Analysis of the interaction of finite-dimensional surface vibrators with a compacted linear-viscous-elastic medium

Authors

DOI:

https://doi.org/10.32347/2410-2547.2022.109.369-386

Keywords:

dynamics, interaction, finite-dimensional surface vibration sources, compaction, linear viscoelastic medium, concrete mixture, resonances

Abstract

This paper develops an approach to solving problems about the excitation of vibrations/vibrations by sources of waves in linear-viscous-elastic media modeling compacted concrete/building mixtures with depth-variable mechanical characteristics. An analysis of contact stresses and forces occurring under the oscillating stamp, the types of waves generated in the medium and on its surface, and the energy carried by each type of wave for different vibration sources are discussed. The previously described but unspecified for such problems, phenomena of resonance in deep layers of the medium of great thickness and the eigenmovement of the vibration stamps themselves are proposed. We present the technique of reducing the problem of dynamic interaction of finite-dimensional surface vibrosources with compacted linear-viscous-elastic medium to the possible ways of its solution. It is important to comprehensively investigate the peculiarities of vibrations of the stamp-elastic/linear-viscous-elastic medium system, but the integral equations arising here are a serious obstacle to research. Attempts to circumvent these difficulties give rise to a number of approximate, "engineering" approaches, within which the response of the medium (compacted by the vibrating field of the concrete/concrete mixture) is modeled by elastic and viscoelastic (damping) links with some "attached mass". The characteristics of elastic elements and the value of the attached mass are selected, as a rule, from experimental data. The oscillations of the finite-dimensional system resulting from this approach are determined by the usual theoretical methods of mechanics. Such an approach is especially widely used in construction calculations. It gives the possibility to determine the static settlement of structures with a sufficient accuracy and provides satisfactory results at a certain, fixed frequency. When analyzing vibrations in a wide range of frequencies, the linear-viscous-elastic medium is substantially infinitely measurable system with its own resonances and complex dispersion properties, and therefore cannot be approximated by a finite set of springs. In order to identify the characteristic features of the dynamics of massive stamps on a linear viscoelastic basis in this paper we carried out: calculations using methods of solving integral equations; analysis of numerical results and identified qualitative effects.

Author Biographies

Yurii Chovnyuk, National Aviation University

candidate of technical sciences, associate professor, associate professor of the department of organization of aviation works and services

Volodymyr Kravchuk, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, associate professor of the department of labor and environmental protection

Oleksii Pryimachenko, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, head of the department of urban construction

Petro Cherednichenko, Kyiv National University of Construction and Architecture

Associate Professor, Associate Professor of the Department of Urban Planning

References

Ylychev V.A. K postroeniiu impulsnoi perekhodnoi funktsii sistemy shtamp-poluprostranstvo (To the construction of the pulse transient function of the stamp-half-space system). Izvestiia AN SSSR. Mekhanika tverdoho tela. 1973. №2.

Muravskii H.B. Harmonicheskie kolebaniia shtampa na poluprostranstve pri deistvii sily, prilozhennoi k poverkhnosti poluprostranstva (Harmonic vibrations of a stamp on a half-space under the action of a force applied to the surface of a half-space). Izvestiia AN SSR. Mekhanika tverdoho tela. 1969. №6.

Shekhter O.Ia. O vzaimnom vliianii kolebanii dvukh zhestkikh kruhlikh shtampov na upruhom poluprostranstve pri vertikalnykh, osesimmetrichnykh harmonicheskikh vozdeistviiakh. Osnovaniia, fundamenty, podzemnye sooruzhenia (About mutual influence of vibrations of two rigid round dies on an elastic base under vertical, axisymmetric harmonic effects). Sb. trudov NYY osnovanyi y podzemnikh sooruzhenyi. – M.: Stroiyzdat, 1973. №62.

Babeshko V.A., Hlushkov E.V., Hlushkova N.V. K probleme dinamicheskikh kontaktnykh zadach v proizvolnykh oblastiakh (To the problem of dynamic contact problems in arbitrary areas). Izvestiia AN SSSR. Mekhanika tverdoho tela. 1978. №3.

Babeshko V.A., Hlushkov E.V., Hlushkova N.V., Zinchenko Zh.F. Ustanovivshyesia kolebaniia massivnykh obyektov na poverkhnosti upruhoi sredi (Steady vibrations of massive objects on the surface of an elastic medium). – Rostov-na-Donu: Rostovskii hos. un-t, 1981. Dep. v VINITI 22.01.82, №290-82.

Hlushkov E.V. Vibratsiia sistemi massivnikh shtampov na lineino-deformiruemom osnovanii (Vibration of a system of massive dies on a linearly deformable base). Prykladnaia matematyka y mekhanyka. 1985. T. 49. №1.

Hlushkov E.V., Hlushkova N.V. Ploskaia zadacha o kolebanii shtampa na sloe (The plane problem about vibration of a stamp on a layer). Izvestiia Severo-Kavkazskoho nauchnoho tsentra visshei shkoli. 1979. №1.

