force frequency changes. In particular, we observed periodic regimes of different types,
namely 1:1 resonance, 2:1 resonance and strongly modulated response.

The choice of the impact rule, that is, the simulation of the repeated impacts, is very important for any
vibro-impact system. More often the impacts are considered instantaneous. Impact accounting is realized
by recording the velocity jump at the impact moment. This velocity jump is captured by Newtonian
coefficient of restitution. In other impact models, the contact force models its action. The contact force
can be described either linearly or nonlinearly. The problem of simulation the rigid (hard) and soft
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impacts is discussed in many works, both recent [19-22] and earlier [23, 24]. The paper [21] proposes a
finite contact duration model for a VI NES. After examining this problem in our previous works [25, 26],
we simulate an impact by Hertz’s nonlinear contact force according to his quasi-static contact theory
[27, 28].

Thus, the goals of this paper are as follows:

* show how to select an optimal VI NES design using standard MATLAB tools;

* show the manifold of possible sets of optimal damper parameters;

* show the analysis of the system dynamics for different damper designs.

2. Model description and governing equations

The model under consideration is a mechanical two-mass two-degree-of-freedom (2-DOF) vibro-
impact system, which was considered in our previous papers [29-31]. Therefore, we give a brief
description of it. A heavy primary structure (PS) of m, mass is attached to a fixed wall by a linear
elastic spring with a stiffness k; and a damper with a damping coefficient ¢,. It is coupled with a
lightweight vibro-impact damper of m, mass by linear spring &, and a damper c,; m, <<m, . During
the system oscillatory movement, a vibro-impact damper repeatedly hits an obstacle rigidly connected
to the PS. The scheme presented in Fig. 1 corresponds to the conceptual scheme of the single-sided

vibro-impact NES — SSVI NES [4, 8, 32]. However, as
F() ™ we have shown in our previous works and in this paper,
' the damper hits not only the obstacle, but also the
primary structure directly. Then it could be called a
double-sided VI NES (DSVI NES). That’s why we just
write VI NES.

All designations and distance specifications are shown

W 2] @] in Fig. 1. Let’s emphasize only the notion of clearance.
| % Since both bodies perform translational motion, we
X2 consider their movement as the movement of the mass
D [ Clearance centers. Therefore, the clearance is the distance between
c the mass center of the damper in its initial position and
Fig. 1. Calculation scheme of VI NES the)obstacle also in the initial position; it is defined as (C
- D).
We believe that primary structure parameters are set in advance and are not subject to optimization.
In this article, we will not vary their values: m =1000kg, £k =3.95"10"N/m, ¢, =452 N's/m,

E=E,=2.1"10" N/m’, v,=v,=0.3.
In this paper, we study this system under action of harmonic force F(¢)= Pcos(wt+¢,). P =
800 N, @= 6.3 rad/s. Its period is 7 =27/ ®.

The problem of impact simulation is very important in vibro-impact systems. In all our works, we
simulate an impact by nonlinear contact interactive force in accordance with Hertz’s quasi-static
contact theory [27,28]. According to this theory, the impact has a finite duration; the local
deformations of colliding surfaces in the contact zone are allowed. A contact force acting only during
an impact simulates the impact action:

L

Primary
structure (PS)
A m,

=4

=

. o \.}‘\. SOy

Fy(2)= K[z, Q)
Here z is the colliding bodies rapprochement upon impact. We consider the damper impacts on both
the PS directly and the obstacle.
The impacts can occur when:
X 2 X, that is, x, —x, =20 (on PS);
x,2x,+C thatis, x,—x, —C =0 (on obstacle).
Then for these impacts the bodies rapprochements are
Z =X =X, (for direct impacts on PS);
z,=x,—x —C (for impacts on an obstacle).
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The coefficient K characterizes the mechanical and geometrical properties of colliding surfaces.
Therefore, it differs for damper impacts on the PS and the obstacle:

When impacting the PS When impacting the obstacle
4 ol 4 9>
Kl = B Kz = B
3(8,+8,)/4 +B, 3(8,+8,)\/4, +B, )
_l—vl2 _1—v§ 1-v; 1-v;
0= Fx * " Ex %= Fn % Ex

Here the Young’s moduli of elasticity for all surfaces E,,E,,E;,E, and Poisson’s ratios v;,v,,v;,v,
are included into the characteristics of colliding surfaces. Their geometric characteristics are also included
in the consideration; they are 4,,4,,B,,B,,q,,q, . We assume thatthe damper surfaces, both left and

right, are spherical with large radii R, and R,, and the contact surfaces of the primary structure and the
obstacle are flat. Then A4 =B =1/2R, 4,=B,=1/2R, we set A4 =4,=B=8B,=05m",

¢, =9, =0.319 as in the collision of a plane and a sphere. We included elastic moduliin the list of
optimized parameters and obtained the system responses to their changes. This made it possible to
analyze the effect of changing the mechanical characteristics of colliding surfaces in more detail than the
more prevalent consideration of the Newtonian restitution coefficient [23].

