Modified direct method in static problems of axi-symmetric non-thin plates

Authors

DOI:

https://doi.org/10.32347/2410-2547.2022.109.342-358

Keywords:

reduced boundary conditions, reduced equilibrium equations in parts, system of differential equations, system of reduced differential equations in the Cauchy form, Godunov method of discrete orthogonalization

Abstract

The initial equations for solving the axisymmetric problem are given and consideredboundary conditions on the end surfaces and average section of the design element. As a result, we get a system of partial differential equations that can be solved by the numerical-analytical (modified) method of straight lines. The transformation of the reduced equations of equilibrium in parts, as well as the reduced models of the boundary conditions of the end surfaces and the average section, are shown. As a result, a boundary value problem for the system of reduced differential equations in ordinary derivatives written in the Cauchy form with boundary conditions of the general form is obtained.

The thermal conductivity of the cylindrical wall was calculated, the results were compared with analytical calculations and results of other authors, which confirms the reliability of the developed methodology.

A computer simulation of the stress-strain state of a cylindrical structural element due to the complex action of temperature, force and kinematic effects was carried out.

Important conclusions have been made for the use of the modified method of straight lines, which is free from the complications that arise when using the classical method of straight lines.

Author Biographies

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor, Head of the Department of Strength of Materials

Dmytro Levkivskyi, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor of the department of stength of materials

Anton Chubarev, Kyiv National University of Construction and Architecture

head of the laboratory of the Department of Strength of Materials

Maryna Yansons, Kyiv National University of Construction and Architecture

assistant of the department of strength of materials

References

Vynokurov L.P. /Pryblyzhennyi metod reshenyia ploskykh zadach teoryy upruhosty (Approximate method for solving plane problems of elasticity theory)./Tr. Kharkovsk. ynzh.-str. yn-ta, vyp. 2, 47—123, 1949.

Shkelev L.T., Morskov Yu.A., Romanova T.A., Stankevych A.N. /Metod priamykh i eho yspolzovanye pry opredelenyy napriazhennoho i deformyrovanoho sostoyaniya plastyn i obolochek (The Method of Lines and Its Use in Determining the Stressed and Deformed States of Plates and Shells)./– K.: KNUSA, 2002. – 177p.

Stankevych A.M., Chybiriakov V.K., Shkelov L.T., Levkivskyi D.V. / Do znyzhennia vymirnosti hranychnykh zadach teorii pruzhnosti za metodom priamykh. (To reduce the dimensionality of boundary value problems of the theory of elasticity by the method of straight lines.) // Mistobuduvannia ta terytorialne planuvannia: Nauk.-tekhn. Zbirnyk. – Vyp. 36. – Kyiv, KNUBA, 2010. – p. 413-423.

Chybiriakov V.K., Stankevych A.M., Levkivskyi D.V. /Osoblyvosti znyzhennia vymirnosti rivnian teorii pruzhnosti uzahalnenym metodom priamykh. (Peculiarities of reducing the dimensionality of the equations of the theory of elasticity by the generalized method of straight lines.)// Mistobuduvannia ta terytorialneplanuvannia: Nauk.-tekhn. Zbirnyk. – Vyp. 46. – Kyiv, KNUBA, 2012. – p. 613-624.

Marchuk H.Y., Ahoshkov V.Y. /Vvedenye v proektsyonno-setochniemetody. (Introduction to projection-grid methods)/ – M. 1981 - p.416

Chybiriakov V.K., Stankevych A.M., Koshevyi O.P., Levkivskyi D.V., Krasneieva A.O., Poshyvach D.V., Chubarev A.H., Shorin O.A., Yansons M.O., Sovych Yu.V. Modyfikovanyi metod priamykh, alhorytmy eho zastosuvannia, mozhlyvosti ta perspektyvy. (The modified straight line method, its application algorithm, possibilities and prospects.)// N. t. zbirnyk «Mistobuduvannia ta terytorialneplanuvannia», v. 70, K.:KNUBA, 2019 – p.595-616.

Chybiriakov V.K., Stankevych A.M., Koshevyi O.P., Levkivskyi D.V., Krasneieva A.O., Poshyvach D.V., Chubarev A.H., Shorin O.A., Yansons M.O., Sovych Yu.V. Chyselna realizatsiia modyfikovanoho metodu priamykh (Numerical implementation of the modified method of straight lines) // N. t. zbirnyk «Mistobuduvannia ta terytorialneplanuvannia», v. 74, K.:KNUBA, 2020– p.341-359.

Huliar O.I., Pyskunov S.O., Andriievskyi V.P., Shkryl O.O. Rozviazannia prostorovoyi zadachi nestatsionarnoi teploprovidnosti na osnovi napivanalitychnoho metodu skinchennykh elementiv. (Solving the spatial problem of non-stationary thermal conductivity based on the semi-analytical method of finite elements.) // N. t. zbirnykTekhnolohichnyiaudyt ta rezervyvyrobnytstva №3/2(23) m. Kharkiv, 2015r – s.61-67

Bazhenov V.A., Gaidaichuk V.V., Koshevoi A.P. Stability of multiply connected ribbed shells and plates in a magnetic field // Journal of Soviet Mathematicsv 66 №6 p.2631-2636.

Koshevoi A. Ustoichyvost plastyn y obolochekslozhnoiformy v mahnytnom pole. (Stability of plates and shells of complex shape in a magnetic field)// Soprotyvlenyemateryalov y teoryiasooruzhenyi, vyp. 59, 65-71, 1991

Chubarev A.H. Pro zastosuvannia modyfikovanoho metoda priamykh v zadachakh termopruzhnosti netonkykh plastyn (On the application of the modified method of straight lines in problems of thermoelasticity of thin plates)// N. t. zbirnyk «Mistobuduvannia ta terytorialneplanuvannia», v. 80, K.:KNUBA, 2022 – p.486-498.

Yansons M.O. Zastosuvannia uzahalnenoho metodu priamykh dlia doslidzhennia dynamichnoho napruzheno-deformovanoho stanu kiltsevykh netonkykh plastyn (Application of the generalized method of straight lines to study the dynamic stress-strain state of annular thin plates)// N.t. zbirnyk «Matematychni problem tekhnichnoimekhaniky – 2021» Mizhnarodnanaukovakonferentsiia m. Dnipro, Kamianske 2021.

Published

2022-11-11

Issue

Section

Статті