A numerical study of the multicriteria parametric optimization of the displacement and weight of a two-connected conical shell of minimal surface under thermal and power loading

Authors

DOI:

https://doi.org/10.32347/2410-2547.2023.111.102-112

Keywords:

optimization, parametric optimization, multicriteria optimization, objective function optimization, design variables, constraints, minimum surface envelopes, displacements along the X, Y, Z axes, weight of the structure

Abstract

Various methods and approaches are used to solve the problem of optimal design. Problems of this type are used for the optimal design of spatial coverings, which in modern architecture are progressive structures that are of interest to the whole world. Spatial coatings allow to give the building architectural expressiveness, cover large spans and combine load-bearing and enclosing functions.

The hulls of minimal surfaces are the hulls of negative Gaussian curvature. In general, the geometry of minimal surfaces cannot be described analytically. To solve this problem, which is associated with solving the differential equation that describes the minimal surface in general, under appropriate boundary conditions, one has to use methods of numerical analysis. This approach allows us to build a point frame of the shell, which is a matrix of discrete solutions of functions that searches for a given minimum surface. In view of this, its geometric characteristics can be obtained only in numerical form.

The basic relations of the linear theory of thin elastic shells of minimal surface are highlighted in the numerical study of parametric optimization. The mathematical justifications of how the external load is perceived and the process of creating the stress-strain state of the shells of minimal surfaces are highlighted.

For the numerical implementation of the multicriteria parametric optimization of a double-connected conical shell of minimal surface, a finite element model was built from plate finite elements in the amount of 4824 pieces and 4896 nodes. The perimeter is rigidly clamped to the ground disk. The thermal force load is set, which consists of a combination of static and temperature loads.

The developed methodology shows quite good results that coincide with the works of other authors and makes it possible to use two types of optimization for one research object simultaneously. The first stage is shape optimization, and the second stage is multicriteria parametric optimization.

This methodology makes it possible to perform optimization processes in an automated mode, which is an important applied task for construction and applied mechanics.

Author Biographies

Gryhorii Ivanchenko, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Dean of the Faculty of Civil Engineering

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

Doctor of Philosophy (Ph.D.), Associate Professor, Associate Professor of the Department of Theoretical Mechanics

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, head of the department of resistance of materials

References

HerasymovE.N., PochtmanYu.M., Skalozub V.V. Mnohokryteryalʹnaya optymyzatsyya konstruktsyy. (Multicriteria optimization of structures). – Donetsk: Vyshcha shkola. HlavnoeYzd-vo – Kyev – 1985 – 134 p.

Hyll F., Myurrey U., Rayt M. Praktycheskayaoptymyzatsyya. (Practical optimization). – M.: Myr, 1985. – 509 p.

Ivanchenko H.M., Cheverda P.P., Kushnirenko M.H., Kozovenko A.M. Analiz reaktsiy v elementakh prostorovykh skhem pry riznykh sposobakh zʺyednanʹ (Analysis of reactionsinelements of spatialschemes with different methods of connections) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2012. – Issue. 90. – P. 163-170.

Koshevyi O.O. Optymalʹne proektuvannya tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttya. (Optimaldesign of cylindricaltanks with rigidcoatingshells) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2019. – №. 103. – P. 253-265.

Koshevyi O.O. Optymizatsiya stalʹnoho zvarenoho rezervuaru pry obmezhenni: napruzhenʹ, peremishchenʹ, vlasnykh chastot kolyvannya. (Optimization of steel welded tank with limitations: stresses, displacements, natural frequencies of oscillations). // Budivelʹni konstruktsiyi. Teoriya i praktyka: nauk.-tekhn. zbirnyk. K.: KNUBA. 2018. №.3.– P.34 – 50.

Hotsulyak Ye.O., Koshevyi O.P., Morskov Yu.A. Chyselʹne modelyuvannya obolonok, utvorenykh minimalʹnymy poverkhnyamy. (Numerical modeling of shells for medby minimal surfaces). // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.- P.47-51.

Koshevyi O.P. Koshevyi O.O. Chyselʹne doslidzhennya vlasnykh kolyvanʹ roztyahnutykh obolonok utvorenykh minimalʹnymy poverkhnyamy. (Numericalstudy of natural oscillations of stretched shells for medby minimal surfaces) // Mistobuduvannya ta terytorialʹne planuvannya, №. 55. – Kyiv, KNUBA, 2015. – P. 215-227.

