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The paper considers parametric optimization problems for the steel bar structures formulated
as nonlinear programming ones with variable unknown cross-sectional sizes of the structural
members, as well as initial prestressing forces introduced into the specified redundant members of
the structure. The system of constraints covers load-bearing capacity constraints for all the design
sections of the structural members subjected to all the design load combinations at ultimate limit
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all
design load combinations at serviceability limit state. The method of the objective function
gradient projection onto the active constraints surface with simultaneous correction of the
constraints violations has been used to solve the parametric optimization problem. A numerical
technique to determine the optimal number of the redundant members to introduce the initial
prestressing forces has been offered for high-order statically indeterminate bar structures. It
reduces the dimension for the design variable vector of unknown initial prestressing forces for
considered optimization problems.

Keywords: parametric optimization, redundant member, initial prestressing force, optimal
prestressing, sensitivity analysis, gradient projection method.

Introduction. The concept of pre-stressing steel structures is only recently
being re-considered, despite a long and successful history of pre-stressing
concrete members. In spite of having many advantages over pre-stressed
concrete, pre-stressed steel has not been popular due to the complexity and
ambiguity involved in analysis and design calculations and problems arising
due to application of external pre-stressing technique and fabrication [1].

Early work on the pre-stressing of steel structures was described by Magnel
[2] in 1950, where it was shown experimentally that improved economy can be
achieved by pre-stressing truss girders. More recent studies have explored the
behavior and design of pre-stressed steel beams [3], flooring systems [4],
columns [5, 6], trusses [7, 8] and space trusses [9]. Studies of the structural
response of sub-assemblies and the overall response of pre-stressed frames
with sliding joints have been also carried out [10], as has a numerical
investigation into the stress-erection process of such systems [11]. Each of the
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above described studies identified potential economies and enhanced
performance through the use of pre-stressing [1].

A number of research works were dedicated to the optimization of pre-
stressed bar structures. Usually applied optimum design problems for the pre-
stressed bar structures are formulated as parametric optimization problems,
namely as searching problems for unknown structural parameters, whose provide
an extreme value of the specified purpose function in the feasible region defined
by the specified constraints [12]. For this purpose, research papers [13, 14, 15,
16] use mathematical programming methods where optimal design is divided
into several stages, where a search is completed at each stage after varying
values of a specific group of parameters. Introduction of such stage-by-stage
procedures may in many cases distort the conditions of optimization tasks.

In the papers [17, 18] an algorithm for searching for the optimum values of
the parameters of pre-stressed steel arch trusses with high-strength ties has
been developed. The problem in focus is to reduce the cost of the operating
trusses while taking into consideration the strength, stiffness and stability
constraints formulated according to design code requirements. The
optimization is performed via a genetic algorithm. The strain-stress state of the
structure variants is calculated basing upon the finite element method. The
feasibility of the suggested method was illustrated for optimal engineering of a
steel truss with a 60 m span, pre-stressed with a double-lay rope.

Pre-stress of the statically indeterminate bar system can be created by
introducing the initial pre-stressing forces into the redundant members of the
structural system. The number of initial pre-stressing forces introduced into the
bar system can be less or equal to the degree of static indeterminacy of the bar
system or the number of the redundant members.

Optimum distribution of the internal forces and material in the bar structure
corresponded to the least structural weight can be achieved by introducing
initial pre-stressing forces into the all redundant members of the bar system.
But economical efficiency caused by regulation of the internal forces should be
estimated taking into account additional costs required to create pre-stressing
in the structural system. The fewer the redundant members in the pre-stressing
process of the structure will be subject to initial deformations, the lower the
costs associated with creating pre-stressing in the bar system.

Complex high-order statically indeterminate bar systems with great amount
of the redundant members have lots of pre-stressing variants for them. For such
structures proposed numerical techniques to determine optimal pre-stressing
variant require a great amount of the calculations related to solving the
optimization problems for each pre-stressing variant or due to the high
dimension of the design variable vector for unknown initial pre-stressing forces.

In this paper, pre-stressed high-order statically indeterminate bar structure
is considered as research object. This object is being investigated to find the
optimal distribution of internal forces and material in the bar system.

Although many papers are published on the parametric optimization of the
pre-stressed bar structures, the development of a numerical technique to
determine the optimal number of the redundant members to introduce initial pre-
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stressing forces for high-order statically indeterminate bar structures remains an
actual task. Therefore, the main research goal is the development of numerical
algorithm to solve parametric optimization problems of the pre-stressed bar
structures with searching for the optimal number of the redundant members to
introduce initial pre-stressing forces. The following research tasks are states
accordingly: to propose a numerical technique to determine the optimal number
of the redundant members to introduce initial pre-stressing forces for high-order
statically indeterminate bar structures; to show by numerical examples that
proposed numerical technique ensures decreasing of the number of optimum
material and internal forces distribution problems that should be solved, as well
as reduction of the dimension for the design variable vector of unknown initial
pre-stressing forces for considered optimization problems.

1. Problem formulation for parametric optimization of steel structures.
Let us consider a parametric optimization problem of a structure consisting of
bar members. The problem statement can be performed taking into account the
following assumptions widely used in structural mechanic problems: the
material of the structure is ideal elastic; the bar structure is deformable
linearly; external loadings applied to the structure are quasi-static.

Let us also formulate the following pre-conditions for calculation: cross-
section types and dimensions of structural members are constant along
member lengths; external loadings are applied to the structural members
without eccentricities relating to the center of mass and shear center of its
cross-sections; an additional restraining by stiffeners are provided in the design
sections where point loads (reactions) applied with the exception of cross-
section warping and local buckling of the cross-section elements; load-carrying
capacity of the structural joints, splices and connections are provided by
additional structural parameters do not covered by the considered parametric
optimization problem.

A parametric optimization problem of the structure can be formulated as
presented below: to find optimum values for geometrical parameters of the
structure, member’s cross-section dimensions and initial pre-stressing forces
introduced into the specified redundant members of the bar system, which
provide the extreme value of the determined optimality criterion and satisfy all
load-carrying capacities and stiffness requirements. We assume, that the
structural topology, cross-section types and node type connections of the bars,
the support conditions of the bar system, as well as loading and pre-stressing
patterns are prescribed and constants.

