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The paper considers parametric optimization problems for the steel bar structures formulated 

as nonlinear programming ones with variable unknown cross-sectional sizes of the structural 
members, as well as initial prestressing forces introduced into the specified redundant members of 
the structure. The system of constraints covers load-bearing capacity constraints for all the design 
sections of the structural members subjected to all the design load combinations at ultimate limit 
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all 
design load combinations at serviceability limit state. The method of the objective function 
gradient projection onto the active constraints surface with simultaneous correction of the 
constraints violations has been used to solve the parametric optimization problem. A numerical 
technique to determine the optimal number of the redundant members to introduce the initial 
prestressing forces has been offered for high-order statically indeterminate bar structures. It 
reduces the dimension for the design variable vector of unknown initial prestressing forces for 
considered optimization problems. 

Keywords: parametric optimization, redundant member, initial prestressing force, optimal 
prestressing, sensitivity analysis, gradient projection method. 

 
Introduction. The concept of pre-stressing steel structures is only recently 

being re-considered, despite a long and successful history of pre-stressing 
concrete members. In spite of having many advantages over pre-stressed 
concrete, pre-stressed steel has not been popular due to the complexity and 
ambiguity involved in analysis and design calculations and problems arising 
due to application of external pre-stressing technique and fabrication [1]. 

Early work on the pre-stressing of steel structures was described by Magnel 
[2] in 1950, where it was shown experimentally that improved economy can be 
achieved by pre-stressing truss girders. More recent studies have explored the 
behavior and design of pre-stressed steel beams [3], flooring systems [4], 
columns [5, 6], trusses [7, 8] and space trusses [9]. Studies of the structural 
response of sub-assemblies and the overall response of pre-stressed frames 
with sliding joints have been also carried out [10], as has a numerical 
investigation into the stress-erection process of such systems [11]. Each of the 
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above described studies identified potential economies and enhanced 
performance through the use of pre-stressing [1]. 

A number of research works were dedicated to the optimization of pre-
stressed bar structures. Usually applied optimum design problems for the pre-
stressed bar structures are formulated as parametric optimization problems, 
namely as searching problems for unknown structural parameters, whose provide 
an extreme value of the specified purpose function in the feasible region defined 
by the specified constraints [12]. For this purpose, research papers [13, 14, 15, 
16] use mathematical programming methods where optimal design is divided 
into several stages, where a search is completed at each stage after varying 
values of a specific group of parameters. Introduction of such stage-by-stage 
procedures may in many cases distort the conditions of optimization tasks. 

In the papers [17, 18] an algorithm for searching for the optimum values of 
the parameters of pre-stressed steel arch trusses with high-strength ties has 
been developed. The problem in focus is to reduce the cost of the operating 
trusses while taking into consideration the strength, stiffness and stability 
constraints formulated according to design code requirements. The 
optimization is performed via a genetic algorithm. The strain-stress state of the 
structure variants is calculated basing upon the finite element method. The 
feasibility of the suggested method was illustrated for optimal engineering of a 
steel truss with a 60 m span, pre-stressed with a double-lay rope. 

Pre-stress of the statically indeterminate bar system can be created by 
introducing the initial pre-stressing forces into the redundant members of the 
structural system. The number of initial pre-stressing forces introduced into the 
bar system can be less or equal to the degree of static indeterminacy of the bar 
system or the number of the redundant members. 

Optimum distribution of the internal forces and material in the bar structure 
corresponded to the least structural weight can be achieved by introducing 
initial pre-stressing forces into the all redundant members of the bar system. 
But economical efficiency caused by regulation of the internal forces should be 
estimated taking into account additional costs required to create pre-stressing 
in the structural system. The fewer the redundant members in the pre-stressing 
process of the structure will be subject to initial deformations, the lower the 
costs associated with creating pre-stressing in the bar system. 

Complex high-order statically indeterminate bar systems with great amount 
of the redundant members have lots of pre-stressing variants for them. For such 
structures proposed numerical techniques to determine optimal pre-stressing 
variant require a great amount of the calculations related to solving the 
optimization problems for each pre-stressing variant or due to the high 
dimension of the design variable vector for unknown initial pre-stressing forces.  

In this paper, pre-stressed high-order statically indeterminate bar structure 
is considered as research object. This object is being investigated to find the 
optimal distribution of internal forces and material in the bar system. 

Although many papers are published on the parametric optimization of the 
pre-stressed bar structures, the development of a numerical technique to 
determine the optimal number of the redundant members to introduce initial pre-
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stressing forces for high-order statically indeterminate bar structures remains an 
actual task. Therefore, the main research goal is the development of numerical 
algorithm to solve parametric optimization problems of the pre-stressed bar 
structures with searching for the optimal number of the redundant members to 
introduce initial pre-stressing forces. The following research tasks are states 
accordingly: to propose a numerical technique to determine the optimal number 
of the redundant members to introduce initial pre-stressing forces for high-order 
statically indeterminate bar structures; to show by numerical examples that 
proposed numerical technique ensures decreasing of the number of optimum 
material and internal forces distribution problems that should be solved, as well 
as reduction of the dimension for the design variable vector of unknown initial 
pre-stressing forces for considered optimization problems. 

1. Problem formulation for parametric optimization of steel structures. 
Let us consider a parametric optimization problem of a structure consisting of 
bar members. The problem statement can be performed taking into account the 
following assumptions widely used in structural mechanic problems: the 
material of the structure is ideal elastic; the bar structure is deformable 
linearly; external loadings applied to the structure are quasi-static.  

Let us also formulate the following pre-conditions for calculation: cross-
section types and dimensions of structural members are constant along 
member lengths; external loadings are applied to the structural members 
without eccentricities relating to the center of mass and shear center of its 
cross-sections; an additional restraining by stiffeners are provided in the design 
sections where point loads (reactions) applied with the exception of cross-
section warping and local buckling of the cross-section elements; load-carrying 
capacity of the structural joints, splices and connections are provided by 
additional structural parameters do not covered by the considered parametric 
optimization problem. 

A parametric optimization problem of the structure can be formulated as 
presented below: to find optimum values for geometrical parameters of the 
structure, member’s cross-section dimensions and initial pre-stressing forces 
introduced into the specified redundant members of the bar system, which 
provide the extreme value of the determined optimality criterion and satisfy all 
load-carrying capacities and stiffness requirements. We assume, that the 
structural topology, cross-section types and node type connections of the bars, 
the support conditions of the bar system, as well as loading and pre-stressing 
patterns are prescribed and constants. 