Koshevyi O.P. Koshevyi O.O. Vlasni kolyvannya obolonok minimalʹnykh poverkhonʹ na kruhlomu ta kvadratnomu konturi. (Own oscillations of shells of minimal surfaceson a round and square contour) // Mistobuduvannya ta terytorialʹne planuvannya, №. 59. – Kyiv, KNUBA, 2016. – P. 234-244.

Koshevyi O.O., Koshevyi O.P., Hryhorʺyeva L.O. Chyselʹna realizatsiya bahatokryterialʹnoyi parametrychnoyi optymizatsiyi obolonky minimalʹnoyi poverkhni na pryamokutnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multi-criteria parametric optimization of minimum surface shell on a rectangular contour under thermforced loading) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2021. – Vyp. 108. – S. 309–324.

Koshevoy A.P. Ustoychivostʹ plastin i obolochek slozhnoy formi (Stability of plates and shells of complexshape) // Soprotivleniyematerialov i teoriyasooruzheniy: nauch.-tekhsbornik. – K.: KISI, 1991. – Vip. 59. – P. 65–71.

Manyta L.A. Usloviya optymyzatsyi v konechnomernykh nelyneynykh zadachakh optymyzatsyi. (Optimizationconditionsinfinite-dimensionalnonlinearoptimizationproblems). – M.: Moskovskiy hosudarstvenniy instytut élektronyky y matematiki, 2010. – 81 p.

Melʹkumova E.M. O nekotorykh podkhodakh k reshenyyu mnohokryteryalʹnykh zadach. (About some approaches to solving multicriteria problems). // Vestnyk VHU. Seryya Systemnyy analyz y ynformatsyonnye tekhnolohyy. – V.: VHU– №2– 2010– 3 p.

Peleshko I.D., Yurchenko V.V. Optymalʹne proektuvannya metalevykh konstruktsiy na suchasnomu etapi (ohlyad pratsʹ). (Optimal design of metal structures at the present stage (review of works)). // Metalevi konstruktsiyi: zbirnyk naukovykh pratsʹ. – 2009. – №15 – P. 13–21.

Peleshko I.D., Baluk I.M. Optymizatsiya poperechnykh pereriziv stryzhniv stalevykh konstruktsiy. (Optimization of crosssections of rods of steelstructures). // Zbirnyk naukovykh pratsʹ UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stalʹ, №. 4. – 2009. – P. 142–151.

Peleshko I.D., Lisotsʹkyy R.V., Baluk I.M. Optymalʹne proektuvannya stalevoyi stryzhnevoyi konstruktsiyi pokryttya torhovo-rozvazhalʹnoho kompleksu. (Optimaldesign of a steel rod cover structure of a shopping and entertainment complex). // Zbirnyk naukovykh pratsʹ UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stalʹ, №. 5. – 2010. – P. 181–191.

Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Alʹtenbakh Y., Habbert U., Dankert YU., Keppler KH., Kochyk Z. Metod konechnykh élementov v mekhanyke tverdykh tel. (Finite element method in solid mechanics) // Vydavnytstvo Vyshcha shkola. Holovnoe yzdatelʹstvo – Kyev – 1982. – 480 p.

Bazenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiply connected ribbed shells and platesin a magnetic field. // Journal of SovietMathematics 66(6). –1993. – С. 2631–2636.

Cheung Y. K. The Finite Strip Method. Them. – BocaRaton. : CRC Press, 1997. – 416 p.

Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. // International Journal forNumericalMethodsin Engineering, 2004. –61(2) – P.238–254.

Kroese D.P., Taimre T., Botev Z.I. Handbook of Monte Carlo Methods. — NewYork: JohnWiley and Sons, 2011. — 772 p.

Lobo M.S., Vandenbeghe L., Boyd S. Applications of second-order cone programming. // LinearAlgebra and itsApplications. – 1998. – Vol. 284, no. 1. – P. 193–228.

Yonekura K., Kanno Y. Second-ordercone programming with warmstart for elastoplastic analysis with von Mises yield criterion. // Optimization and Engineering. – 2012. – Vol. 13, no. 2. – P. 181–218.

Wasiytynski Z., Brandt A. The present state of knowledge in the field of Optimumdesign of structures. // Appl. Mech. Rew. – 1963. Vol. 16 no. 5. – P. 341-35.

Published

2023-11-24

Issue

Section

Статті