Then the motion equations for this system are as follows:
mX, + o X +kxp =y (%, — %) —ky(x, —x; = D) = F () - H(z)F,,,(z)+ H(z,)F,,,(2,),

myX, +¢, (%, = X%)+ky(x, —x, = D)= H(z))F, ,(z,) - H(z,)F,,,(2,). 3)
The initial conditions are
at =0, we have x,(0)=0, x,(0)=D, %(0)=x,(0)=0, ¢, =0. 4

The Heaviside step function H(z) = {(1)’ éi% “activates” the contact force.

The vibro-impact system under consideration is strongly nonlinear discontinuous one. The set of the
motion equations Eq.3 is the stiff set of the Ordinary Differential Equations (ODE). Its integration
requires not only changing the size of the integration step, but also making it extremely small. The
MATLAB platform offers several solvers designed for stiff ODEs, known as stiff solvers. We use one
of them, namely ode23s solver. The variable-step solver ode23s adjusts the integration step size. This
allows us to determine with sufficient accuracy the instant when the Heaviside function becomes equal
to unity, that is, in our problem the bodies collision begins.

The total energy of the primary structure, the reduction of which is the aim of the damper
parameters optimization, is calculated using the well-known formula:

. 2 2
mx, (1) +kx, (¢
Eltotal (t) = Elkinetic (t) + Elpoten (t) == 1( ) 2 1 1( ) . (5)

3. Optimization procedures

Optimization procedures are performed to find the optimal VI NES design. A damper with optimal
parameters should best mitigate the vibrations of the primary structure (PS).

First of all, we want to emphasize that “there is no exact methodto simplify the design of the
multiparameter nonlinear energy sinks” [13].

Optimization procedures do not provide an unambiguous result. It is noted in [6] that there are many
sets of parameter values that provide the objective function minimum. ‘“The nonlinear stiffness
properties have significant influence on control effectiveness, and they can be implemented in
numerous scenarios with plenty of configuration parameters”. We have carried out the optimization
procedures using the tools of standard MATLAB software.

Setting the objective function and its parameters plays a crucial role in the optimization process.
Naturally, some of these parameters are precisely the ones to be optimized.

We have chosen the maximum total energy of the primary structure as the objective function. The
PS total energy is calculated by formula (5).
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3.1. Finding local minima

We have found the optimal design of VI NES in our previous articles [29, 31, 33]. We have used the
programs of the MATLAB platform fininsearch and fmincon, which allow us to find local minima of
the objective function. We have optimized the damper mass m, , stiffness k, , and damping coefficient
¢, as recommended in the scientific literature. We then have optimized the damper layout, i.e. the

initial distance D between VI NES and the primary structureand the distance C to the obstacle rigidly
connected to it. The difference (C -D) determines the clearance. We have also optimized the elastic
moduli £, and E,, which characterize the mechanical properties of the colliding surfaces. The

multiple parameters optimization has shown the amazing synergistic effect. The results obtained are as
follows. We have looked at the two best options ¥ and V2 with significantly different parameters.

VI1: m,=39.67 kg, k,=1550.7 N/m, c,=643.6 N-s/m, C=0.124 m,
D=0.1002 m, E,=2.21-10" N/m’, E,=2.05-10"N/m?, v,=v,=0.4.
V2: m,=62.02 kg, k,=198.24 N/m, ¢,=538.8 N's/m, C=0.0498 m,
D =0.000001 m, E,=2.21-10" N/m*, E,=2.05-10"N/m’, v,=v,=0.4.
Fig. 2 shows the dependence of the maximum total energy of the primary structure coupled to a VI
NESs of these two options on the exciting force frequency.

E 1 maan =

without damper

800 -

400

0

5 5:5 6 6.5 7 15 o,rad/s

Fig.2. The dependence of the maximum total energy of the PScoupled to different VI NES of variantsV1, V2
on the exciting force frequency

The lightweight damper of VI variant has a mass m, that is about 4% of the PS mass m, . It reduces
the resonant peak of the PS energy. It also reduces this energy over a wide range of exciting force
frequencies that are larger than the resonant one. The lightweight damper of V2 variant has a mass m,

that is about 6% of the PS mass m, . It also reduces the resonant peak of the PS energy, but to a lesser

extent. But in the range of exciting force frequencies exceeding the resonant one, it reduces the total
energy of the PS more strongly.

3.2. Optimization over wider parameters ranges

The optimal damper design shown in the previous section was obtained by searching for local
minima. However, as we have already noted, there are many sets of parameters values that provide the
objective function minimum. The MATLAB surf program allows you to obtain the quite wide
parameters ranges with corresponding objective function values. Note that the genetic algorithm ga of
MATLAB platform makes a random selection during its operation, and then specifies some random
parameters set from these ranges. But the figures of these parameters ranges are ambiguous. They
depend on the parameters values chosen for the objective function calculation. They also depend on the
bounds that are set for the parameters to be optimized.
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Fig. 3. The relationship between damper parameters m,, k, at different values of other parameters

The parameters of the primary structure m,, k,, ¢, E,, E; and the exciting force P, ® do not
change; they are given in Sec. 2. Fig. 3 shows the relationship between damper parameters m,, k, at

different values of other parameters. Color determines the objective function values, that is, the values
of the maximum total energy of the primary structure.