The formulated parametric optimization problem can be considered 
integrally using the mathematical model in the form of the non-linear 
programming task including an objective function, a set of independent design 
variables and constraints, which reflect generally non-linear dependences 
between them. The validity of the mathematical model can be estimated by the 
compliance of its structure with the design code requirements.  

The parametric optimization problem of steel structures can be stated in the 
following mathematical terms: to find unknown structural parameters 
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 TX X


, 1, XN  , providing the least value of the determined objective 
function: 

* *

  
( ) min ( )

X
f f X f X


 

�



 
,                                  (1.1) 

in a feasible region (search space)   defined by the following system of 
constraints: 

 ( ) ( ) 0 | 1, ECX X N  
 

 ψ ,                             (1.2) 

 ( ) ( ) 0 | 1,EC ICX X N N   
 

 φ ,                         (1.3) 

where X


 is the vector of the design variables (unknown structural 
parameters); ,f   ,   are the continuous functions of the the vector 

argument; *X


 is the optimum solution or optimum point (the vector of 
optimum values of the structural parameters); *f  is the optimum value of the 
optimum criterion (objective function); ECN  is the number of constraints-

equalities ( )X


 , whose define hyperplanes of the feasible solutions; ICN  is 

the number of constraints-inequalities ( )X


 , whose define a feasible region 
in the design space  . 

The vector of the design variables comprises of unknown geometrical 

parameters of the structure  ,

T

G GX X 


, ,1, X GN  , unknown cross-

sectional dimensions of the structural members  ,

T
CS CSX X 


, ,1, X CSN  , 

as well as unknown initial pre-stressing forces  ,

T

PS PSX X 


, ,1, X PSN  , 
introduced into the specified redundant members of the structure (see Fig. 1.1): 

        , , ,, , , ,
TT

G CS PS G CS PSX X X X X X X   
   

,           (1.4) 

where ,X GN  is the total number of unknown node coordinates of the steel 
structure; ,X CSN  is the total number of unknown cross-sectional dimensions of 
the structural members, ,X PSN  is the total number of unknown initial pre-
stressing forces introduced into the specified redundant members of the bar 
system, , , ,X G X CS X PS XN N N N   . 

In cases when vector of the design variables X


 consists of unknown cross-
sectional dimensions only: 

 ,

T
CS CSX X X  

 
,                                      (1.5) 

then optimum material distribution problem (1.1) – (1.3), (1.5) for the steel 
structure is under consideration. The vector of the design variables X


 can also 

consists of unknown initial pre-stressing forces  ,

T

PS PSX X 


, ,1, X PSN  , 
introduced into the specified redundant members of the structure: 
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      , ,, ,
TT

CS PS CS PSX X X X X  
  

,                     (1.6) 

where , ,X CS X PS XN N N  . In cases when vector of the design variables X


 
consists of unknown cross-sectional dimensions and unknown initial pre-
stressing forces, then optimum material and internal forces distribution 
problem (1.1) – (1.3), (1.6) for the steel structure is under consideration. 
 

 
Fig. 1.1. The unknown (variable) parameters of the structure considered as design variables 

 
The specific technical-and-economic index (material weight, material cost, 

construction cost etc.) or another determined indicator can be considered as the 
objective function (1.1) taking into account the ability to formulate its 
analytical expression as a function of design variables X


. 

Load-carrying capacities constraints (strength and stability inequalities) for 
all design sections of the structural members subjected to all design load 
combinations at the ultimate limit state as well as displacements constraints 
(stiffness inequalities) for the specified nodes of the bar system subjected to all 
design load combinations at the serviceability limit state should be included 
into the system of constraints (1.2) – (1.3). Additional requirements whose 
describe structural, technological and serviceability particularities of the 
considered structure can be included into the system (1.2) – (1.3) as well. 

The design internal forces in the structural members used in the strength 
and stability inequalities of the system (1.2) – (1.3) are considered as state 
variables depending on design variables X


 and can be calculated from the 

following linear equations system of the finite element method [19]: 

, ,( , ) ( , )G CS ULS k ULS k G PSX X z p X X Κ
    , 1, ULS

LCk N ,            (1.7) 

where ( , )G CSX XΚ
 

 is the stiffness matrix of the finite element model of the 
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bar system, which should be formed depending on the unknown (variable) 
cross-sectional dimensions of the structural members CSX


, as well as 

unknown (variable) node coordinates of the structure GX


; , ( , )ULS k G PSp X X
   is 

the column-vector of the node’s loads for k th design load combination of the 
ultimate limit state, which should be formed depending on unknown (variable) 
initial pre-stressing forces PSX


, as well as unknown (variable) node 

coordinates of the structure GX


; ,ULS kz  is the result column-vector of the node 
displacements for k th design load combination of the ultimate limit state, 

, , ,( ,  , ) ( )ULS ULS
ULS k k G CS PS kz X X X X FEM FEMΖ Ζ

    ; ULS
LCN  is the number of the design 

ultimate load combinations. For each i th design section of j th structural 
member subjected to k th ultimate design load combination the design internal 
forces (axial force, bending moments and shear forces) can be calculated 
depending on node displacement column-vector ,ULS kz . 

The node displacement of the bar system used in stiffness inequalities of 
the system (1.2) – (1.3) are also considered as state variables depending on 
design variables X


 and can be calculated from the following linear equations 

system of the finite element method [19]: 

, ,( , ) ( , )G CS SLS k SLS k G PSX X z p X X Κ
    , 1, SLS

LCk N ,            (1.8) 

where , ( )SLS k PSp X
  is the column-vector of the node’s loads for k th design 

load combination of the serviceability limit state, which should be formed 
depending on unknown (variable) initial pre-stressing forces PSX


, as well as 

unknown (variable) node coordinates of the structure GX


; ,ULS kz  is the result 
column-vector of the node displacements for k th design load combination of 
the serviceability limit state, , , ,( ,  , ) ( )SLS SLS

SLS k k G CS PS kz X X X X FEM FEMΖ Ζ
    ; SLS

LCN  
is the number of the design serviceability load combinations. For each m th 
node of the finite element model subjected to k th serviceability design load 
combination the design vertical and horizontal displacements can be calculated 
depending on node displacement column-vector ,SLS kz . 