The formulated parametric optimization problem can be considered
integrally using the mathematical model in the form of the non-linear
programming task including an objective function, a set of independent design
variables and constraints, which reflect generally non-linear dependences
between them. The validity of the mathematical model can be estimated by the
compliance of its structure with the design code requirements.

The parametric optimization problem of steel structures can be stated in the
following mathematical terms: to find unknown structural parameters
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X = {XZ}T, 1=1, N, , providing the least value of the determined objective
function:

S =X =min f(X), (1.1)
in a feasible region (search space) I defined by the following system of
constraints:

w(X) ={y,(X)=0|x=1N,}, (12)
o(X)={p,(X)<0|n=N,c LN}, (13)

where X is the vector of the design variables (unknown structural
parameters); f, ., ¢, are the continuous functions of the the vector

argument; X  is the optimum solution or optimum point (the vector of
optimum values of the structural parameters); f~ is the optimum value of the
optimum criterion (objective function); N,. is the number of constraints-
equalities (X), whose define hyperplanes of the feasible solutions; N o 18
the number of constraints-inequalities ¢, (X), whose define a feasible region

in the design space 3.
The vector of the design variables comprises of unknown geometrical

- T
parameters of the structure X ={XG’Z} , Xx=LN,,, unknown cross-

. e T
sectional dimensions of the structural members X, = {X Cs’a} ,a=1LN

as well as unknown initial pre-stressing forces X, = {X - ﬁ}r, B=LN,

introduced into the specified redundant members of the structure (see Fig. 1.1):

X = {‘X/G"X/CS"X/PS}T = {{XG,Z}’{XCS,a}’{XPS,[i}}T > (1.4)
where N, , is the total number of unknown node coordinates of the steel
structure; N, . is the total number of unknown cross-sectional dimensions of
the structural members, N, ,¢ is the total number of unknown initial pre-
stressing forces introduced into the specified redundant members of the bar
system, N, .+ Ny s+ Ny oo =N,

In cases when vector of the design variables X consists of unknown cross-
sectional dimensions only:

T
X=XCS={XCS,a} > (1.5)
then optimum material distribution problem (1.1)—(1.3), (1.5) for the steel
structure is under consideration. The vector of the design variables X can also

- T
consists of unknown initial pre-stressing forces X, = {X - ﬁ} s B=LNy s,

introduced into the specified redundant members of the structure:
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T

= - - T
Xz{XCS’XPS} ={{XCS,G}’{XPS,/5}} > (1.6)
where N, o+ N, ,c =N,. In cases when vector of the design variables X

consists of unknown cross-sectional dimensions and unknown initial pre-
stressing forces, then optimum material and internal forces distribution
problem (1.1) — (1.3), (1.6) for the steel structure is under consideration.

X G,3

Xes

XG.I

Xcss Xes3

Fig. 1.1. The unknown (variable) parameters of the structure considered as design variables

The specific technical-and-economic index (material weight, material cost,
construction cost etc.) or another determined indicator can be considered as the
objective function (1.1) taking into account the ability to formulate its

analytical expression as a function of design variables X .

Load-carrying capacities constraints (strength and stability inequalities) for
all design sections of the structural members subjected to all design load
combinations at the ultimate limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of the bar system subjected to all
design load combinations at the serviceability limit state should be included
into the system of constraints (1.2)—(1.3). Additional requirements whose
describe structural, technological and serviceability particularities of the
considered structure can be included into the system (1.2) — (1.3) as well.

The design internal forces in the structural members used in the strength
and stability inequalities of the system (1.2) —(1.3) are considered as state

variables depending on design variables X and can be calculated from the
following linear equations system of the finite element method [19]:

K(XG’XCS) X ZULS,k = ﬁULS,k(XG’XPS) , k= LN%S s (1'7)
where K(X,,X) is the stiffness matrix of the finite element model of the
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bar system, which should be formed depending on the unknown (variable)

cross-sectional dimensions of the structural members X, as well as
unknown (variable) node coordinates of the structure X;; By, (X o X pg) is

the column-vector of the node’s loads for k™ design load combination of the
ultimate limit state, which should be formed depending on unknown (variable)

-

initial pre-stressing forces X,;, as well as unknown (variable) node
coordinates of the structure X ; Zys, 1 the result column-vector of the node

displacements for k™ design load combination of the ultimate limit state,

Zrss = Lo (X oy X o, X pg) = 205, (X) 5 NI is the number of the design

ultimate load combinations. For each ;™ design section of ;™ structural
member subjected to k " ultimate design load combination the design internal
forces (axial force, bending moments and shear forces) can be calculated
depending on node displacement column-vector Z , .

The node displacement of the bar system used in stiffness inequalities of
the system (1.2) —(1.3) are also considered as state variables depending on

design variables X and can be calculated from the following linear equations
system of the finite element method [19]:

K(XG’XCS)XZSLS,k = ﬁSLS,k(XG’XPS) s k= LNLSéS > (1.8)

where P, (X »s) is the column-vector of the node’s loads for k™ design
load combination of the serviceability limit state, which should be formed
depending on unknown (variable) initial pre-stressing forces X s » as well as

unknown (variable) node coordinates of the structure X;; Z,,¢, is the result

column-vector of the node displacements for k™ design load combination of

the serviceability limit state, Zy,¢, = Zen, , (X s Xego X ps) = Ly, (X); Ni&

is the number of the design serviceability load combinations. For each m ™
node of the finite element model subjected to k™ serviceability design load
combination the design vertical and horizontal displacements can be calculated
depending on node displacement column-vector Zg , .

The system of constraints (1.2) — (1.3) should cover strength and stability
constraints formulated for all design sections of all structural members of the
considered steel structure subjected to all design load combinations at the
ultimate limit state. The following strength constraints should be included in
the system of constraints (1.2) —(1.3), formulated for all design sections,

Vi =1,_NDS, of all structural members, Vj=1,N,, subjected to all ultimate

load case combination, Vk =1, N, , namely:

- normal stresses verifications:
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(X
LICONSPPY (1.9)
Ryy.
- shear stresses verifications:
(X
LGNS P (1.10)
0.58Ry.