The two left images are similar and show some independence of the PS maximum energy from the
damper stiffness k,. However, this seeming independence exists only for some values of other
parameters. The right image in Fig. 3 and further analysis confirm this.

Fig. 4 shows the relationship between damper parameters m,, c, at different values of other

parameters.
300
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k,=1500 N/m; D=0.05 m; C =0.06 m; k, =215 N/m; D=0.06 m; C=0.36 m; k,=215N/m; D=0.03 m; C=0.673 m;
E, =2.110" N/m?; E, =2.21"10" N/m?; E, =221"10'N/m* E, =2.05-10" N/m’;
E,=2.1'10"N/m’; v, =v, =03 E,=2.0510"N/m* v, =v, =0.4 v, =v, =04
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Fig. 4. The relationships between damper parameters m,, c, at different values of other parameters

All of the images are significantly different from each other. The two left images in Fig. 3 and
Fig. 4 suggest that higher mass dampers mitigate the primary structure energy more strongly.
Therefore, we have chosen two mass values for further optimization and analysis. They are m, =40 kg
and m, =60 kg.The same damper masses were chosen in the search for local minima in Sec.3.1. This
means that we can compare the results of these searches. Note that in [34] the authors also separately
analyze the performance of dampers with different masses.

The difference in the images in Fig. 3 and Fig. 4 at different values of other parameters emphasizes
that only a complex of all the damper parameters can ensure its optimal design. Synergistic effect we
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observed in our previous work [29] supports this claim. Such a situation requires simultaneous, rather
than sequential, optimization of all damper parameters. However, there is no software available to
implement such simultaneous optimization. The MATLAB fminsearch and fmincon programs, which
allow us to find minimum of the multivariable function, do not provide the satisfactory results.
Therefore, we optimized the damper parameters alternately in several steps, testing the effect from
each step.

4. Parameters optimization for damper with mass m,=60 kg

4.1. Search of the optimal design

The mass of this damper is 6% of the primary structure mass. The parameters optimization is carried
out using both the surf program and fminsearch, fmincon programs. The surf program shows the
relationship between two parameters. The parameters values selected from the ranges shown can be
precised using the fminsearch, fmincon programs, which find the local minimum of the objective
function. This procedure is ambiguous and contains a sufficient amount of arbitrariness.
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Fig. 5. The relationships between different pairs of damper parameters

After précising the parameters using the fininsearch, fmincon programs, we obtained the following
set of damper parameters:

V3: m,=60kg, k,=215N/m, ¢,=232 N-s/m, C=0.36 m,
D=0.06 m, E,=2.21-10" N/m’, E,=2.05-10"N/m?, v,=v,=0.4.
Note that setting the elastic moduli E,, E,, which are four orders of magnitude smaller, gives

preference to a soft impact. This setting is consistent with the assignment in several articles [35, 36] to
a lower restitution coefficient — 0.45 instead of 0.7.
In the next section, we show the performance of the damper with these parameters.
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4.2. Dynamic behavior of the primary structure coupled to the vibro-impact damper of '3
variant
The graph in Fig.6 shows the change in the maximum total energy of the primary structure coupled
to such a damper as the exciting force frequency changes.

E 1 .vuru‘-J -:

without damper
1200 + :

V3

I
|
!
1|
!
|
|
[

T

800

4 4.5 5 5.5 6 6.5 7 7.5 @ rad/s

Fig. 6. Maximum total energy of the primary structure coupled to the damper of V'3 variant

Comparing Fig. 6 and Fig. 2, one can see how much stronger the damper of the V'3 variant reduces
the maximum primary structure energy in the resonance region. The curve has two resonant peaks
since the “PS — NES” system is a 2-DOF system. The authors [37-39] have demonstrated this
phenomenon for TMD and NES. The damper parameters in ¥3 variant are very different from the V2
variant. Special attention should be paid to the large clearance (C -D)= 0.3 m. Because of this, the
impacts of a vibro-impact damper on the obstacle occur only in the region of the frequencies close to
the resonant one. The region of the damper impacts against both the primary structure directly and an
obstacle rigidly connected to it, is quite narrow 5.9 rad/s < @< 6.5 rad/s. The blue dottedvertical lines
in Fig.6 mark it. It is colored pink. In the wider region, marked by brown dotted vertical lines, the
damper impacts occur only on the PS directly, there are no impacts on the obstacle. This region is
bounded on the left by @ =5.3 rad/s and on the right by @ =5.3 rad/s. It is colored blue. Outside this
region, the 7T-periodic regime is realized without any impacts.Table 1 shows the regime alternation
when the exciting force frequency changes. The following designations are used. We note n7, m, k
periodic regime of nT periodicity with m direct damper impacts on the PS and £ its impacts on an
obstacle per cycle. The “Strongly Modulated Response” mode is naturally called SMR.