The system of constraints (1.2) – (1.3) should cover strength and stability 
constraints formulated for all design sections of all structural members of the 
considered steel structure subjected to all design load combinations at the 
ultimate limit state. The following strength constraints should be included in 
the system of constraints (1.2) – (1.3), formulated for all design sections, 

1, DSi N  , of all structural members, 1, Bj N  , subjected to all ultimate 

load case combination, 1, ULS
LCk N  , namely: 

- normal stresses verifications: 
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max, ( )
1 0ijk

y c

X
R

 





;                                      (1.9) 

- shear stresses verifications: 

max, ( )
1 0

0.58
ijk

y c

X
R

 





;                                    (1.10) 

- as well as equivalent stresses verifications: 
2 2
, ,, ( ) 3 ( )( )

1 1 0
1.15 1.15

x ijk x ijkeqv ijk

y c y c

X XX
R R


   

 
 

 
,              (1.11) 

where max, ( )ijk X


  are max, ( )ijk X


  are the maximum value of the normal and 
shear stresses respectively caused by internal forces (axial force, bending 
moments and shear forces) acting in i th design section of j th structural 
member subjected to k th ultimate load case combination calculated from the 
linear equations system of the finite element method (1.7); c  is the safety 
factor [20]; yR  is the design strength for steel member subjected to tension, 
bending and compression; y cR  , 0.58 y cR   and 1.15 y cR   are allowable values 
for normal, shear and equivalent stresses respectively [20]; DSN  is the number 
of design sections in structural members; BN  is the number of structural 

members; , ( )x ijk X


 , , ( )x ijk X


  and , ( )eqv ijk X


  are normal, shear and equivalent 
stresses respectively at the specified cross-section point caused by internal 
forces acting in i th design section of j th structural member subjected to k th 
ultimate load case combination calculated from the linear equations system of 
the finite element method (1.7). The maximum value of the normal max, ( )ijk X


  

and shear stresses max, ( )ijk X


 , as well as normal , ( )x ijk X


 , shear , ( )x ijk X


  and 

equivalent , ( )eqv ijk X


  stresses at the specified cross-section point should be 
calculated depending on the variable geometrical parameters of the structure 

GX


, variable initial pre-stressing forces PSX


 and variable cross-sectional 

dimensions of the structural members CSX


. 
The following stability constraints should be included in the system of 

constraints (1.2) – (1.3), formulated for all design sections, 1, DSi N  , 

subjected to all ultimate load case combination, 1, ULS
LCk N  , namely: 

- flexural buckling verifications for all column structural members, 
1, CMj N  : 

max,

,

( )
1 0

( , )
ijk

y j G CS y c

X
X X R

 



 


 
,                                (1.12) 
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max,

,

( )
1 0

( , )
ijk

z j G CS y c

X
X X R

 



 


 
;                                (1.13) 

- torsional-flexural buckling verifications for all column structural 
members, 1, CMj N  : 

max,

,

( )
1 0

( , )
ijk

c j G CS y c

X
X X R

 



 


 
;                               (1.14) 

- lateral-torsional buckling verifications for all beam structural members, 
1, BMj N  : 

max,

,

( )
1 0

( , )
ijk

b j G CS y c

X
X X R

 



 


 
,                              (1.15) 

where , ( , )y j G CSX X
 

  and , ( , )z j G CSX X
 

  are column’s stability factors 
corresponded to flexural buckling relative to main axes of inertia and calculated 
depending on the design lengths , ,ef y jl , , ,ef z jl , cross-section type and cross-

section geometrical properties for the j th structural member [20]; , ( , )c j G CSX X
 

  
is the column’s stability factor corresponded to torsional-flexural buckling and 
calculated depending on the design lengths , ,ef y jl , , ,ef z jl , , ,ef T jl , cross-section 
type and cross-section geometrical properties for the j th structural member [20]; 

CMN  is the number of column structural members; , ( , )b j G CSX X
 

  is the beam’s 
stability factor corresponded to lateral-torsional buckling and calculated 
depending on the design length , ,ef b jl , cross-section type and cross-section 
geometrical properties for the j th structural member [20]; BMN  is the number of 

beam structural members. The flexural buckling factors , ( , )y j G CSX X
 

  and 

, ( , )z j G CSX X
 

 , as well as torsional-flexural buckling factor , ( , )c j G CSX X
 

 and 

the lateral-torsional buckling factor , ( , )b j G CSX X
 

  should be calculated 

depending on the variable geometrical parameters of the structure GX


 and 

variable cross-sectional dimensions of the structural members CSX


. 
The following buckling verifications for beam-column structural members 

should also be included in the system of constraints (1.2) – (1.3), formulated for 
all design sections, 1, DSi N  , of all beam-column structural members, 

1, BCMj N  , subjected to all ultimate load case combination, 1, ULS
LCk N  , 

namely: 

max,

,

( )
1 0

( )
ijk

e ijk y c

X
X R

 






 
,                                   (1.16) 
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max,

,

( )
1 0

( , ) ( )
ijk

y j G CS ijk y c

X
X X c X R

 



  


 
,                           (1.17) 

where , ( )e ijk X


  and ( )ijkc X


 are beam-column’s stability factors corresponded 
to in-plane and out-of-plane buckling and calculated depending on the internal 
forces (ration of the bending moment to the axial force), as well as depending 
on the design lengths , ,ef y jl , , ,ef z jl , cross-section type and cross-section 
geometrical properties for the j th structural member [20]; BCMN  is the total 
number of beam-column structural members, BCM CM BM BN N N N   . The 

beam-column’s stability factors , ( )e ijk X


  and ( )ijkc X


 should be calculated 

depending on variable geometrical parameters of the structure GX


, variable 

cross-sectional dimensions of the structural members CSX


 and variable initial 

pre-stressing forces PSX


. 
The following local buckling constraints should also be included into the 

system of constraints: 

,

,

( )
1 0,

( )
w j CS

uw j

X
X

 







                                    (1.18) 

,

,

( )
1 0

( )
f j CS

uf j

X
X

 







,                                    (1.19) 

where , ( )w j CSX


  and , ( )f j CSX


  are the non-dimensional slenderness of the 
web and flange respectively of the cross-section for j th structural member; 

, ( )uw j X


  and , ( )uf j X


  are the maximum values for corresponded non-
dimensional slenderness for column, beam and beam-column structural 
members calculated depending on the internal forces (ration of the bending 
moment to the axial force), as well as depending on the design lengths , ,ef y jl , 

, ,ef z jl , cross-section type and cross-section geometrical properties for the j th 

structural member [20]. The non-dimensional slenderness , ( )w j CSX


  and 

, ( )f j CSX


  should be calculated depending on the variable cross-sectional 

dimensions of the structural members CSX


 only. At the same time, the 

maximum values for corresponded non-dimensional slenderness , ( )uw j X


  and 

, ( )uf j X


  should be calculated depending on the variable geometrical 

parameters of the structure GX


 and variable cross-sectional dimensions of the 

structural members CSX


 and variable initial pre-stressing forces PSX


.  
The system of constraints (1.2) – (1.3) should also cover the displacements 
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constraints (stiffness inequalities) for the specified nodes of the considered 
steel structure subjected to all design load combinations at the serviceability 
limit state. The following horizontal and vertical displacements constraints 
should be included into the system of constraints (1.2) – (1.3), formulated for 
all nodes, 1, Nm N  , of the steel structure subjected to all serviceability load 

case combination, 1, SLS
LCk N  , namely: 