- as well as equivalent stresses verifications:

Oy (X) Ol (D) +3,(0)
1.15Ryyl, 1.15Ryyl,

1<0, (1.11)

where 0, (X) are Tk (X) are the maximum value of the normal and
shear stresses respectively caused by internal forces (axial force, bending
moments and shear forces) acting in i ™ design section of ;™ structural
member subjected to & ™ ultimate load case combination calculated from the
linear equations system of the finite element method (1.7); y, is the safety
factor [20]; R, is the design strength for steel member subjected to tension,
bending and compression; Ry, , 0.58R y, and 1.15R y, are allowable values
for normal, shear and equivalent stresses respectively [20]; N, is the number

of design sections in structural members; N, is the number of structural

members; 0, (X), Tk (X) and O v ik (X) are normal, shear and equivalent
stresses respectively at the specified cross-section point caused by internal
forces acting in i ™ design section of ;™ structural member subjected to & "
ultimate load case combination calculated from the linear equations system of

the finite element method (1.7). The maximum value of the normal o, ., (X)

m:

and shear stresses 7, .. (X), as well as normal O, (X), shear T ik (X) and

equivalent o, (X) stresses at the specified cross-section point should be

eqv,ijk
calculated depending on the variable geometrical parameters of the structure
X, , variable initial pre-stressing forces X,, and variable cross-sectional

dimensions of the structural members X, .
The following stability constraints should be included in the system of
constraints (1.2) —(1.3), formulated for all design sections, Vi=1,Np,

subjected to all ultimate load case combination, Vk =1, N/- ,

- flexural buckling verifications for all column structural members,
Vi=LNg, :

namely:

O-max,zf/‘k (‘X/) _
¢, ,(Xs. Xe5)R,7Y,

1<0, (1.12)
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O-max,zf/‘k (‘X/ ) _
(pz,j (XG 4 XCS )Ryyz‘
- torsional-flexural buckling verifications for all column structural

1<0; (1.13)

members, Vji=1,N, :
O-max,[/‘k (‘X/)

(pL‘,j (XG 4 XCS )Ryyl‘
- lateral-torsional buckling verifications for all beam structural members,

1<0; (1.14)

O-max,zf/‘k (‘X/) _
(pb,j (XG 4 XCS )Ryyl‘
where ¢, (X, X5) and ?.; (X.,X.) are column’s stability factors

1<0, (1.15)

corresponded to flexural buckling relative to main axes of inertia and calculated
depending on the design lengths / / cross-section type and cross-

ofy.j’ Tefzj?
section geometrical properties for the j ™ structural member [20]; (pL,’j()%( o> Xes)
is the column’s stability factor corresponded to torsional-flexural buckling and
calculated depending on the design lengths 7, ;. / / cross-section

type and cross-section geometrical properties for the j ™ structural member [20];

oz YT
Ny, is the number of column structural members; @, ; (X, Xo5) is the beam’s

stability factor corresponded to lateral-torsional buckling and calculated

depending on the design length /,, ., cross-section type and cross-section

geometrical properties for the j ™ structural member [20]; N oy 18 the number of
beam structural members. The flexural buckling factors ¢ (X4 X)) and
?.; (X, Xcs) » as well as torsional-flexural buckling factor (pL,’j()%( > X o) and
the lateral-torsional buckling factor ¢, (X;,X.5) should be calculated
depending on the variable geometrical parameters of the structure X, . and

variable cross-sectional dimensions of the structural members X .

The following buckling verifications for beam-column structural members
should also be included in the system of constraints (1.2) — (1.3), formulated for
all design sections, Vi=1,N,,, of all beam-column structural members,

subjected to all ultimate load case combination, Vk=1,N}5 ,

Vi=1LN,
namely:

CcM >

O-max,zf/‘k (‘X/) _

k77 1<), (1.16)
(pe,ijk (X)Rny
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O-max,[/‘k (‘XI)
(py j(XGaXcs)ci;k(X)R 7

where @, (X) and c, A(X ) are beam-column’s stability factors corresponded

-1<0, (1.17)

to in-plane and out-of-plane buckling and calculated depending on the internal
forces (ration of the bending moment to the axial force), as well as depending
on the design lengths [ / f ,» cross-section type and cross-section

geometrical properties for the ;™ structural member [20]; Ny, 1s the total

o v.j?

number of beam-column structural members, N, + N, +N,, =N,. The
beam-column’s stability factors ¢, (X) and i (X) should be calculated
depending on variable geometrical parameters of the structure X, ¢ » variable
cross-sectional dimensions of the structural members X, and variable initial

pre-stressing forces X, .

The following local buckling constraints should also be included into the
system of constraints:

A, (”CS>

22 1<0, 1.18
ﬂ'uw;( ) ( )
A, (Xg)

LI 22 1<0, 1.19
W,(X) (1.19)

where Iw’j(i o) and I i (X,s) are the non-dimensional slenderness of the

web and flange respectively of the cross-section for ;™ structural member;

(X) and lf (X) are the maximum values for corresponded non-

lm J
dimensional slenderness for column, beam and beam-column structural
members calculated depending on the internal forces (ration of the bending
moment to the axial force), as well as depending on the design lengths /

l,.;, cross-section type and cross-section geometrical properties for théf yj]th
structural member [20]. The non-dimensional slenderness Iw’j(i o) and
ZN()? cs) should be calculated depending on the variable cross-sectional
dimensions of the structural members X, only. At the same time, the
maximum values for corresponded non-dimensional slenderness 2, m,’j(f( ) and
)_W’j(f( ) should be calculated depending on the variable geometrical

parameters of the structure X, and variable cross-sectional dimensions of the

structural members X, and variable initial pre-stressing forces X .
The system of constraints (1.2) — (1.3) should also cover the displacements
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constraints (stiffness inequalities) for the specified nodes of the considered
steel structure subjected to all design load combinations at the serviceability
limit state. The following horizontal and vertical displacements constraints
should be included into the system of constraints (1.2) — (1.3), formulated for

all nodes, Vmm=1,N,, , of the steel structure subjected to all serviceability load

case combination, Vk =1,N;:* , namely:
%f()— 1<0, (1.20)
LECS NPy (1.21)
where 6, (X) and 0. 4 (X) areh’the horizontal and vertical displacements

respectively for/ ™ node of the steel structure subjected to & ™ serviceability
load case combination calculated from the linear equations system of the finite
element method (1.8); &,,, and &, , are the allowable horizontal and vertical

displacements for /™ structural node; N, is the number of nodes in the

considered steel structure.