Periodic regimes are observed in several frequency ranges. To the left of the resonance at
S5.4rad/s < w< 5.8 rad/s the 27,1,0 mode occurs. Near resonance, the 7,1,1 mode is implemented in
the frequency range 5.9 rad/s < w < 6.3 rad/s. This zone contains, i.e. “captures”, resonance. It is 7-
periodic regime with one direct impact per cycle on the primary structure and one impact on the
obstacle rigidly connected to it.

Table 1
The dynamic behavior of the system with the damper of V'3 variant
at the different exciting force frequencies
o, rad/s 52 53 54 59 6.5 6.6 6.7 7.1
Ejmax Jnodamp | 79.47 | 94.12 | 113.5 | 446.1 811.2 5344 |366.7 | 1229
E\max,d for V3 83.56 | 99.65 | 119.8 | 123.0 394.3 3324 | 256.0 |103.7
Regime for V3 | 7,0,0 | 37,1,0 | 27,1,0 | T,1,1 87,64 (AM) | 27,1,0 | 37,1,0 | 7,0,0

Fig. 7 shows its characteristics at @ =6.0 rad/s. This frequency corresponds to the larger resonance
peak on the black curve in Fig. 6. The characteristics shown are typical for a periodic regime. In terms
of orbital resonance, this regime can be called a 1:1 resonance because both bodies have the same
period of oscillation.
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Fig. 7. Characteristics of 7,1,1 regime for damper of V3 variant at ©=6.0 rad/s. (a) Time series for both bodies displacements.
(b) The relative damper displacements. (c) The phase trajectories with Poincaré maps in red for both bodies. (d) The relationship
between the both bodies displacements. (e) Contact forces during damper impacts on the PS in blue and on the obstacle in green.

(f) The total energy of the primary structure. (g) Fourier spectrum

Fig. 7 (a) demonstrates the impacts between bodies. Fig. 7 (b) demonstrates the impacts between
bodies at x, —x, =0, i.e. x, =x,, and the damper impacts on the obstacle at x, —x;=C=0.36 m. The

phase trajectories in Fig. 7 (c) are closed curves, Poincaré maps are individual points. The phase
trajectory for the lightweight damper (gray curve) has two large velocity jumps during impacts on the
PS and the obstacle. The phase trajectory for the heavy PS (black curve) also has two velocity jumps,
but they are very small. Recall that the damper hits the PS directly and hits the obstacle rigidly
connected to it. The Fourier spectrum in logarithmic scale in Fig. 7 (g) shows the fundamental
frequency wand superharmonics 2w, 3w, 4@ . The Figs. 7 (a), (b), (e), (f) clearly demonstrate the
movement periodicity and the coincidence of the periods of both bodies motion. This gives reason to
call this mode 1:1 resonance. Immediately after resonance at w=6.4 and 6.5 rad/s, we observe an
interesting 87,6,4 mode. This is periodic regime of 87 period with 6 damper impacts on the PS and 4
impacts on the obstacle. This is amplitude-modulated regime. In many papers [38, 40, 41] this
phenomenon is called strongly modulated response (SMR) and is discussed. It is sometimes referred to
as weakly modulated response (WMR). There is no estimated numerical criterion for the depth of
strong or weak modulation. In [42], the authors note that SMR “maybe rather ubiquitous in the forced
system with essential nonlinearity and strong mass asymmetry. This type of response exists in a
vicinity of exact 1:1 resonance”. Indeed, we observe SMR precisely in such a case. So, let’s look at it
in detail (Fig. 8).

Fig. 8 (c) and 8 (j) demonstrate the existence of the 6 damper impacts against the primary structure
directly at x, —x,=0. Fig. 8 (c) and 8 (k) demonstrate the presence of the 4 damper impacts on an
obstacle at x, —x,=C=0.36 m. Figs. 8 (j), (k), and (1) show the contact forces during these impacts.
The Fourier spectrum in Fig. 8 (g), plotted on a logarithmic scale, shows the carrier frequency
@ =6.5rad/s and the subharmonics that are multiple of @ /8. The modulating frequency of the
envelope (2, shown in Fig.8 (a) in red, is 1/8 from the carrier frequency. The envelope is constructed
using the Hilbert transform. Then the subharmonics in Fig. 8 (g) can be represented as (wx nQ) as
shown in Fig. 8 (h). Fig. 8 (i) shows the Fourier spectrum of the modulating signal, i.e., of the
envelope. In this spectrum, its fundamental frequency (2 and superharmonics 242, 342,40 can be

seen. It is clearly seen that Q = @/8=6.5/8 rad/s=0.8125 rads.
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Fig. 8. Amplitude modulated signal for damper of V3 variant at ®=6.5 rad/s

Then, in the frequency range 6.7 rad/s < w < 7.0 rad/s, the periodic 37,1.0 mode is realized again.
At both edges of the frequency range, both on the left at low frequencies w < 5.2 rad/s and on the right
at high frequencies @ < 7.1 rad/s, the VI NES does not hit either the primary structure or the obstacle.
Periodic shockless mode 7,0,0 is implemented.