,

,

( )
1 0x mk

ux m

X
 





,                                        (1.20) 

,

,

( )
1 0z mk

uz m

X
 





,                                        (1.21) 

where , ( )x mk X


  and , ( )z lk X


  are the horizontal and vertical displacements 
respectively for l th node of the steel structure subjected to k th serviceability 
load case combination calculated from the linear equations system of the finite 
element method (1.8); ,ux l  and ,uz l are the allowable horizontal and vertical 
displacements for l th structural node; NN  is the number of nodes in the 
considered steel structure. 

Additional requirements, whose describe structural, technological and 
serviceability particularities of the considered structure, as well as constraints 
on the building functional volume can be also included into the system (1.2) –
 (1.3). In particular these requirements can be presented in the form of 
constraints on lower and upper values of the design variables, 1, XN  : 

1 0L
X
X

 


,                                            (1.22) 

1 0U
X
X

 


,                                            (1.23) 

where LX   and UX  are the lower and upper bounds for the design variable X  . 
The parametric optimization problem stated as non-linear programming 

task by (1.1) – (1.3) can be successfully solved using a gradient projection 
non-linear methods [21] in cases if the purpose function and constraints of the 
mathematical model are continuously differentiable functions, as well as the 
search space is smooth [22, 23]. The method of objective function gradient 
projection onto the active constraints surface with simultaneous correction of 
the constraints violations ensures effective searching for solution of the non-
linear programming tasks occurred when optimum designing of the building 
structures [24, 25]. Additionally, a sensitivity analysis is a useful optional 
feature [26] that could be used in the scope of numerical algorithms which are 
developed based on the gradient methods. 

2. A numerical algorithm to determine optimal pre-stressing variant of 
bar structures. A certain  th pre-stressing variant V  of the bar structure can 
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be definitely described by the set of redundant members 
  ,, , 1, RMr N     r , and by the value of the initial pre-stressing force 

,PSX   introduced into these members,  ,, PSX  V r   , ,, ,PSr X     

,1, RMN   here ,RMN   is the number of redundant members for  th pre-
stressing variant V . 

The set of the pre-stressing variants is 
   , ,, ,  1,PS X PSX N     Β V r . In general case, the number of such 

variants equals to the redundancy of the bar system. The number of initial pre-
stressing forces introduced into the bar system can be less or equal to the 
degree of static indeterminacy of the bar system or the number of the 

redundant members DSIN , namely 
,

,
1

X PSN

RM DSIN N
 

 . 

The dimension   of set Β  can be significantly reduced taking into 
account the symmetry of the considered structural form. The design variables 
vector  , ,,  1,PS PS X PSX X N  


 of the unknown (variable) initial pre-

stressing forces for the considered bar system is formed according to set 
  ,,  1, X PSN  Β V , of the pre-stressing variants.  

An optimal pre-stressing variant for the considered structure can be defined 
as a combination of some pre-stressing variants  V B  and presented as 

subset   , , ,| ,  1, ,  X PS X PS X PSN N N     Θ V V B   , Θ B , accordingly. 
In the beginning set Θ  represented the optimal pre-stressing variants is 
 Θ , vector of the initial pre-stressing forces is PSX  


. At each iteration 

of the proposed algorithm one of the pre-stressing variant  V B  is included 
into the set Θ , and the optimum material and internal forces distribution 
problem (1.1)–(1.3), (1.5) in the bar system should be solved. 

Let us introduce in further consideration the following function (2.1) that 
estimates both understressing and overstressing in term of longitudinal stresses 
for all structural members of the bar system [27]: 

  2

,
1 1 1

( )
LC DSBN NN

x ijk
k j i

X
  

 


  S ,                            (2.1) 

where ,x ijk  is the design value of the local longitudinal stress due to the 
bending moments and the axial force calculated in i th design section for j th 
structural member subjected to k th load case combination; DSN  is the number 
of the design sections in structural members; BN  is the number of the 
structural members;   ,x j

  is the maximum allowed longitudinal stresses. 
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An order of the consecutive including of the pre-stressing variants 

     ,, , ,, , ,  1, RMPS PSX r X N         V r , from set Β  into set Θ  can be 

defined by the values of the components of the gradient vector for function S  

(2.1) with respect to the variable pre-stressing parameters PSX


. Pre-stressing 

variant      ,, , ,, , ,  1, RM mm m PS m m PS mX r X N    V r Β , with maximum 

value of the gradient of the function S  (2.1) related to the number of redundant 
members ,RM mN  should be included into set Θ  first of all. Consecutive 
including of the pre-stressing variants from set Β  of the pre-defined pre-
stressing variants into set Θ  represented the optimal pre-stressing variants 
should be performed until the regulation of the internal forces in the structure 
under consideration leads to desired decrement of the objective function. 

Let us presented the following algorithm to find optimal number of the 
redundant members for introducing initial pre-stressing forces into the 
redundant members of the bar structures. 

Step 0. 0n   is the number of optimisation problems solved. The optimal 
number of the redundant members to introduce the initial pre-stressing forces 
for considered bar system is 0RMN  . The degree of static indeterminacy of 
the bar system is DSIN . 

Step 1. A searching problem for optimum cross-section sizes of the 
considered structure without initial pre-stressing forces in the redundant 
members is formulated and solved in the continuum space of the unknown 
cross-sectional sizes CSX


 only, namely optimum material distribution problem 

(1.1) – (1.3), (1.5) for the bar system is formulated and solved. As a result 
those optimum cross-section sizes *

,CS nX


 of the structural members, whose 

provide the least value *
nf  of the objective function (1.1) and satisfy the 

system of constraints (1.2) – (1.3) are defined. The number of optimization 
problems solved should be incremented, 1n n  . 

Step 2. The set of the pre-stressing variants 
   , ,, ,  1,PS X PSX N     Β V r , of the bar system is pre-defined by the 

designer. The number of redundant members ,RMN   for each pre-defined pre-

stressing variant      ,, , ,, , ,  1, RMPS PSX r X N         V r , should not 

exceed the degree of static indeterminacy of the bar system DSIN , 

,RM DSIN N  . Auxiliary vector  , , ,| ,  1,PS PS PS X PSY X X N     V


, of 
the unknown initial pre-stressing forces is formed according to set Β . Start 
zero value for each component ,PSX   of vector PSY


 should be assigned. 

