Numerical study of the parametric optimization of the forced oscillation frequencies of the shell of a minimal surface on a trapezoidal contour under thermal and power loading
DOI:
https://doi.org/10.32347/2410-2547.2023.110.430-446Keywords:
optimization, parametric optimization, shape optimization, topological optimization, minimum surface hull, objective function, design variables, constraints, limit, forced frequency, hull weightAbstract
This research paper discusses various methods and approaches to the optimal design of structures. Methods for solving the optimization problem can be divided into two large groups. The first group includes methods that are based on the use of the necessary conditions for the extremes of the objective function. The second group consists of mathematical programming methods: linear, convex, dynamic programming, and random search. In mathematical terms, optimal design problems are optimization problems - the search for an extremum of the objective function and the values of the parameters at which the extremum is achieved. The choice of the optimality criterion is one of the main problems of optimal design. The most widely developed problems are those that have the optimization criterion of weight or volume of the structure while satisfying the conditions of strength, rigidity and stability.
Optimal design problemsare also divided into three large groups. The first group is parametric optimization problems, which involve the optimization of one or more parameters, called design variables, to minimize or maximize the objective function. The second group is topological optimization, in which unnecessary material is discarded, where the Mises stress is zero, thereby minimizing the objective function. The third group is optimization of the shape of the object under study, when the shape corresponds to internal forces, the shell with the smallest area is modeled on a given cone (shells of minimal surfaces), as well as methods of applied geometry, where the surface shape is modeled for a certain load.
To perform the parametric optimization of the forced vibrations of the shell of the minimum surface on a trapezoidal contour, the objective function is the weight of the spatial structure. The variables in the parametric optimization problem are the thickness of the finite elements from 1 to 100 mm. The structure constraint is imposed on the first forced oscillation frequency of 0.250 Hz. This type of problem is used to prevent resonance from process equipment that can affect the natural frequencies of the structure under external load.Subject of this study is an interesting applied problem for construction mechanics, as it is the first time to display the application of two types of optimization on one research object.
The results of a numerical study of the parametric optimization of the minimum surface shell on a trapezoidal cage under thermal power loading. The parametric optimization helped to reduce the weight of the shell by 13.4%, which is 1810 kg of sheet steel. The first forced oscillation frequency meets the constraint of the optimization calculation. We constructed 10 forced vibration frequency shapes of the shell before and after optimization, and also presented the distribution of the shell thickness after the optimization calculation.
References
Herasymov E.N., Pochtman Yu.M., Skalozub V.V. Mnohokryteryalʹnaya optymyzatsyya konstruktsyy. (Multicriteria optimization of structures). – Donetsk: Vyshcha shkola. Hlavnoe Yzd-vo – Kyev – 1985 – 134 p.
Hyll F., Myurrey U., Rayt M. Praktycheskaya optymyzatsyya (Practical optimization). – M.: Myr, 1985. – 509 p.
Ivanchenko H.M., Cheverda P.P., Kushnirenko M.H., Kozovenko A.M. Analiz reaktsiy v elementakh prostorovykh skhem pry riznykh sposobakh zʺyednanʹ (Analysis of reactions in elements of spatial schemes with different methods of connections) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2012. – Vyp. 90. – P. 163-170.
KoshevyiO.O. Optymalʹne proektuvannya tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttya (Optimal design of cylindrical tanks with rigid coating shells) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2019. – №. 103. – P. 253-265.
Koshevyi O.O. Optymizatsiya stalʹnoho zvarenoho rezervuaru pry obmezhenni: napruzhenʹ, peremishchenʹ, vlasnykh chastot kolyvannya (Optimization of steel welded tank with limitations: stresses, displacements, natural frequencies of oscillations). // Budivelʹni konstruktsiyi. Teoriya i praktyka: nauk.-tekhn. zbirnyk. K.: KNUBA. 2018. №.3.–P.34 – 50.
Hotsulyak Ye.O., Koshevyi O.P., MorskovYu.A. Chyselʹne modelyuvannya obolonok, utvorenykh minimalʹnymy poverkhnyamy. (Numerical modeling of shells formed by minimal surfaces). // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.-P.47-51.
Koshevyi O.P. Koshevyi O.O. Chyselʹne doslidzhennya vlasnykh kolyvanʹ roztyahnutykh obolonok utvorenykh minimalʹnymy poverkhnyamy. (Numerical study of natural oscillations of stretched shells formed by minimal surfaces) // Mistobuduvannya ta terytorialʹne planuvannya, №. 55. – Kyiv, KNUBA, 2015. – P. 215-227.