Thus, the MATLAB tools allowed us to find the optimal VI NES design. The damper of V3 variant,
which has such design, mitigates the primary structure vibrations quite well and strongly reduces its
resonant peak. However, we must once again pay attention to two important details. Firstly, the
damper operates as a nonlinear vibro-impact one in a fairly narrow range of the exciting force. This
range covers the region near the resonant frequency. In the other frequency ranges, it works as a
shockless linear damper. Secondly, the clearance in this optimal design is very large. This causes the
damper to oscillate at some frequencies without impacts.
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5. Parameters optimization for damper with mass m,=40 kg

5.1. Search of the optimal design

The mass of this damper is 4% of the primary structure mass. We have analyzed the operation of
this damper with two different parameter sets. In the first option, we have used the parameters found
for the damper of V3 variant in Sec.4. We called it variant V4.

V4: m,=40kg, k,=215N/m, ¢,=232 N-s/m, C=0.36 m,

D=0.06 m, E,=2.21-10" N/m’, E,=2.05-10"N/m?, v,=v,=0.4.

We have carried out an optimization procedure to get another variant. The same tools as the
previous ones helped to perform this procedure. We observed that increasing the clearance allows us to
obtain a smaller value of the maximum total energy of the PS. The graph (D -C) in Fig.5 confirms this
assumption. Therefore, it is advisable to construct it with new parameters and within new boundaries.
Fig. 9 shows it. The MATLAB fminsearch program, although looking for local minima, showed that a
large increase in the clearance value greatly reduces the maximum PS energy. At the same time, it
showed a reduction in the damping coefficient. Therefore, we chose another variant of the damper
parameters in this way:

V5: my,=40kg, k,=215N/m, c,=64.1 N-s/m, C=0.673 m,

D=0.03m, E,=2.21-10" N/m’, E,=2.05-10"N/m?, v,=v,=0.4.
In the next section, we show the performance of the dampers of ¥4 and V5 variants.
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Fig. 9. The relationships between damper parameters D and C

5.2. Dynamic behavior of the primary structure coupled to the vibro-impact dampers of V4
and V5 variants

Fig.10 shows the maximum total energy of the primary structure depending on the exciting force
frequency.
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Fig. 10. Maximum total energy of the primary structure coupled to the dampers of V3, V4, V5 variants
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We clearly see the difference between the system behavior with dampers of the V4 and V5 variants,
although both variants reduce the PS energy very much. Comparing them to the V3 variant, one can
see that their resonant peak is larger. But they do not increase the PS energy even at frequencies lower
than the resonant one. Let us emphasize that the clearance in V5 variant C -D = 0.643 m is huge one.
Because of this, the impacts of a vibro-impact damper on the obstacle occur in very narrow region of
the frequencies close to the resonant one. This narrow region of the damper impacts against both the
PS directly and an obstacle is 5.9 rad/s < @ < 6.5 rad/s in V5 variant. The blue dotted vertical lines in
Fig. 10 mark it. It is colored pink. Impacts only against PS without impacts on an obstacle occur
throughout the entire frequency range in¥’5 variant. In variant V4, they occur in the region, bounded by
the brown dotted vertical lines. It is colored blue. Let us consider the effect of such a large clearance
on the system dynamics in more detail. Table 2 shows the regime alternation when the exciting force
frequency changes.

Table 2
The dynamic behavior of the system with the dampers of ¥4 and V5 variants
at the different exciting force frequencies

o, rad/s 5.3 5.5 6.0 6.1 6.4 6.5 6.9 7.0
Eima, Jnodamp. | 94.12 | 139.9 | 664.8 | 1015.3 | 1220 811.2 198 153.9
E | max, J for V4 104.2 | 157.1 | 634.8 | 889.8 | 585.3 447.5 153.5 | 124.2
Regime for V4 7,0,0 | 27,1,0 | 37,2,1 | 7,1,1 |Chaotic 2T,1,0 37,1,0 | 7,0,0
E\max,d for V5 82.35 | 1164 | 422.6 | 912.8 | 194.1 618.5 169.9 | 135.4
Regime for V5 7,1,0 | 7,1,0 | 2T7,2,0 | 27,1,0 | T.1,1 87,6,4 (AM)| 27,1,0 | 27,1,0

It is interesting to compare two 27-periodic regimes. Regime 27,1,0 with one impact on the PS per
cycle at @ =5.5 rad/s in V4 variant and regime 27,2,0 with two impacts on the PS per cycle at
@ =6.0rad/s in V5 variant. There are no impacts on the obstacle in both modes.