Step 3. Set of the optimal pre-stressing variants is  Θ . Vector of the 
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design variables corresponded to initial pre-stressing forces is ,PS nX  


. 
Step 4. Vector for the gradient of function S  (2.1) is calculated for all 

variable pre-stressing parameters (unknown initial pre-stressing forces) PSY


: 

,PSX





       

SS  , , ,  1,PS PS X PSX Y N   


.                 (2.2) 

Step 5. Whichever pre-stressing variant  ,,m m PS mX V r  

  , ,, ,m PS mr X  Β ,1, RM mN , meets the following criteria: 

, ,

1 max
RM m PS mN X


 


S                                  (2.3) 

should be included into the further consideration, here ,RM mN  is the number of 
redundant members where initial pre-stressing force ,PS mX  is introduced, 

,RM m DSIN N . If there are no pre-stressing variants with number of redundant 
members ,RM mN  less than the number of degree of static indeterminacy of the 
bar system DSIN , then moving to step 10 should be executed. 

Step 6. Unknown initial pre-stressing force ,PS mX  corresponding to pre-

stressing variant mV  should be added to the design variable vector ,PS nX


, 

 , , ,PS n PS n PS mX X X 
 

. 
Step 7. The optimum material and internal forces problem (1.1) – (1.3), 

(1.5) is formulated and solved in the continuum space of the unknown cross-
sectional sizes and unknown initial pre-stressing forces. Those optimum values 
for cross-sectional sizes *

,CS nX


 and optimum values for initial pre-stressing 

forces *
.PS nX


 are defined,  * * *

, ,,
T

n CS n PS nX X X
  

, whose satisfy the system of 

constraints (1.2) – (1.3) and provide the least (extreme) value of the objective 
function *

nf  (1.1). The number of optimization problems solved should be 
incremented, 1n n  . 

Step 8. If 
* *

2 1
*

1

n n

n

f f
f

 




 , where  , 1.05...1.10  , is the desired 

decrement of the objective function value caused by introducing initial pre-
stressing force ,PS mX  in the redundant members mr  of the m th pre-stressing 

variant      ,, , ,, , ,  1, RM mm m PS m m PS mX r X N   V r , then m Θ Θ V , 

 ,PS PS PS mY Y X 
 

. 
Optimal number of the redundant members to introduce the initial pre-
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stressing forces into the considered bar system is increased as 
,RM RM RM mN N N  . The degree of static indeterminacy of the bar system is 

,DSI DSI RM mN N N  . Moving to step 4 should be performed. In opposite 

case, when 
* *

2 1
*

1

n n

n

f f
f

 




 , then moving to step 9 should be performed. 

Step 9. Introducing the initial pre-stressing force ,PS mX  into the mr  
redundant members of the bar system is not effective. Returning to the 
previous optimum solution should be executed, * *

1n nX X 
 

, * *
1n nf f  . The 

number of optimization problems solved should be decremented, 1n n  . 
Step 10. Optimal number of the redundant members to introduce the initial 

pre-stressing forces into the considered bar system is RMN . Number of 
optimization problems solved is n . Optimum material and internal forces 
distribution corresponds to design variables vector *

nX


 and objective function 
value *

nf . 
3. Results and discussions. The efficiency of the proposed numerical 

algorithm is presented to define the optimal number of the redundant members 
for introducing initial prestressing forces into the bar system, considering 
parametric optimization of a cross-beam structure (see Fig. 3.1). 

 

 
Fig. 3.1. Design scheme of the cross beam structure with node and bar numbers 

 
The cross-beam structure is subjected to the distributed dead and live loads 

with characteristic value 25.44q  t/m. Applied loadings on the considered 
cross-beam structure are transmitted using mezzanine beams arranged with 
step 1m. 

For considered cross-beam structure, steel with the following material 
properties is used: design resistance 240yR   MPa, modulus of elasticity 

52.1 10E    MPa, Poisson's ratio in elastic stage v = 0.3 and unit weight 
γ = 7800 kg/m3. For all structural members welded I-beam cross-section type is 
used. 

Sufficient shear buckling resistance for all beam webs has been assumed 
ensuring by intermediate transverse and longitudinal stiffeners arranged 
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according to the design code requirements [20].  
Cross-section sizes for all beams have been assigned as the same, in order 

to have load-carrying capacity reserves in the structure, which can be further 
utilized by prestressing. In practice, such bearing capacity reserves may exist 
due to requirements of unification, restrictions on the assortment range of 
rolled steel profiles, etc. It should be noted that there is no need for 
prestressing, in cases when tapered structural members are used for considered 
cross-beam structure.  

According to item 1 of the algorithm presented above the optimum material 
distribution problem (1.1) – (1.3), (1.5) has been solved for specified initial 
data. Cross-sectional sizes of the cross-beam structure were considered as 
design variables ( ,  ,  ,  )T

CS w w f fX h t b t


, where wh  is the beam web height, wt  
is the beam web thickness, fb  is the beam flange width, ft  is the beam flange 
thickness. The material weight G  was considered as the objective function 
(1.1): 

( ) ( 2 ) minCS w w f fG X h t b t L  


 ,                           (3.1) 
where L  is the overall length of all beams in the structure, 144L  m. 

Load-bearing capacities constraints (strength and stability inequalities) for 
all design sections of the structural members subjected to all design load 
combinations at the ultimate limit state have been included into the system of 
constraints. The following strength constraints have been considered, 
formulated for all design sections, 1, DSi N  , of all structural members, 

1, Bj N  , subjected to one ultimate load case combination, 1k  , namely 
normal stresses verifications (1.9), shear stresses verifications (1.10), as well 
as equivalent stresses verifications (1.11). The lateral-torsional buckling 
constraints (1.15) have been also considered, formulated for all design sections 

1, DSi N   of all structural members 1, Bj N   according to the 
requirements [20], where the reduction factor for lateral-torsional buckling has 
been determined based on the cross sectional properties depending on the 
variable cross section sizes CSX


 and takes into account the distance between 

lateral restraints equals to 1m. The local buckling constraints (1.18) – (1.19) 
with the maximum values for corresponded non-dimensional slenderness 

, 3.5uw j   and , 0.5uf j   have been also included into the system of 
constraints, as well as vertical displacements constraints (1.21) for specified 
(all internal) nodes of the cross-beam structure with the allowable vertical 
displacement , 80uz l  mm.  
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(а) – 1st pre-stressing variant 