Additional requirements, whose describe structural, technological and
serviceability particularities of the considered structure, as well as constraints
on the building functional volume can be also included into the system (1.2) —
(1.3). In particular these requirements can be presented in the form of

constraints on lower and upper values of the design variables, Vi=1,N, :

X

1--L<0, (1.22)
l

X

X—L’,—ISO, (1.23)

4
where X/ and X are the lower and upper bounds for the design variable X, .

The parametric optimization problem stated as non-linear programming
task by (1.1) —(1.3) can be successfully solved using a gradient projection
non-linear methods [21] in cases if the purpose function and constraints of the
mathematical model are continuously differentiable functions, as well as the
search space is smooth [22, 23]. The method of objective function gradient
projection onto the active constraints surface with simultaneous correction of
the constraints violations ensures effective searching for solution of the non-
linear programming tasks occurred when optimum designing of the building
structures [24, 25]. Additionally, a sensitivity analysis is a useful optional
feature [26] that could be used in the scope of numerical algorithms which are
developed based on the gradient methods.

2. A numerical algorithm to determine optimal pre-stressing variant of
bar structures. A certain 3 " pre-stressing variant V, ofthe bar structure can
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be definitely described by the set of redundant members
r, ={rﬁ’”},y =1,_NRM’,;, and by the value of the initial pre-stressing force

Xps introduced into these members, V,= {rﬁ,XPS’ﬁ} = {{rﬁ’#},XPS’ﬁ}a

uzl,_NRMﬁ here N, , is the number of redundant members for J ® pre-
stressing variant V.
The set of the pre-stressing variants is
B ={Vﬁ} ={rﬁ,XPS’ﬁ}, B=1,Ny . In general case, the number of such
variants equals to the redundancy of the bar system. The number of initial pre-
stressing forces introduced into the bar system can be less or equal to the
degree of static indeterminacy of the bar system or the number of the
NX,PS
redundant members N, , namely Z N g SNpg -
p=1
The dimension S of set B can be significantly reduced taking into
account the symmetry of the considered structural form. The design variables
vector X ={X PS’/}}, B=1,N, ,c of the unknown (variable) initial pre-
stressing forces for the considered bar system is formed according to set
B= {Vﬁ}, B=1,Ny p , of the pre-stressing variants.
An optimal pre-stressing variant for the considered structure can be defined
as a combination of some pre-stressing variants V, c B and presented as

subset @ ={V, |V, €B}, 5 =L,N, ., N, . SN, ., ® B, accordingly.
In the beginning set @ represented the optimal pre-stressing variants is

® =, vector of the initial pre-stressing forces is X »s =0 . At each iteration

of the proposed algorithm one of the pre-stressing variant V, € B is included

into the set @, and the optimum material and internal forces distribution
problem (1.1)—(1.3), (1.5) in the bar system should be solved.

Let us introduce in further consideration the following function (2.1) that
estimates both understressing and overstressing in term of longitudinal stresses

for all structural members of the bar system [27]:
NI.(' NR NI)S

Ss ZZZZ([G]_GX,M()?))Z > (2.1

k=1 j=1 i=l
where o, is the design value of the local longitudinal stress due to the
bending moments and the axial force calculated in i ™ design section for ;™
structural member subjected to & ™ load case combination; N, is the number
of the design sections in structural members; N, is the number of the

structural members; [cr] ~ is the maximum allowed longitudinal stresses.

X,
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An order of the consecutive including of the pre-stressing variants
V, = {rﬁ,XPSﬁ} = {{rﬁ’ﬂ},XPS’ﬁ}, U =1,_NRM’ﬁ, from set B into set ® can be
defined by the values of the components of the gradient vector for function S_

(2.1) with respect to the variable pre-stressing parameters X . Pre-stressing

m,u

variant V, = {rm,XPS’m} = {{r },XPS’M} eB, u= l,_NRM’m , with maximum
value of the gradient of the function S_ (2.1) related to the number of redundant
members N, should be included into set @ first of all. Consecutive
including of the pre-stressing variants from set B of the pre-defined pre-
stressing variants into set @ represented the optimal pre-stressing variants
should be performed until the regulation of the internal forces in the structure
under consideration leads to desired decrement of the objective function.

Let us presented the following algorithm to find optimal number of the
redundant members for introducing initial pre-stressing forces into the
redundant members of the bar structures.

Step 0. n=0 is the number of optimisation problems solved. The optimal
number of the redundant members to introduce the initial pre-stressing forces
for considered bar system is N,,, =0. The degree of static indeterminacy of

the bar system is N, .

Step 1. A searching problem for optimum cross-section sizes of the
considered structure without initial pre-stressing forces in the redundant
members is formulated and solved in the continuum space of the unknown
cross-sectional sizes X s only, namely optimum material distribution problem
(1.1)—=(1.3), (1.5) for the bar system is formulated and solved. As a result

those optimum cross-section sizes X, , of the structural members, whose

provide the least value f, of the objective function (1.1) and satisfy the
system of constraints (1.2) — (1.3) are defined. The number of optimization
problems solved should be incremented, n < n+1.