Fig.11 shows the mode characteristics for V4 and Fig. 12 for V5.
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Fig. 11. Characteristics of the 27-periodic movement 27,1,0 of the damper of V4 variant at the exciting force frequency
w = 5.5 rad/s. (a) Time series of the both bodies displacements. (b) The relative damper displacement. (c¢) The relationship

between the both bodies displacements. (d) Contact forces during damper impacts on the PS in blue. (¢) Fourier spectrum for the
PS. (g) Fourier spectrum for the damper

Fig. 11 (a) shows the sliding impact of the damper against the PS. Therefore, the contact force in
Fig. 11 (d) is small, even less than the exciting force amplitude. Fig. 11 (b) shows how far away from
the obstacle the damper oscillates. The Fourier spectrum in Fig. 11 (e) represents the fundamental
frequency @ for the PS movement. The Fourier spectrum in Fig. 11 (f) represents the fundamental
frequency @ and subharmonics @/2, 3 @/2 for the damper movement. In terms of orbital resonance,

this mode can be called a 2:1 resonance. The damper cycle is twice the PS cycle. This means that the
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PS completes two of its cycle in the time it takes the damper to complete one cycle. Another
movement picture is shown in Fig.12 for the 27-periodic 27,2,0 mode at @ =6.0 rad/s for V5 variant.
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Fig. 12 Characteristics of the 27-periodic movement 27,2,0 of the damper of V5 variant at the exciting force frequency
w =6.0 rad/s. (a) Time series of the both bodies displacements. (b) The relative damper displacement. (c¢) The relationship

between the both bodies displacements. (d) Contact forces during damper impacts on the PS in blue. (¢) Fourier spectrum for the
PS. (g) Fourier spectrum for the damper

Fig. 12 (a) shows two impacts of the damper on the PS during oncoming traffic. Therefore, the
contact force in Fig.12 (d) is large, much greater than the exciting force amplitude. Fig. 12 (b) shows
how close to the obstacle the damper oscillates. The Fourier spectra in Fig. 12 (e) and Fig. 12 (f)
represent the fundamental frequency @ and subharmonics @/2, 3 /2 for both PS and damper

movement. In terms of orbital resonance, this mode can be called a 1:1 resonance. The PS and the
damper cycles are the same, although this cycle is equal to two periods of the exciting force. This
means that the PS accomplishes its one cycle in the same amount of time it takes the damper to
accomplish its one cycle.

Thus, the MATLAB tools allowed us to find the optimal VI NES design in this case as well. The
dampers of V4 and V5 variants, which have such design, mitigates the primary structure vibrations
quite well and strongly reduces its resonant peak. However, we must once again pay attention to two
important details. Firstly, the damper operates as a nonlinear vibro-impact one in a fairly narrow range
of the exciting force. This range covers the region near the resonant frequency. In the other frequency
ranges, it works as a shockless linear damper. Secondly, the clearance in this optimal design is very
large. This causes the damper to oscillate at some frequencies without impacts.

Comparing the operation of the dampers of ¥ and V2 variants with the dampers of V3,V4 and V5
variants, one can clearly see that they differ significantly in both design and efficiency. This once again
emphasizes that not only the sequence of the optimization procedure is ambiguous, but also its results.
Therefore, the resulting damper designs need to be tested and carefully analyzed. We have shown what
modes arise in the system when the primary structure is coupled to the different dampers at different
exciting force frequencies.

6. Conclusions
The results presented in the above sections lead to the following conclusions.

1. This paper studies the optimization process of a 2-DOF vibro-impact system consisting of a heavy
primary structure and a lightweight vibro-impact damper (VI NES). The optimization procedure
involves searching for the optimal damper design that ensures its maximum efficiency.
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2. The epigraph to this paper can be the quote we cited earlier: “There is no exact methodto simplify
the design of the multiparameter nonlinear energy sinks” [13].

3. Taking into account the synergistic effect of multiple parameter optimization, it would be advisable
to optimize all damper parameters simultaneously rather than sequentially. However, due to the
lack of appropriate software, we optimized all damper parameters alternately in several steps,
testing the effect from each step.

4. The optimization procedure is ambiguous and contains a sufficient amount of arbitrariness. It can
find different sets of optimal damper design. Above we emphasized that there are many sets of
parameter values that provide the objective function minimum. The authors of [6] wrote: “The
nonlinear stiffness properties have significant influence on control effectiveness, and they can be
implemented in numerous scenarios with plenty of configuration parameters.”

5. The MATLAB proposes several algorithms for finding the objective function minimum. We have
used some of them. The programs fminsearch and fmincon, which find local minima of the
objective function, yield different sets of the damper parameters that provide minimum values of
the objective function in the chosen region. The genetic algorithm ga, which selects random
intermediate results, yields randomly selected parameter sets from the optimal parameters
manifold. We did not use this algorithm. The program surf allows us to construct parameter pair
surfaces that show parameter ranges with corresponding objective function values.

6. Setting the objective function and its parameters plays a crucial role in the optimization process.
Naturally, some of these parameters are precisely the ones to be optimized. We have chosen the
maximum total energy of the primary structure coupled to the vibro-impact NES as the objective
function.

7. We believe that it is reasonable to optimize the damper parameters separately for each selected
damper mass.

8. Each chosen set of optimal damper parameters should be carefully tested and analyzed.

9. We compared the five obtained optimal designs for dampers with two different masses. When
analyzing them, we observed different motion modes, namely periodic modes of different
periodicity with different number of impacts, with different ratio of bodies motion periods: 1:1
resonance with resonance capture and 2:1 resonance; regime 87,6,4 (SMR).