 

(b) – 2nd pre-stressing variant 

(c) – 3rd pre-stressing variant  
 

(d) – 4th pre-stressing variant 

(e) – 5th pre-stressing variant 
 

(f) – 6th pre-stressing variant 

 
(g) – 7th pre-stressing variant 

 
Fig. 3.2. Pre-stressing variants for the cross beam structure by:  

(a) – (d) – lowering external supports;  
(e) – (g) – vertical shifting of the beam relative to each other at their mutual intersections 
 

The dimensions of the considered optimum material distribution problem 
were 4 design variables and 388 constraints. Optimum continuous cross-
sectional sizes [cm]  *

, 0 207.2560,  2.0211,  79.7388,  2.6526
RM

T
CS NX  


 for all 
beams of the cross-beam structure corresponded to the material weight 
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*
0 94.5647

RMNG    ton of the structure has been obtained for the case when the 
number of redundant members to introduce initial pre-stressing forces equals 
to zero, 0RMN  . There were 98 active constraints in the optimum point 
including strength constraints (1.9) formulated for 6th and 7th structural 
members (see Fig. 3.1), as well as local buckling constraints (1.18), (1.19) 
formulated for all design sections of all structural members. The set of linear-
independent constrains included 3 constraints only, namely 2 local buckling 
constraints (1.18), (1.19) for 1st structural members and strength constraint 
(1.9) for 7th structural member (see Fig. 3.1).  

The set of the pre-stressing variants for considered cross-beam structure 
   , ,, ,  1,PS X PSX N     Β V r , , 7X PSN  , has been pre-defined (see 

Fig. 3.2) according to item 2 of the algorithm presented above. The 
corresponded auxiliary vector  , , ,| ,  1,PS PS PS X PSY X X N     V


, of the 

unknown initial pre-stressing forces with start zero values for all components 

,PSX   were formed,    ,1 ,2 ,7, ,... 0.0,0.0,...,0.0
T T

PS PS PS PSY X X X 


. 

According to item 3 the vector for the gradient of function S  (2.1) has 
been calculated for all variable pre-stressing parameters (unknown initial pre-
stressing forces) PSY


 when variable cross-section parameters CSX


 (unknown 

cross-sectional sizes) of the cross-beam structure have been fixed at the level 
of *

, 0RMCS CS NX X 
 

 (see Table. 3.1).  
An order of the consecutive including of the pre-stressing variants 

     ,, , ,, , ,  1, RM mm m PS m m PS mX r X N   V r , from set Β of the pre-defined 

pre-stressing variants into set Θ  represented the optimal pre-stressing variants 
has been determined based on the values of the criteria (2.3) (see Table 3.1). 

According to item 6 of the algorithm presented above the unknown initial 
pre-stressing force ,2PSX  corresponded to the pre-stressing variant 2V  has 

been added to the design variable vector first of all, ,2PSX X X 
 

, 

,2( ,  ,  ,  ,  )T
w w f f PSX h t b t X


. 

The optimum material and internal forces problem (3.1), (1.9), (1.10), 
(1.11), (1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in 
the continuum space of the unknown cross-sectional sizes and unknown initial 
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all 
beams of the cross-beam structure and initial pre-stressing force [t]: 

 *
2 202.5226,  1.9750,  77.9167,  2.5920,  59.1910

RM

T
NX   


, 

corresponded to the material weight *
2 90.2934

RMNG    ton of the structure has 
been obtained for the case when the number of redundant members to 
introduce initial pre-stressing forces ,2 59.1910PSX   ton is 2RMN  . There 
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were 102 active constraints in the optimum point including strength constraints 
(1.9) formulated for 6th, 7th, 17th, 18th, 19th and 20th structural members (see 
Fig. 3.1), as well as local buckling constraints (1.18), (1.19) formulated for all 
design sections of all structural members. The set of linear-independent 
constrains included 5 constraints (that is equal to the number of the design 
variables), namely 3 strength constraints (1.9) for 19th, 20th and 7th structural 
members (see Fig. 3.1), as well as web local buckling constraint (1.18) for 2nd 
structural member and flange local buckling constraint (1.19) for 1st structural 
member. Introducing the initial pre-stressing force into the redundant members 
of the cross-beam structure according to the second pre-stressing variant (see 
Fig. 3.2 (b)) has been ensured the material economy у розмірі 4.73% 
comparing to the weight of the cross-beam structure without pre-stressing. 

 

Table 3.1 

Determination of the order of the consecutive including of the pre-defined pre-
stressing variants into the set of optimal pre-stressing variants 

Pre-
stressing 
variant,  

Number of 
redundant 
members  
r , ,RMN   

Initial pre-
stressing 

force ,PSX   

Components 
6

,

10
PSX








S

 
Criteria  

(2.3)  Order 

1 2 ,1PSX  8.1133 4.0566 2 
2 2 

,2PSX  8.1170 4.0585 1 

3 4 
,3PSX  –7.7961 1.9490 3 

4 4 
,4PSX  –7.7877 1.9469 4 

5 4 ,5PSX  3.0895·10-4 0.7723·10-4 6 
6 4 

,6PSX  2.6861·10-4 0.6715·10-4 7 

7 2 
,7PSX  3.0895·10-4 1.5448·10-4 5 

 
On the second iteration of the searching process for optimal pre-stressing 

variant of the cross-beam structure the unknown initial pre-stressing force 
,1PSX  corresponded to the pre-stressing variant 1V  has been added to the 

design variable vector ,1PSX X X 
 

, ,2 ,1( ,  ,  ,  ,  ,  )T
w w f f PS PSX h t b t X X


. 

The optimum material and internal forces problem (3.1), (1.9), (1.10), (1.11), 
(1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in the 
continuum space of the unknown cross-sectional sizes and unknown initial 
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all 
beams of the cross-beam structure and initial pre-stressing forces [t]: 

 *
4 195.9161,  1.9105,  75.3726,  2.5074,  66.6490,  67.4819

RM

T
NX    


, 

corresponded to the material weight *
4 84.4959

RMNG    ton of the structure has 
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been obtained for the case when the number of redundant members to 
introduce initial pre-stressing forces ,2 66.6490PSX   ton and 

,1 67.4819PSX   ton is 4RMN  . There were 106 active constraints in the 
optimum point including strength constraints (1.9) formulated for 2nd, 3rd, 6th, 
7th, 10th, 11th, 14th, 15th, 22th and 23th structural members (see Fig. 3.1), as well 
as local buckling constraints (1.18), (1.19) formulated for all design sections of 
all structural members. The set of linear-independent constrains included 5 
constraints (that is less than the number of the design variables), namely 3 
strength constraints (1.19) for 6th, 22th and 10th structural members (see Fig. 
3.1), as well as web and flange local buckling constraint (1.18), (1.19) for the 
1st structural member. Introducing the initial pre-stressing force into the 
redundant members of the cross-beam structure according to the second (see 
Fig. 3.2 (b)) and first pre-stressing variants (see Fig. 3.2 (a)) has been ensured 
the material economy 11.9% comparing to the weight of the cross-beam 
structure without pre-stressing and material economy 6.86% comparing to the 
weight of the cross-beam structure with second pre-stressing variant only. 

