Optimal numbers of the redundant members for introducing initial pre-stressing forces into steel bar structures
DOI:
https://doi.org/10.32347/2410-2547.2021.106.68-91Keywords:
parametric optimization, redundant member, initial prestressing force, optimal prestressing, sensitivity analysis, gradient projection methodAbstract
The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial prestressing forces introduced into the specified redundant members of the structure. The system of constraints covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar system, subjected to all design load combinations at serviceability limit state. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of the redundant members to introduce the initial prestressing forces has been offered for high-order statically indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing forces for considered optimization problems.
References
Markandeya P. R. Computerized optimum dimensioning of prestressed homogenous steel I-beam / P. R. Markandeya, R. Vipparthy // Engineering Journal. – 2017. – №21(7). – P. 293–381. DOI:10.4186/ej.2017.21.7.293
Magnel G. Prestressed steel structures / G. Magnel // The Structural Engineer. – 1950. – №28. – P. 285–295.
Gasperi B. B. A. Behaviour of prestressed steel beams / B. B. A. Gasperi // Journal of Structural Engineering ASCE. – 2010. – №136(9). – P. 1131 – 1139.
Ghafooripour A. Flooring systems with prestressed steel stringers for cost benefit / A. Ghafooripour, A. Nidhi, R. Barreto, A. Rivera // Journal of Steel Structures and Construction. – 2019. – №5(1). – Article 1000150.
Saito D. Optimal prestressing and configuration of stayed columns / D. Saito, M. A. Wadee // Proceedings of the Institution of Civil Engineers-Structures and Buildings. – 2010. – №163. – P. 343–355.
Wadee M. A. Design of prestressed stayed columns / M. A. Wadee, L. Gardner, A. I. Osofero // Journal of Constructional Steel Research. – 2013. – №80. P. 82–90.
Han K. B. Parametric study of truss bridges by the post-tensioning method / K. B. Han, S. K. Park // Canadian Journal of Civil Engineering. – 2005. – №32. – P. 420–429.
Aydın Z. Cost minimization of prestressed steel trusses considering shape and size variables / Z. Aydın, E. Cakir // Steel and Composite Structures. – 20415. – №19(1). P. 43–58.
Schmidt L. C. Studies on post-tensioned and shaped space-truss domes / L. C. Schmidt, H. Li // Structural Engineering and Mechanics. – 1998. – №6. – P. 693–710.
Clarke M. J. Simple design procedure for cold-formed tubular top chord of stressed-arch frames / M. J. Clarke, G. J. Hancock // Engineering Structures. – 1994. – №16(5). P. 377–385.
Kyoungsoo L. Analysis of stabilizing process for stress-erection of starch frame / L. Kyoungsoo, H. Ziaul, H. SangEul // Engineering Structures. – 2014. №59. P. 49–67.
Haug E. J. Applied optimal design: mechanical and structural systems / E. J. Haug, J. S. Arora. – John Wiley & Sons, 1979.
Olkov Ya. I. Optimal`noe proektirovanie metallicheskikh predvaritel`no napryazhenny`kh ferm [Optimal design of pre-stressed metal trusses (in Russian)] / Ya. I. Olkov, I. S. Kholopov. – Moscow, Stroyizdat, 1985.
Gkantou M. Optimisation of high strength steel prestressed trusses / M. Gkantou, M. Theofanous, C. Baniotopoulos // Proceedings of 8th GRACM International Congress on Computational Mechanics. – 2015. – P. 10.
Yao L. Topology optimization design of pre-stressed plane entity steel structure with the constrains of stress and displacement / L. Yao, Y. X. Gao, H. J. Yang // Advanced Materials Research. – 2014. – №945–949. – P. 1216–1222.
Zhou Z. A whole process optimal design method for prestressed steel structures considering the influence of different pretension schemes / Z. Zhou, S. Meng, J. Wu // Advances in Structural Engineering. – 2012. – №15(12). – P. 2205–2212.
Serpik I. N. Searching for efficient parameters of pre-stressed long-span steel trusses with several ties / I. N. Serpik, N. V. Tarasova // Proceeding of the International theoretical and practical conference “Bryansk Innovations in Construction”. – 2017. – P. 285–290.
Serpik I. N. Parametric optimization of pre-stressed steel arch-shaped trusses with ties / I. N. Serpik, N. V. Tarasova // IOP Conference Series: Materials Science and Engineering. – 2018. – №451. – Article 012060. DOI:10.1088/1757-899X/451/1/012060
Huebner K. H. The finite element method for engineers (4th ed.) / K. H. Huebner, D. L. Dewhirst, D. E. Smith, T. G. Byrom. – John Wiley & Sons, Inc. 2001. – 744 p.
DBN V.2.6-198:2014. Stalevi konstruktsii. Normy proektuvannia [Steel structures. Design codes (in Ukrainian)] – Kyiv: Minregion of Ukraine, 2014. – 199 p.
Guljaev V. I. Metody` optimizaczii v stroitel`noj mekhanike [Optimisation methods in structural mechanic (in Russian)] / V. I. Guljaev, V. A. Bazhenov, V. L. Koshkin. – Kyiv, 1988. – 192 p.
Yurchenko V. Parametric optimization of steel truss with hollow structural members based on update gradient method / V. Yurchenko, I. Peleshko, N. Beliaev // Proceedings of International Conference “Design, Fabrication and Economy of Metal Structures”. – Springer Berlin Heidelberg, 2013. – P. 103–109. DOI 10.1007/978-3-642-36691-8_16
Peleshko I. Parametric optimization of steel structures based on gradient projection method / I. Peleshko, V. Yurchenko // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2020. – Issue 105. – P. 192–220. DOI: 10.32347/2410-2547.2020.105.192-220.
Yurchenko V. Improved gradient projection method for parametric optimisation of bar structures / V. Yurchenko, I. Peleshko // Magazine of Civil Engineering. – 2020. – №98(6). – Article 9812. DOI: 10.18720/MCE.98.12.
Peleshko I. An improved gradient-based method to solve parametric optimisation problems of the bar structures / I. Peleshko, V. Yurchenko // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2020. – Issue 104. – P. 265–288. DOI: 10.32347/2410-2547.2020.104.265-288.
Kuci E. Design sensitivity analysis for shape optimization based on the Lie derivative / E. Kuci, F. Henrotte, P. Duysinx, C. Geuzaine // Computer methods in applied mechanics and engineering. – 2017. – Vol. 317. – P. 702–722. DOI: 10.1016/j.cma.2016.12.036.
YURCHENKO V.V. SEARCHING FOR OPTIMAL PRE-STRESSING OF STEEL BAR STRUCTURES BASED ON SENSITIVITY ANALYSIS / V. YURCHENKO, I. PELESHKO // ARCHIVES OF CIVIL ENGINEERING, VOL. 66, NO. 3, 2020. – P. 525-540. DOI: 10.24425/ACE.2020.134411.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.