Step 2. The set of the pre-stressing variants

B= {Vﬁ} = {rﬁ,XPS’ﬁ}, B=1,Ny s , of the bar system is pre-defined by the

designer. The number of redundant members N, , for each pre-defined pre-
stressing variant V, = {rﬁ,X,,Sﬁ} = {{rﬁ’ﬂ},X,,S’ﬁ}, U =1,_NRM’ﬁ, should not

exceed the degree of static indeterminacy of the bar system N,

Ny p S Npg - Auxiliary vector Yo ={XPS’/3 | Xps p € Vﬁ}, B=1LNy s, of
the unknown initial pre-stressing forces is formed according to set B . Start
zero value for each component X, , of vector Y,, should be assigned.

Step 3. Set of the optimal pre-stressing variants is @ =J. Vector of the
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design variables corresponded to initial pre-stressing forces is X 2
Step 4. Vector for the gradient of function S_ (2.1) is calculated for all

variable pre-stressing parameters (unknown initial pre-stressing forces) Y s

oS
Vsoz{aX" } V Xy € Ps,ﬂ—lNXPS. (2.2)
PS.p
Step 5. Whichever pre-stressing variant vV, = {r X g m} =
= {{rm’y},XPS’m} eB, u= I,_NRM’M , meets the following criteria:
1 oS

. | — max (2.3)

NRM,m aA/PS,W[

should be included into the further consideration, here N is the number of

RM ,m

redundant members where initial pre-stressing force X is introduced,

PS,m
Niviw < Npg - If there are no pre-stressing variants with number of redundant
members N, . less than the number of degree of static indeterminacy of the
bar system N, , then moving to step 10 should be executed.

Step 6. Unknown initial pre-stressing force X corresponding to pre-

PS,m

stressing variant V, should be added to the design variable vector X
XPS n <_X +{XPS,W1} .

Step 7. The optimum material and internal forces problem (1.1)—(1.3),
(1.5) is formulated and solved in the continuum space of the unknown cross-
sectional sizes and unknown initial pre-stressing forces. Those optimum values

PS.,n >

for cross-sectional sizes X, s, and optimum values for initial pre-stressing

¥ ¥ T .
forces X, are defined, X, = {X csas X PS”} , whose satisfy the system of

constraints (1.2) — (1.3) and provide the least (extreme) value of the objective
function f, (1.1). The number of optimization problems solved should be
incremented, n<n+1.

ﬁ72

Step 8. 1f ”‘>.9 where ¢, &£=1.05..1.10, is the desired

n-1
decrement of the objective function value caused by introducing initial pre-
stressing force X, in the redundant members r, of the m ™ pre-stressing

variant sz{rm,XPS’m}z{{r },XPS’m},y=l,NRM’m, then @« O+V, ,

m,p
?PS <« ?PS _{XPS,m}‘

Optimal number of the redundant members to introduce the initial pre-
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stressing forces into the considered bar system is increased as
Ny < Ny + Ny, - The degree of static indeterminacy of the bar system is

NDSI <_NDSI_NRMm'

ﬁ72 f;7l

n-1

Step 9. Introducing the initial pre-stressing force X

Moving to step 4 should be performed. In opposite

case, when < &, then moving to step 9 should be performed.

ps.n into the r,
redundant members of the bar system is not effective. Returning to the
previous optimum solution should be executed, X, <~ X |, f < f.,. The
number of optimization problems solved should be decremented, n < n—1.
Step 10. Optimal number of the redundant members to introduce the initial
pre-stressing forces into the considered bar system is N,,. Number of
optimization problems solved is . Optimum material and internal forces
distribution corresponds to design variables vector X " and objective function

value f, .

3. Results and discussions. The efficiency of the proposed numerical
algorithm is presented to define the optimal number of the redundant members
for introducing initial prestressing forces into the bar system, considering
parametric optimization of a cross-beam structure (see Fig. 3.1).

mo\m%é/ug %/QB
N N ><3 22?43

e T T
| o ><>< RS
Can ] ./ ./ —

>
<S
— 3 =

ey,
Fig. 3.1. Design scheme of the cross beam structure with node and bar numbers

The cross-beam structure is subjected to the distributed dead and live loads
with characteristic value ¢ =25.44t/m. Applied loadings on the considered
cross-beam structure are transmitted using mezzanine beams arranged with
step 1m.

For considered cross-beam structure, steel with the following material
properties is used: design resistance R, =240 MPa, modulus of elasticity

E =2.1x10° MPa, Poisson's ratio in elastic stage v=0.3 and unit weight
y = 7800 kg/m’. For all structural members welded I-beam cross-section type is
used.

Sufficient shear buckling resistance for all beam webs has been assumed
ensuring by intermediate transverse and longitudinal stiffeners arranged
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according to the design code requirements [20].

Cross-section sizes for all beams have been assigned as the same, in order
to have load-carrying capacity reserves in the structure, which can be further
utilized by prestressing. In practice, such bearing capacity reserves may exist
due to requirements of unification, restrictions on the assortment range of
rolled steel profiles, etc. It should be noted that there is no need for
prestressing, in cases when tapered structural members are used for considered
cross-beam structure.

According to item 1 of the algorithm presented above the optimum material
distribution problem (1.1)—(1.3), (1.5) has been solved for specified initial
data. Cross-sectional sizes of the cross-beam structure were considered as

design variables X os =(h,, . b, 1, )", where h, is the beam web height, 7,
is the beam web thickness, b, is the beam flange width, ¢, is the beam flange

thickness. The material weight G was considered as the objective function
(1.1):
G(X5)=y(h,t,+2bt,)L —min, (3.1)
where L is the overall length of all beams in the structure, L =144 m.
Load-bearing capacities constraints (strength and stability inequalities) for
all design sections of the structural members subjected to all design load
combinations at the ultimate limit state have been included into the system of
constraints. The following strength constraints have been considered,

formulated for all design sections, Vi =1,_NDS, of all structural members,

Vj =1,_NB, subjected to one ultimate load case combination, k£ =1, namely

normal stresses verifications (1.9), shear stresses verifications (1.10), as well
as equivalent stresses verifications (1.11). The lateral-torsional buckling
constraints (1.15) have been also considered, formulated for all design sections

Vizl,_NDs of all structural members ijl,_NB according to the

requirements [20], where the reduction factor for lateral-torsional buckling has
been determined based on the cross sectional properties depending on the

variable cross section sizes X ¢ and takes into account the distance between

lateral restraints equals to 1m. The local buckling constraints (1.18) — (1.19)
with the maximum values for corresponded non-dimensional slenderness

Do
uw, j
constraints, as well as vertical displacements constraints (1.21) for specified
(all internal) nodes of the cross-beam structure with the allowable vertical

displacement 6., = 80 mm.