On the third iteration of the searching process for optimal pre-stressing 
variant of the cross-beam structure the unknown initial pre-stressing forces 

,3PSX  and ,4PSX  corresponded to the pre-stressing variant 3V  (see Fig. 3.2 (c)) 
and 4V  (see Fig. 3.2 (d)) respectively have been added to the design variable 

vector ,3 ,4PS PSX X X X  
 

, ,2 ,1 ,3 ,4( , , , , , , , )T
w w f f PS PS PS PSX h t b t X X X X


. 

The optimum material and internal forces problem (3.1), (1.9), (1.10), (1.11), 
(1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in the 
continuum space of the unknown cross-sectional sizes and unknown initial 
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all 
beams of the cross-beam structure and initial pre-stressing forces [t]: 




*
4 195.7524,  1.9089,  75.3101,  2.5053,

    46.3229, 47.2695,  19.4231,  20.9016 ,
RMN

T

X  

 



 

corresponded to the material weight *
4 84.3553

RMNG    ton of the structure has 
been obtained for the case when the number of redundant members to 
introduce initial pre-stressing forces ,2 46.3229PSX   ton, 

,1 47.2695PSX   ton, ,3 19.4231PSX  ton and ,4 20.9016PSX  ton is 
12RMN  . There were 108 active constraints in the optimum point including 

strength constraints (1.9) formulated for 2nd, 3rd, 6th, 7th, 10th, 11th, 14th, 15th, 
18th, 19th, 22th and 23th structural members (see Fig. 3.1), as well as local 
buckling constraints (1.18), (1.19) formulated for all design sections of all 
structural members. The set of linear-independent constrains included 6 
constraints (that is less than the number of the design variables), namely 4 
strength constraints (1.9) for 7th, 19th, 11th and 15th structural members (see Fig. 
3.1), as well as web and flange local buckling constraint (1.18), (1.19) for the 
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1st structural member. Introducing the initial pre-stressing force into the 
redundant members of the cross-beam structure according to the second (see 
Fig. 3.2 (b)), first (see Fig. 3.2 (a)), third (see Fig. 3.2 (c)) and forth (see 
Fig. 3.2 (d)) pre-stressing variants has been ensured the material economy 
12.10% comparing to the weight of the cross-beam structure without pre-
stressing and material economy 0.17% comparing to the weight of the cross-
beam structure with previous first and second pre-stressing variants only. 

Since, decrement of the objective function value is less than 1% comparing 
to one for considered structure with previous pre-stressing variants, so 
introducing the initial forces into the redundant members according to 3rd and 
4th pre-stressing variants (see Fig. 3.2 (c), (d)) is not effective. Searching for 
optimal pre-stressing variant of the considered cross-beam structure can be 
finished. Thus, the optimal pre-stressing variant of the considered cross-beam 
structure consists of the 1st and 2nd pre-stressing variants (see Fig. 3.2 (a), (b)) 
and can be created by lowering external 2nd, 5th, 8th and 11th supports. The 
optimal number of the redundant members for introducing the initial pre-
stressing forces is 4 respectively.  

In order to define the optimal pre-stressing variant for considered cross 
beam structure three optimum material and internal forces distribution 
problems only have been solved with the number of variable initial pre-
stressing forces 1, 2 and 3 respectively. 

As it has been shown by presented numerical example, proposed numerical 
technique to determine the optimal number of the redundant members to 
introduce initial pre-stressing forces ensures decreasing of the number of 
optimum material and internal forces distribution problems that should be 
solved, as well as reduction of the dimension for the design variable vector of 
unknown initial pre-stressing forces for considered optimization problems. 

Conslusion. A numerical technique to determine the optimal number of the 
redundant members to introduce initial prestressing forces has been offered for 
high-order statically indeterminate bar structures. An idea to form an optimal 
prestressing variant for the considered bar structure by consecutive 
introduction of the initial prestressing forces into the redundant members and 
subsequent solving of the optimum material and internal forces distribution 
problems has been suggested. An order of the consecutive including of the 
initial prestressing forces into the redundant members can be defined by values 
of the components of the gradient vector for the function that estimates both 
under-stressing and overstressing in term of longitudinal stresses for all 
structural members of the bar system with respect to the variable prestressing 
parameters.  

The suggested numerical technique to determine the optimal number of the 
redundant members to introduce initial prestressing forces provides the 
reduction of the dimension for the design variable vector of unknown initial 
prestressing forces for considered optimization problems. 
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Юрченко В. В., Пелешко І. Д. 
ОПТИМАЛЬНА КІЛЬКІСТЬ ЗАЙВИХ В’ЯЗЕЙ ДЛЯ ВВЕДЕННЯ ЗУСИЛЬ 
ПОПЕРЕДНЬОГО НАПРУЖЕННЯ МЕТАЛЕВИХ СТЕРЖНЕВИХ СИСТЕМ 

У статті розглядається задача параметричної оптимізації металевих стержневих систем, 
представлена як задача нелінійного програмування зі змінними (невідомими) розмірами 
поперечних перерізів елементів конструкції, а також зусиллями попереднього напруження, 
що вводяться у визначені зайві в’язі стержневої системи. Система обмежень охоплює 
обмеження несучої здатності, що формулюються для усіх розрахункових перерізів несучих 
елементів конструкції, що підлягає дії усіх розрахункових комбінацій навантажень першої 
групи граничних станів, а також обмеження переміщень визначених вузлів стержневої 
системи, що підлягає дії усіх розрахункових комбінацій навантажень другої групи 
граничних станів. Для розв’язку задачі параметричної оптимізації використовувався метод 
проекції градієнта функції мети на поверхню активних обмежень з одночасною ліквідацією 
нев’язок в порушених обмеженнях. Для складних багато раз статично невизначених 
стержневих систем запропонована чисельна методика визначення оптимальної кількості 
зайвих в’язей для введення зусиль попереднього напруження. 

Ключові слова: параметрична оптимізація, зайва в’язь, зусилля попереднього 
напруження, оптимальне попереднє напруження, аналіз чутливості, метод проекції 
градієнта. 
 