10. The single-sided VI NES with one obstacle practically works as double-sided VI NES, since it hits
both the primary structure directly and the obstacle rigidly coupled to it. The primary structure in
this case plays the role of a second constraint.

11. The impact simulation in accordance with Hertz’s contact law allows us: firstly, to include the
mechanical characteristics of colliding surfaces in the list of optimizing parameters and, secondly,
to calculate the contact impact forces during damper impacts both directly on the primary structure
and on the obstacle.

12. The final decision on the optimal damper design may be made taking into account various
engineering considerations regarding its mass and other parameters. It should be based on the
options obtained as a result of the optimization procedure.
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Cmamms nadiviwna 26.03.2024

Jisynos I1.11., Ilozopenosa O.C., [locmuikosa T.I.
ONTUMIBAIIS KOHCTPYKIIIi BIFPOYJAPHOI'O TEMII®EPA 3A JOIMOMOI' OO IHCTPYMEHTAPIIO
MATLAB

VY poboti nociipkeHo AUHAMiKy BiOpOyAapHOi CHCTEMM, IO CKJIAIA€TbCS 3 OCHOBHOI (NEPBUMHHOI) KOHCTPYKLIl Ta
CIOJIy4eHOro 3 Hero BiOpoymapHoro aemndepa. BiOpoynapuuii nemndep ue BiOpoyaapHMil HENiHIHHMN HOTJIMHA4Y eHeprii
(VINES). OntumanbHa KOHCTpYKLis aemndepa mnoBuHHa 3a0e3nedyBaTH HaWKpalle IOM’SKIIeHHS BiOpauii OCHOBHOI
koHCcTpyKuii. ITpouenypn ontumizanii 1y noumyky ontuMaibHoro ausaiiny NES BHKOHYIOTBCS 3a JOIOMOIOI CTaHIAPTHHX
3aco0iB MATLAB. Mu BukopuctoByBainu pisti nporpamu MATLAB, a came nporpamy surf, ska rpadiuHo Hokasye Jliana3oHu
nap napameTpiB, SKi MOTpiOHO ONTHUMI3yBaTH; MpPOrpamu fininsearch i finincon, siKi WIYKarOTh JIOKJIbHI MIHIMyMH LilIbOBOT
¢ynkuii. IMoxasaHo, MO camMa HpPOLEAypa ONTHMi3allii HEOJHO3HAYHA i MiCTUTh TOCTATHIO JOBUIBHICTb. 1i pe3ynpTaT Tesk
HEOJIHO3HAYHMUI TOMY, L0 iCHye 6arato MOXIMBHUX HAOOpiB mapamerTpiB aeMmndepa, ki MOXYTh 3a0€3MEUUTH MAKCUMAaJIbHE
MOM’SIKIIIEHHS BiOpalliii OCHOBHOI KOHCTPYKLii. MM He BHKOPUCTOBYEMO TI'€HETHMYHMI alrOpPUTM gd, OCKUJIbKM BiH BHOHMpae
BUIIAJIKOBI IIPOMDXKHI Pe3yJIbTaTH Ta JIa€ BUMAKOBO BUOpaHi HaOOpu mapamerpiB i3 pi3HOMAaHITHOCTI ONTUMAIBHUX MapaMeTpiB.
Bceranosienns 1boBoi ¢GyHKIIT Ta i mapamerpiB Bigirpae BUpilIaabHy posib y npoleci onTumizauii. 3a HUIbOBY QYHKIIIO MU
oOpasii MakCUMallbHy IIOBHY E€HEprilo NEepBHHHOI cTpykTypu. KoxkeH oTpuMaHMii BapiaHT HaOopy mapamerpiB aemmdepa
MOBUHEH OYTH pETENbHO IepeBipeHHMH 1 npoaHani3oBaHUi.Byno mopiBHAHE I’ATh OTPUMAHHMX ONTUMAIBHMX KOHCTPYKIIH
nemndepa 3 1BoMa pizHUMHU MacaMu. [Ipy IXHbOMY aHaJi3i MU CHOCTEpIrajy pi3Hi PeKUMHU PYyXy, a caMe MEpioJuyuHI PeXUMU
Pi3HOT HEepioMYHOCTI 3 PI3HOI KiJBKICTIO YAApiB 3a ILMKI, 3 PI3HUM CIIiBBIHOLICHHSM IEpPioAiB pyXy Til: pe3oHanc 1:1 i3
3aXOIJICHHSAM pE30HAHCy Ta pe3oHaHc 2:1; Oararo mnepiogMuHui pexuMm 13 OaratbMa ynapamud 3a LMK, SKiH
BUSBUBCAAMIUIITYTHO-MOAYJIbOBAaHUM peXUMOM. OCTaTOUHE PIllIeHHs 1100 ONTUMAaJbHOI KOHCTPYKLIT aemmdepa Mmoxe OyTH
IPUHHATO 3 ypaxXyBaHHSIM Pi3HUX iH)KEHEPHHMX MipKyBaHb IO0 HOro MacH Ta iHIIMX NMapaMeTpiB. BoHo mae 6asyBatucs Ha
BapiaHTax, OTPUMAHKX B PE3YJIbTaTI MPOLEAYPH ONTUMI3aLIi.

