To the calculation of steel structures from thin-walled rods




thin-walled rod, deplanation, bimoment, superelement, stiffness matrix


The article contains a brief historical essay on the main ideas for calculating systems composed of thin-walled rods of open profile. The main approaches to the calculation of these systems taking into account the inequality of nodal deplanations are analyzed.

It is proposed to use the finite element method using thin finite rods and specially constructed superelements as finite elements, which take into account the participation of nodal joints. The stiffness matrix of a thin-walled rod of the 14th order, built on the basis of the classical Vlasov's non-slip theory for open-profile rods, when the cross-sectional displacement is taken into account. Nodal superelements consist of shell finite elements and have m deplanation degrees of freedom according to the number of rods that approach the node.

With the help of the matrix of stiffness of the nodal superelement, the connection between the deplanai, which affect the node, and the reactive forces, which have the form of bimoments realized. The method of construction of the node stiffness matrix is ​​indicated, which is based on the use of infinitely rigid bodies, displacements and rotations of which allow to simulate the influence of deplanations on the node. The peculiarities of the assembly operation in the presence of nodal superelements are indicated.

Possible variants of inclusion of the considered technique in software complexes for calculation of building designs are specified.

Author Biography

Anatolii Perelmuter, SCAD Soft Research and Production Association

Doctor of Technical Science, Chief Researcher


Britvin E.I. K raschetu ramnyh konstrukcij, sostavlennyh iz tonkostennyh sterzhnevyh elementov [To the calculation of frame structures made up of thin-walled rod elements] // Stroitel'naya mekhanika i raschet sooruzhenij, 2016, № 4 S. 43-54.

Bychkov D. V. Stroitel'naya mekhanika sterzhnevyh tonkostennyh konstrukcij [Structural mechanics of rod thin-walled structures]. – M.: Gosstrojizdat, 1962. – 476 s.

Vlasov V. Z. Tonkostennye uprugie sterzhni [Thin-walled elastic rods]. – M.: Gosgortekhizdat, 1940. – 256 s.

Gorbunov B. N., Strel'bickaya A. I. Raschet prochnosti tonkostennyh sterzhnevyh sistem [Calculation of the strength of thin-walled bar systems] // Raschet prostranstvennyh konstrukcij. Vyp. 1. – M.: Izd-vo ministerstva stroitel'stva predpriyatij mashinostroeniya, 1950. – S. 97–162.

Gorbunov B. N., Strel'bickaya A. I. Teoriya ram iz tonkostennyh sterzhnej [The theory of frames from thin-walled rods]. – M.: Gostekhizdat, 1948. – 198 s.

Gorodeckij A. S., Zdorenko V. S., Karpilovskij V. S. Primenenie MKE k raschetu tonkostennyh sterzhnevyh sistem [Application of FEM to the design of thin-walled bar systems] // Soprotivlenie materialov i teoriya sooruzhenij. Vyp. 28. – K.: Izdatel'stvo Budivel'nyk, 1976. – S. 134–140.

Perel'muter A.V., YUrchenko V.V. O raschete prostranstvennyh sistem iz tonkostennyh sterzhnej otkrytogo profilya [On the calculation of spatial systems from thin-walled bars of an open profile] // Stroitel'naya mekhanika i raschet sooruzhenij, 2012, №6 — S. 18-25.

Postnov V. A., Harhurim I. YA. Metod konechnyh elementov v raschetah sudovyh konstrukcij [Finite element method in calculations of ship structures]. M.: Sudostroenie, 1974. – 344 s.

Stavraki L.N. Ustojchivost' prostranstvennyh karkasov iz tonkostennyh simmetrichnyh profilej [Stability of spatial frameworks from thin-walled symmetrical profiles] // Sbornik trudov instituta stroitel'noj mekhaniki. №12 K. Izd-vo AN USSR,1950 — S.102-154.

Tusnin A. R. Chislennyj raschet konstrukcij iz tonkostennyh sterzhnej otkrytogo profilya [Numerical calculation of structures from thin-walled rods of an open profile]. — M. :Izd-vo ASV, 2009. — 143 s.

Urban I.V. Teoriya rascheta sterzhnevyh tonkostennyh konstrukcij [Theory of calculation of bar thin-walled structures] — M.: Transzheldorizdat, 1955 — 193 s.

Chernov S. A., D'yakov I. F. K raschetu prostranstvennoj tonkostennoj sterzhnevoj sistemy [To the calculation of a spatial thin-walled rod system] // Avtomatizaciya i sovremennye tekhnologii. – 2008. – № 2. – S. 3–7.

Chernyj A. N. K voprosu modelirovaniya uzlovyh soedinenij tonkostennoj sterzhnevoj sistemy // Mekhanika i processy upravleniya [On the issue of modeling nodal connections of a thin-walled rod system]. – Ul'yanovsk: UGTU, 1996. – S. 54–58.

Bazant P., Nimeiri M. E. Large-deflection spatial buckling of thin-walled beams and frame // Journal of Structural Engineering. – ACSE, 1973. – #99. – P.1259–1281.

Cichoń C., Koczubiej S. Consistent FEM model for thin-walled space frames // Czasopismo Techniczne, 21, Budownictwo 1-B, 2008, vol. 21. – P. 3–20.

Gluck G., Kalev J. Computer method for analysis of multistory structures // Computer and Structures. – 1972. – v. 2. – № 5–6. – P.25–32.

Koczubiej S., Cichoń C. Shell-beam model of thin-walled space structures for geometrically nonlinear analysis // Proceeding of the 19th International Conference on Computer Methods in Mechanics CMM-2011, 9–12 May, 2011, Warsaw, Poland (Full text on CD-ROM).

Mikulski T.: Thin-Walled Frames. Modeling and Sensitivity Analysis. Gdansk University of Technology —Gdansk: Publishers, Monographs, 2010.

Resaiee-Pajand М., Maayedian М. Explicit stiffness of tapered and mono-symmetric I beam-columns // International Journal of Engineering. – 2000. – v. 13. – № 2. – P. l–18.

Szymczak C., Kreja I., Mikulski T., Kujawa M.: Sensitivity Analysis of Beams and Frames made of Thin-Walled Members. — Gdansk: Gdansk University of Technology Publishers, 2003.

Szmidt J. K. Analiza ram z elementów cienkościennych // Rozprawy Inżynierskie – Engng. Trans., 23, 1975, s. 447–472. (in Poland)