Babeshko V.A., Hlushkov E.V., Zinchenko Zh.F. Dinamika neodnorodnykh lineino-upruhikh sred(Dynamics of inhomogeneous linear elastic media). – M.: Nauka, 1989. 344s.

Parton V.Z., Perlin P.Y. Intehralnye uravneniia teorii upruhosti (The integral equations of the elasticity theory). – M.: Nauka, 1977.

Razvitie teorii kontaktnikh zadach v SSSR (Development of contact tasks in the USSR). – M.: Nauka, 1976.

Seimov V.M. Dinamicheskie kontaktnye zadachi (The dynamic contact tasks). – K.: Naukova dumka, 1976.

Babeshko V.A. K teorii dinamicheskikh kontaktnykh zadach (To the theory of dynamic contact tasks). Doklady AN SSSR. 1971. T. 201. №3.

Babeshko V.A. Novii effektyvnii metod reshenia dinamicheskikh kontaktnykh zadach (A new efficient method for solving contact problems). Doklady AN SSSR. 1974. T. 217. №4.

Babeshko V.A. Novii metod v teorii prostranstvennykh dinamicheskikh kontaktnykh zadach (A new method in the theory of the spatial dynamic contact problems). Dokladi AN SSSR. 1978. T. 242. №1.

Babeshko V.A. Obobshchennyi metod faktorizatsii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii upruhosti (Generalized factorization method in spatial dynamic mixed problems of elasticity theory). – M.: Nauka, 1984.

Babeshko V.A., Zynchenko Zh.F., Priakhyna O.D., Smyrnova A.V. Ob odnom novom metode reshenia nestatsionarnykh kontaktnykh zadach teorii upruhosti (About one new method for solving non-stationary contact problems of elasticity theory). – Rostov-na-Donu: Rostovskyi hos. un-t, 1982. Dep. v VYNYTY 22.01.82, №291-82.

Vorovych Y.Y., Aleksandrov V.M., Babeshko V.A. Neklassicheskie smeshannye zadachi teorii upruhosti (The non-classical mixed problems of elasticity theory). – M.: Nauka, 1974.

Vorovych Y.Y., Babeshko V.A. Dinamicheskie smeshannye zadachi teorii upruhosti dlia neklassicheskikh oblastei (The dynamic mixed tasks of elasticity theory for a non-classical areas). – M.: Nauka, 1979.

Halyn L.A. Kontaktnye zadachi teorii upruhosti (The contact tasks of elasticity theory). – M.: Hostekhyzdat, 1953.

Holdshtein R.V., Klein Y.S., Eskyn H.Y. Variatsyonno-raznostniy metod reshenia nekotorykh intehralnykh i intehrodifferentsyalnykh uravneniy trekhmernykh zadach teorii upruhosti (The variational-difference method for solving some integral and integro-differentional problems of the theory of elasticity). Ynstytut problem mekhanyky AN SSSR. Preprynt №33. – M.: 1973.

Hrynchenko V.T., Meleshko V.V. Harmonicheskie kolebania i volny v upruhikh telakh (Harmonic vibrations and waves in the elastic bodies). – K.: Naukova dumka, 1981.

Huz A.N., Holovchan V.T. Dyfraktsyia upruhikh voln v mnohosviaznykh telakh (The diffraction of elastic waves in multiply connected bodies). – K.: Naukova dumka, 1972.

Krein M.H. Ob odnom novom metode reshenia lyneinikh intehralnikh uravneniy pervoho i vtoroho roda (About one new method of resolving linear integral equations of the first and second kind). Doklady AN SSSR. 1978. t. 100. №3.

Rvachоv V.L., Protsenko V.S. Kontaktnye zadachi teorii upruhosti dlia neklassycheskykh oblastei (The contact problems of elasticity theory for a non-classical areas). – K.: Naukova dumka, 1977.

Babeshko V.A., Priakhyna O.D. Ob odnom metode v teorii dinamicheskikh kontaktnykh zadach dlia kruhlykh shtampov (About one method in the theory of dynamic contact tasks for a round stamps). Yzvestyia AN SSSR. Mekhanyka tvёrdoho tela. 1981. №2.

Bukhholts N.N. Osnovnoi kurs teoretycheskoi mekhaniki Ch.2. (The basic course in theoretical mechanics. P.2).– M.: Nauka, 1969.

Parkus H. Neustanovivshiesia temperaturnye napriazhenia (The transient thermal stresses). – M.: Fyzmathyz, 1963. 252s.

Kamke E. Spravochnik po obyknovennym dyfferentsyalnym uravneniiam (Reference book on ordinary differential equations). – M.: Nauka, 1976. 576s.

Beitmen, Erdeiy. Tablitsi intehralnykh preobrazovaniy (The tables of the integral transformations). – M.: Nauka, 1969. 344s.

Published

2022-11-11

Issue

Section

Статті