=3.5 and /Tu ;; =0.5 have been also included into the system of
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X .

nd . .
(a) — 1" pre-stressing variant (b) — 2™ pre-stressing variant

Pag
(c) — 3™ pre-stressing variant

(g) — 7" pre-stressing variant

Fig. 3.2. Pre-stressing variants for the cross beam structure by:
(a) — (d) — lowering external supports;
(e) — (g) — vertical shifting of the beam relative to each other at their mutual intersections

The dimensions of the considered optimum material distribution problem
were 4 design variables and 388 constraints. Optimum continuous cross-

sectional sizes [cm] X[, _, =(207.2560, 2.0211, 79.7388, 2.6526)" for all

beams of the cross-beam structure corresponded to the material weight
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G:,W:O =94.5647 ton of the structure has been obtained for the case when the

number of redundant members to introduce initial pre-stressing forces equals
to zero, N,, =0. There were 98 active constraints in the optimum point
including strength constraints (1.9) formulated for 6™ and 7™ structural
members (see Fig. 3.1), as well as local buckling constraints (1.18), (1.19)
formulated for all design sections of all structural members. The set of linear-
independent constrains included 3 constraints only, namely 2 local buckling
constraints (1.18), (1.19) for 1% structural members and strength constraint
(1.9) for 7" structural member (see Fig. 3.1).

The set of the pre-stressing variants for considered cross-beam structure

B= {Vﬁ} = {rﬁ,XPS’ﬁ}, Jij =m, Ny ps =7, has been pre-defined (see
Fig. 3.2) according to item 2 of the algorithm presented above. The
corresponded auxiliary vector fPS = {X,,Sﬁ | Xps p € Vﬁ}, Jij =m, of the
unknown initial pre-stressing forces with start zero values for all components

X 5 5 were formed, Yo = (X XpspreeXpg 7 )T = (0.0,0.0,...,0.0)T .

PS.1°

According to item 3 the vector for the gradient of function S_ (2.1) has
been calculated for all variable pre-stressing parameters (unknown initial pre-
stressing forces) ¥,, when variable cross-section parameters X, (unknown
cross-sectional sizes) of the cross-beam structure have been fixed at the level
of X5 =Xgg,, _, (see Table. 3.1).

An order of the consecutive including of the pre-stressing variants
vV, = {rm,XPS’m} = {{r },XPS’m}, u =l,_NRM’m, from set B of the pre-defined

m,u
pre-stressing variants into set @ represented the optimal pre-stressing variants
has been determined based on the values of the criteria (2.3) (see Table 3.1).

According to item 6 of the algorithm presented above the unknown initial
pre-stressing force X, corresponded to the pre-stressing variant V, has
been added to the design variable vector first of all, X <« X+X
X =(h,, t, b, 1, Xps,) .

The optimum material and internal forces problem (3.1), (1.9), (1.10),
(1.11), (1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in
the continuum space of the unknown cross-sectional sizes and unknown initial
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all
beams of the cross-beam structure and initial pre-stressing force [t]:

X, _, =(202.5226, 1.9750, 77.9167, 2.5920, ~59.1910)",

PS,2

corresponded to the material weight G,, _, =90.2934 ton of the structure has

R =2
been obtained for the case when the number of redundant members to
introduce initial pre-stressing forces X, =—59.1910 ton is N, =2 . There
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were 102 active constraints in the optimum point including strength constraints
(1.9) formulated for 6™, 7", 17", 18" 19™ and 20" structural members (see
Fig. 3.1), as well as local buckling constraints (1.18), (1.19) formulated for all
design sections of all structural members. The set of linear-independent
constrains included 5 constraints (that is equal to the number of the design
variables), namely 3 strength constraints (1.9) for 19", 20™ and 7™ structural
members (see Fig. 3.1), as well as web local buckling constraint (1.18) for 2™
structural member and flange local buckling constraint (1.19) for 1% structural
member. Introducing the initial pre-stressing force into the redundant members
of the cross-beam structure according to the second pre-stressing variant (see
Fig. 3.2 (b)) has been ensured the material economy y po3mipi 4.73%
comparing to the weight of the cross-beam structure without pre-stressing.

Table 3.1

Determination of the order of the consecutive including of the pre-defined pre-
stressing variants into the set of optimal pre-stressing variants

Pre- Number Of 1 .ia) pre- | Components
i redundant . oS Criteria

stressing members stressing o 107 23) Order
variant, J| r,, NRM,ﬁ force X Ps.p Ps.p

1 2 Xy 8.1133 4.0566 2

2 2 X 8.1170 4.0585 1

3 4 X s 5 ~7.7961 1.9490 3

4 4 X ~71.7877 1.9469 4

5 4 Xpss 3.0895-107 | 0.7723-107 | 6

6 4 Xps o 2.6861-10" | 0.6715:107 | 7

7 2 X ps 3.0895:107 | 1.5448:10% | 5

On the second iteration of the searching process for optimal pre-stressing
variant of the cross-beam structure the unknown initial pre-stressing force
X, corresponded to the pre-stressing variant V; has been added to the

by, t XPS,Z’ XPS,I)T'

X=(h,t,b,t,

The optimum material and internal forces problem (3.1), (1.9), (1.10), (1.11),
(1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in the
continuum space of the unknown cross-sectional sizes and unknown initial
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all
beams of the cross-beam structure and initial pre-stressing forces [t]:

*

)?Nwﬂ =(195.9161, 1.9105, 75.3726, 2.5074, —66.6490, —67.4819)T,

design variable vector X « X +X PS>

W

corresponded to the material weight G,, _, =84.4959 ton of the structure has

*
R =4
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been obtained for the case when the number of redundant members to
introduce  initial ~ pre-stressing  forces = X, =-66.6490ton  and