KuarouoBi ciioBa: ontumizauis, nemndep, Habip napameTpis, BiOpoyap, HeJHIHHUN MOrJIMHAY eHeprii.

Lizunov P.P., Pogorelova O.S., Postnikova T.G.
OPTIMIZATION OF A VIBRO-IMPACT DAMPER DESIGN USING MATLAB TOOLS

The paper studies the dynamics of a vibro-impact system consisting of a main (primary) structure and a vibro-impact damper
coupled to it. A vibro-impact damper is a vibro-impact nonlinear energy sink (VI NES). The optimal damper design should
provide the best vibration mitigation for the primary structure. The optimization procedures for finding the optimal NES design
are carried out using standard MATLAB tools. We used different MATLAB programs, namely surf program, which graphically
shows the ranges of parameter pairs to be optimized; fininsearch and fminconprograms, which search for local minima of the
objective function. It is shown that the optimization procedure itself is ambiguous and contains a sufficient amount of
arbitrariness. Its result is also ambiguous. It is due to the presence of the many possible sets of damper parameters that can
provide maximum mitigation of the main structure vibrations. We do not use the genetic algorithm gabecause it selects random
intermediate results and yields randomly selected parameter sets from the optimal parameters manifold. Setting the objective
function and its parameters plays a crucial role in the optimization process. We have chosen the maximum total energy of the
primary structure as the objective function. Each resulting variant of the damper parameter set should be carefully tested and
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analyzed. We compared the five obtained optimal designs for dampers with two different masses. When analyzing them, we
observed different motion modes, namely periodic modes of different periodicity with different number of impacts per cycle,
with different ratio of bodies motion periods: 1:1 resonance with resonance capture and 2:1 resonance; amulti-periodic mode
with many impacts per cycle, which turned out to be an amplitude-modulated mode — Amplitude Modulated Signal . The final
decision on the optimal damper design may be made taking into account various engineering considerations regarding its mass
and other parameters. It should be based on the options obtained as a result of the optimization procedure.

Keywords: optimization, damper, parameter set, vibro-impact, nonlinear energy sink.
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The paper studies the dynamics of a vibro-impact system consisting of a main (primary) structure and a vibro-impact nonlinear
energy sink (VI NES) coupled to it. The optimization procedures for finding the optimal NES design are carried out using
standard MATLAB tools. The ambiguity of the optimization results is shown. It is due to the presence of the many possible sets of
damper parameters that can provide maximum mitigation of the main structure vibrations. Each resulting variant of the damper
parameter set is tested and analyzed. Comparison the results of analyzing different options should help to select the final optimal
damper design. By analyzing the motion of the system with different damper variants, we observed various periodic oscillatory
modes, namely 1:1 resonance, 2:1 resonance, and strongly modulated response.

Tabl. 2. Fig. 12. Ref. 42.
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Jisynoe I111., Ilozopenosa O.C., Ilocmuikosa T.I. Ontumisanis KoHCTpykuii BiGpoyaapHoro nemmdgepa 3a 10moMorow
incTpymenTapiro MATLAB // Onipmatepianis i Teopiscnopya: Hayk.-Tex. 30ipH. — K.: KHYBA. 2024. — Bun. 112. - C. 3-18. -
Amnri.

Hocnioxceno ounamixy 6iopoyoapHoi cucmemu, wo cKIadaemsvcs 3 OCHOBHOI (nepeuHHoi) KoHCmpyKyii ma 3'€0nanozo 3 Heio
6ibpoyodapnozo Heninitinoeo noenunaya enepeii (VI NES). Onmumizayiini npoyedypu 015 3HAXOOMCEHHA ONMUMANLHOI
xkoncmpykyii NES euxonano 3 euxopucmanHam cmaunoapmuozo incmpymenmapiio MATLAB. Ilokazano neoOHosHaumicmb
pesyromamie onmumizayii. Lle nos'’sizano 3 nasenicmio 6azamvox Modciusux Habopie napamempis demngepa, sAKi MONCYMb
3a0e3neuumu MaxKCUManibHe 2aciHHA KOMUBAHbL OCHOBHOI KoHcmpykyii. Koocen ompumanuii eapianm nabopy napamempie
demnghepa npomecmosarne ma npoananizosare. I1opiHAHHA pe3yTbmamie aHaNi3y pisHUX 6apianmie Mmae 0ONoMo2mu eubpamu
0CmMamoury OnmuManbHy KOHCMpYKyilo Oemngepa. Ananizylouu pyx cucmemu 3 pisHUMU 6apianmamiu Oemngepis, mu
cnocmepieanu pisHi nepioOuYHi KOTUBANbHI pedcUMU, a came: pesoHanc 1:1, pezonanc 2:1 ma cunoHo MoOYIb08anuil BI02YK.
Tabu. 2. Puc. 12. bibmiorp. 42 Ha3s.
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