Koshevyi O.P. Koshevyi O.O. Vlasni kolyvannya obolonok minimalʹnykh poverkhonʹ na kruhlomu ta kvadratnomu konturi. (Own oscillations of shells of minimal surfaces on a round and square contour) // Mistobuduvannya ta terytorialʹne planuvannya, №. 59. – Kyiv, KNUBA, 2016. – P. 234-244.
Koshevyi O.O., Koshevyi O.P., Hryhorʺyeva L.O. Chyselʹna realizatsiya bahatokryterialʹnoyi parametrychnoyi optymizatsiyi obolonky minimalʹnoyi poverkhni na pryamokutnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multi-criteria parametric optimization of minimum surface shell on a rectangular contour under thermforced loading) // Opir materialiv i teoriya sporud: nauk.-tekh.zbirnyk. – K.: KNUBA, 2021. – Vyp. 108. – S. 309–324.
Koshevoy A.P. Ustoychivostʹ plastiniobolochekslozhnoyformi (Stability of plates and shells of complex shape) // Soprotivleniye materialov i teoriya sooruzheniy: nauch.-tekh. sbornik. – K.: KISI, 1991. – Vip. 59. – P. 65–71.
Manyta L.A. Usloviya optymyzatsyi v konechnomernykh nelyneynykh zadachakh optymyzatsyi.(Optimization conditions in finite-dimensional nonlinear optimization problems). – M.: Moskovskiy hosudarstvenniy instytut élektronyky y matematiki, 2010. – 81 p.
Melʹkumova E.M. O nekotorykh podkhodakh k reshenyyu mnohokryteryalʹnykh zadach. (About some approaches to solving multicriteria problems). // Vestnyk VHU. SeryyaSystemnyyanalyz y ynformatsyonnyetekhnolohyy. – V.: VHU– №2– 2010– 3 p.
Peleshko I.D., Yurchenko V.V. Optymalʹne proektuvannya metalevykh konstruktsiy na suchasnomu etapi (ohlyad pratsʹ). (Optimal design of metal structures at the present stage (review of works)). // Metalevi konstruktsiyi: zbirnyk naukovykh pratsʹ. – 2009. – №15 – P. 13–21.
Peleshko I.D., Baluk I.M. Optymizatsiya poperechnykh pereriziv stryzhniv stalevykh konstruktsiy. (Optimization of cross sections of rods of steel structures). // Zbirnyk naukovykh pratsʹ UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stalʹ, №. 4. – 2009. – P. 142–151.
Peleshko I.D., Lisotsʹkyy R.V., Baluk I.M. Optymalʹne proektuvannya stalevoyi stryzhnevoyi konstruktsiyi pokryttya torhovo-rozvazhalʹnoho kompleksu. (Optimal design of a steel rod cover structure of a shopping and entertainment complex). // Zbirnyk naukovykh pratsʹ UkrNDIPSKim. V. M. Shymanovsʹkoho. – K.: Stalʹ, №. 5. – 2010. – P. 181–191.
Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Alʹtenbakh Y., Habbert U., Dankert YU., Keppler KH., Kochyk Z. Metod konechnykh élementov v mekhanyketverdykh tel. (Finite element method in solid mechanics). // Vydavnytstvo Vyshcha shkola. Holovnoe yzdatelʹstvo – Kyev – 1982. – 480 p.
Bazenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiply connected ribbed shells and plates in a magnetic field. // Journal of Soviet Mathematics 66(6). –1993. – С. 2631–2636.
Cheung Y. K. The Finite Strip Method. Them. – Boca Raton. : CRC Press, 1997. – 416 p.
Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. // International Journal for Numerical Methods in Engineering, 2004. –61(2) – P.238–254.
Kroese D.P., Taimre T., Botev Z.I. Handbook of Monte Carlo Methods. — New York: John Wiley and Sons, 2011. — 772 p.
Lobo M.S., Vandenbeghe L., Boyd S. Applications of second-order cone programming. // Linear Algebra and its Applications. – 1998. – Vol. 284, no. 1. – P. 193–228.
Yonekura K., Kanno Y. Second-order cone programming with warm start for elastoplastic analysis with von mises yield criterion. // Optimization and Engineering. – 2012. – Vol. 13, no. 2. – P. 181–218.
Wasiytynski Z., Brandt A. The present state of knowledge in the field of. Optimum design of structures. // Appl. Mech. Rew. – 1963. Vol. 16 no. 5. – P. 341-35.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.