Xpg, =—67.4819ton is N, =4 . There were 106 active constraints in the

optimum point including strength constraints (1.9) formulated for 2™, 3™, 6™,
7% 10", 11", 14™, 15™, 22™ and 23™ structural members (see Fig. 3.1), as well
as local buckling constraints (1.18), (1.19) formulated for all design sections of
all structural members. The set of linear-independent constrains included 5
constraints (that is less than the number of the design variables), namely 3
strength constraints (1.19) for 6", 22™ and 10" structural members (see Fig.
3.1), as well as web and flange local buckling constraint (1.18), (1.19) for the
1™ structural member. Introducing the initial pre-stressing force into the
redundant members of the cross-beam structure according to the second (see
Fig. 3.2 (b)) and first pre-stressing variants (see Fig. 3.2 (a)) has been ensured
the material economy 11.9% comparing to the weight of the cross-beam
structure without pre-stressing and material economy 6.86% comparing to the
weight of the cross-beam structure with second pre-stressing variant only.

On the third iteration of the searching process for optimal pre-stressing
variant of the cross-beam structure the unknown initial pre-stressing forces
Xpg,; and X, corresponded to the pre-stressing variant V; (see Fig. 3.2 (¢))

and V, (see Fig. 3.2 (d)) respectively have been added to the design variable

X = (hw’ L b/s t‘/ > XPS,Z’ XPS,I’ XPS,3’ XPS,4)T .
The optimum material and internal forces problem (3.1), (1.9), (1.10), (1.11),
(1.15), (1.18), (1.19), (1.21), (1.6) has been formulated and solved in the
continuum space of the unknown cross-sectional sizes and unknown initial
pre-stressing forces. Optimum continuous cross-sectional sizes [cm] for all
beams of the cross-beam structure and initial pre-stressing forces [t]:

*

)?NW:‘* =(195.7524, 1.9089, 75.3101, 2.5053,

vector X « X +X 5, + Xy,

—46.3229,-47.2695, 19.4231, 20.9016)T,
corresponded to the material weight G;,W: 4 =84.3553 ton of the structure has

been obtained for the case when the number of redundant members to
introduce initial pre-stressing forces Xy, =—46.3229 ton,

Xpg, =—47.2695ton, X, =194231ton  and X, , =20.9016ton is

N,,, =12 . There were 108 active constraints in the optimum point including

strength constraints (1.9) formulated for 2", 3™, 6", 7, 10, 11" 14", 15",
18" 19™ 22™ and 23" structural members (see Fig. 3.1), as well as local
buckling constraints (1.18), (1.19) formulated for all design sections of all
structural members. The set of linear-independent constrains included 6
constraints (that is less than the number of the design variables), namely 4
strength constraints (1.9) for 7", 19", 11™ and 15" structural members (see Fig.
3.1), as well as web and flange local buckling constraint (1.18), (1.19) for the
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1* structural member. Introducing the initial pre-stressing force into the
redundant members of the cross-beam structure according to the second (see
Fig. 3.2 (b)), first (see Fig. 3.2 (a)), third (see Fig. 3.2 (c)) and forth (see
Fig. 3.2 (d)) pre-stressing variants has been ensured the material economy
12.10% comparing to the weight of the cross-beam structure without pre-
stressing and material economy 0.17% comparing to the weight of the cross-
beam structure with previous first and second pre-stressing variants only.

Since, decrement of the objective function value is less than 1% comparing
to one for considered structure with previous pre-stressing variants, so
introducing the initial forces into the redundant members according to 3™ and
4™ pre-stressing variants (see Fig. 3.2 (c), (d)) is not effective. Searching for
optimal pre-stressing variant of the considered cross-beam structure can be
finished. Thus, the optimal pre-stressing variant of the considered cross-beam
structure consists of the 1% and 2" pre-stressing variants (see Fig. 3.2 (a), (b))
and can be created by lowering external 2™, 5 8™ and 11" supports. The
optimal number of the redundant members for introducing the initial pre-
stressing forces is 4 respectively.

In order to define the optimal pre-stressing variant for considered cross
beam structure three optimum material and internal forces distribution
problems only have been solved with the number of variable initial pre-
stressing forces 1, 2 and 3 respectively.

As it has been shown by presented numerical example, proposed numerical
technique to determine the optimal number of the redundant members to
introduce initial pre-stressing forces ensures decreasing of the number of
optimum material and internal forces distribution problems that should be
solved, as well as reduction of the dimension for the design variable vector of
unknown initial pre-stressing forces for considered optimization problems.

Conslusion. A numerical technique to determine the optimal number of the
redundant members to introduce initial prestressing forces has been offered for
high-order statically indeterminate bar structures. An idea to form an optimal
prestressing variant for the considered bar structure by consecutive
introduction of the initial prestressing forces into the redundant members and
subsequent solving of the optimum material and internal forces distribution
problems has been suggested. An order of the consecutive including of the
initial prestressing forces into the redundant members can be defined by values
of the components of the gradient vector for the function that estimates both
under-stressing and overstressing in term of longitudinal stresses for all
structural members of the bar system with respect to the variable prestressing
parameters.