 
Yurchenko V. V., Peleshko I. D. 
OPTIMAL NUMBERS OF THE REDUNDANT MEMBERS FOR INTRODUCING 
INITIAL PRE-STRESSING FORCES INTO STEEL BAR STRUCTURES  

The paper considers parametric optimization problems for the steel bar structures formulated 
as nonlinear programming ones with variable unknown cross-sectional sizes of the structural 
members, as well as initial prestressing forces introduced into the specified redundant members of 
the structure. The system of constraints covers load-bearing capacity constraints for all the design 
sections of the structural members subjected to all the design load combinations at ultimate limit 
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all 
design load combinations at serviceability limit state. The method of the objective function 
gradient projection onto the active constraints surface with simultaneous correction of the 
constraints violations has been used to solve the parametric optimization problem. A numerical 
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technique to determine the optimal number of the redundant members to introduce the initial 
prestressing forces has been offered for high-order statically indeterminate bar structures. 

Keywords: parametric optimization, redundant member, initial prestressing force, optimal 
prestressing, sensitivity analysis, gradient projection method. 

 
Юрченко В. В., Пелешко И. Д. 
ОПТИМАЛЬНОЕ КОЛИЧЕСТВО ЛИШНИХ СВЯЗЕЙ ДЛЯ ВВЕДЕНИЯ УСИЛИЙ 
ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ МЕТАЛЛИЧЕСКИХ СТЕРЖНЕВЫХ 
СИСТЕМ 

В статье рассмотрена задача параметрической оптимизации металлических стержневих 
систем, представленная как задача нелинейного программирования с переменными 
(неизвестными) размерами поперечных сечений элементов конструкции, а также усилий 
предварительного напряжения, которые вводяться в определенные лишние связи 
стержневой системы. Система ограничений охватывает ограничения несущей способности, 
сформулированные для всех расчетных сечений несущих элементов конструкции, 
подлежащей действию всех расчетных комбинаций нагрузок первой группы предельных 
состояний, а также ограничения перемещений определенных узлов стержневой системы, 
подлежащей действию всех расчетных комбинаций нагрузок второй группы предельных 
состояний. Для решения задачи параметрической оптимизации использовался метод 
проекции градиента функции цели на поверхность активных ограничений при 
одновременной ликвидации нев’язок в нарушенных ограничениях. Для сложных много раз 
статически неопределенных стержневых систем предложена численная методика 
определения оптимального количества лишних свіязей для введения усилий 
предварительного напряжения. 

Ключевые слова: параметрическая оптимизация,лишняя связь, усилие 
предварительного напряжения, оптимальное предварительное напряжение, анализ 
чувствительности, метод проекции градиента. 
 
 
УДК 624.04, 519.853 
Юрченко В. В., Пелешко І. Д. Оптимальна кількість зайвих в’язей для введення зусиль 
попереднього напруження металевих стержневих систем // Опір матеріалів і теорія 
споруд: наук.-тех. збірн. – К.: КНУБА, 2021. – Вип. 106. – С. 68-91. 

У статті розглядається задача параметричної оптимізації металевих стержневих 
систем, представлена як задача нелінійного програмування зі змінними (невідомими) 
розмірами поперечних перерізів елементів конструкції, а також зусиллями попереднього 
напруження, що вводяться у визначені зайві в’язі стержневої системи. Система обмежень 
охоплює обмеження несучої здатності, що формулюються для усіх розрахункових перерізів 
несучих елементів конструкції, що підлягає дії усіх розрахункових комбінацій навантажень 
першої групи граничних станів, а також обмеження переміщень визначених вузлів 
стержневої системи, що підлягає дії усіх розрахункових комбінацій навантажень другої 
групи граничних станів. Для розв’язку задачі параметричної оптимізації використовувався 
метод проекції градієнта функції мети на поверхню активних обмежень з одночасною 
ліквідацією нев’язок в порушених обмеженнях. Для складних багато раз статично 
невизначених стержневих систем запропонована чисельна методика визначення 
оптимальної кількості зайвих в’язей для введення зусиль попереднього напруження. 
Іл. 3. Табл. 1. Бібліог. 27 назв. 
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Yurchenko V. V., Peleshko I. D. Optimal numbers of the redundant members for introducing 
initial pre-stressing forces into steel bar structures // Strength of Materials and Theory of 
Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2021. – Issue 106. – P. 68-
91. 

The paper considers parametric optimization problems for the steel bar structures formulated 
as nonlinear programming ones with variable unknown cross-sectional sizes of the structural 
members, as well as initial prestressing forces introduced into the specified redundant members of 
the structure. The system of constraints covers load-bearing capacity constraints for all the design 
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sections of the structural members subjected to all the design load combinations at ultimate limit 
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all 
design load combinations at serviceability limit state. The method of the objective function 
gradient projection onto the active constraints surface with simultaneous correction of the 
constraints violations has been used to solve the parametric optimization problem. A numerical 
technique to determine the optimal number of the redundant members to introduce the initial 
prestressing forces has been offered for high-order statically indeterminate bar structures. 
Figs. 3. Tabs. 1. Refs. 27. 
 
УДК 624.04, 519.853 
Юрченко В. В., Пелешко И. Д. Оптимальное количество лишних связей для введения 
усилий предварительного напряжения металлических стержневых систем // 
Сопротивление материалов и теория сооружений: науч.- тех. сборн. – К.: КНУСА, 2021. – 
Вып. 106. – С. 68-91. 

В статье рассмотрена задача параметрической оптимизации металлических 
стержневих систем, представленная как задача нелинейного программирования с 
переменными (неизвестными) размерами поперечных сечений элементов конструкции, а 
также усилий предварительного напряжения, которые вводяться в определенные лишние 
связи стержневой системы. Система ограничений охватывает ограничения несущей 
способности, сформулированные для всех расчетных сечений несущих элементов 
конструкции, подлежащей действию всех расчетных комбинаций нагрузок первой группы 
предельных состояний, а также ограничения перемещений определенных узлов 
стержневой системы, подлежащей действию всех расчетных комбинаций нагрузок 
второй группы предельных состояний. Для решения задачи параметрической оптимизации 
использовался метод проекции градиента функции цели на поверхность активных 
ограничений при одновременной ликвидации нев’язок в нарушенных ограничениях. Для 
сложных много раз статически неопределенных стержневых систем предложена 
численная методика определения оптимального количества лишних свіязей для введения 
усилий предварительного напряжения. 
Ил. 3. Табл. 1. Библиог. 27 назв. 
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