The suggested numerical technique to determine the optimal number of the
redundant members to introduce initial prestressing forces provides the
reduction of the dimension for the design variable vector of unknown initial
prestressing forces for considered optimization problems.
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Cmamms naoitiwna 25.03.2021

FOpuenko B. B., Ilenewrxo 1. /1.
ONTUMAJIBHA KIJIBKICTH 3ANBUX B’SI3EM J1J11 BBEJEHHS 3YCHJIb
MNONEPEJHbOI'O HAIIPYKEHHSI METAJIEBUX CTEP)KHEBUX CUCTEM

VY cTaTTi po3riIsaacThes 3a1a4a napaMeTpHYHOl ONTHMI3alii METAICBUX CTEPIKHEBUX CHCTEM,
IpEACTABIICHA K 3a4ada HENiHIHHOro MporpaMyBaHHs 31 3MIHHUMHU (HEBIZOMHMMHM) pO3MipaMu
HONMEPEYHHX TePepi3iB eIEeMEHTIB KOHCTPYKLII, a TAKOXK 3yCHJUISIMH IONEPEAHBOr0 HAPY)KEHHS,
0 BBOAATHCS y BU3HAYeHi 3aiiBi B’si3i crepkHeBOi cucreMu. CucremMa OOMEXCHb OXOIUIIOE
0OMEKEHHS HeCy4ol 3AaTHOCTI, 10 (GOPMYITIOIOTHCS IS YCIX PO3PaxyHKOBUX IEpepi3iB Hecydnx
@IIEMEHTIB KOHCTPYKLIl, 1[0 Hiusirae Iii ycix po3paxyHKOBHX KOMOiHALili HaBaHTaXXEHb IEPLIOL
Ipyld TpaHUYHUX CTaHIB, a TAKO)X OOMEKEHHs IEPEMilllcHb BHU3HAYCHUX BY3IIB CTEPIKHEBOL
CHCTeMH, IO mijmirae Ol yciXx po3paxyHKOBHX KOMOIHALifi HaBaHTAXKEHb OPYroi TIpynu
IPaHHYHHX cTaHiB. {1 po3B’sI3Ky 334adi HapaMeTPHYHOI ONTHMI3allii BUKOPHCTOBYBABCS METOT
HpoeKii rpagieHTa GyHKLIl METH Ha MOBEPXHIO aKTHBHUX OOMEKEHb 3 OJHOYACHOIO JIIKBigalieo
HEB'SI30K B TOPYLICHHX OOMexeHHsx. Jlos CKiaaHuX 6araTo pa3 CTaTHYHO HEBH3HAYCHHX
CTEP)KHEBHX CHCTEM 3allPOIIOHOBAHA YHCEJIbHA METOANKA BHU3HAYCHHS ONTHMAJbHOI KiIBKOCTI
3aliBUX B’si3€l JUIsl BBEACHHS 3yCHIIb [IOIEPEIHBOI0 HAIIPYKEHHS.

KarouoBi ciioBa: mnapaMerpuyHa ONTHMi3allis, 3aiiBa B’s3b, 3YCHJUIS [ONEPEAHBOrO
HANpY)KeHHs, ONTHUMAJbHEC IONMEPEIHE HANPYKCHHS, aHali3 YyTJAMBOCTI, METOJ HPOCKLil
rpajieHTa.

Yurchenko V. V., Peleshko 1. D.
OPTIMAL NUMBERS OF THE REDUNDANT MEMBERS FOR INTRODUCING
INITIAL PRE-STRESSING FORCES INTO STEEL BAR STRUCTURES

The paper considers parametric optimization problems for the steel bar structures formulated
as nonlinear programming ones with variable unknown cross-sectional sizes of the structural
members, as well as initial prestressing forces introduced into the specified redundant members of
the structure. The system of constraints covers load-bearing capacity constraints for all the design
sections of the structural members subjected to all the design load combinations at ultimate limit
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all
design load combinations at serviceability limit state. The method of the objective function
gradient projection onto the active constraints surface with simultaneous correction of the
constraints violations has been used to solve the parametric optimization problem. A numerical
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technique to determine the optimal number of the redundant members to introduce the initial
prestressing forces has been offered for high-order statically indeterminate bar structures.

Keywords: parametric optimization, redundant member, initial prestressing force, optimal
prestressing, sensitivity analysis, gradient projection method.

FOpuenko B. B., Ilenewxo U. /1.
ONTUMAJIBHOE KOJUYECTBO JIMIIHUX CBA3EM /1151 BBEIEHUSA YCUAJIUANA
MNPEJABAPUTEJIBHOI'O HANIPSIXKEHUSI METAJIVIMYECKUX CTEPXKHEBBIX
CUCTEM

B cratbe paccMoTpeHa 3ajiaua apaMeTpUUeCcKOd ONTUMU3ALUU METAJUIMYECKUX CTEPHKHEBUX
cHCTEM, NpPEACTAaBIECHHAs Kak 3ajaya HEJIMHEHHOro MNpOrpaMMHUPOBAHMS C IE€PEMEHHBIMU
(HEM3BECTHBIMH) pa3MepaMH IIONEPEYHBbIX CEYCHUH DJIEMEHTOB KOHCTPYKLHH, a TAKKE YCHUIMH
HPEJBAPUTENIBHOIO HAINPSHKEHHs, KOTOPbIE BBOASTHCA B  ONPEICICHHbIE JIMIIHUE CBS3H
cTep)KHEeBOW cucreMbl. CUCTeMa OrpaHUYEHHI OXBATHIBACT OrPaHUYEHHs HECYIIEH COCOOHOCTH,
chopMyIMpOBaHHBIE M1 BCEX PACUCTHBIX CCUCHHMIl HECYLIMX OJIEMEHTOB KOHCTDPYKIIMH,
HOUIeKAILEH AEHCTBUIO BCEX PACYETHBIX KOMOMHALMH Harpy3oK MEpBOW IPYIIIbl NPEEIbHBIX
COCTOSIHUH, @ TaK)Ke OrPaHUYEHUS NEPEMEILEHUI ONpPEIEICHHbIX Y3JI0B CTE€PXKHEBOH CHCTEMBI,
HOJUIeXKAIIEeH JeHCTBHIO BCEX PACUCTHBIX KOMOWHAIIMN HArpy30K BTOPOW TPYMIBI HpPEHeIbHBIX
coctossHuil. [l peuieHus 3ajaud  NapamMeTpUuecKOW ONTUMH3ALMU  HCIOJIB30BAJICS METOJ
IPOCKLMK TIpajueHTa (GYHKIMH LETH Ha I[IOBEPXHOCTh AKTHBHBIX OrPAaHWYCHUH IpH
OJJHOBPEMEHHOW JIMKBUIALMH HEB’ 430K B HapYIICHHBIX OrPaHUYCHUsX. J[J1s CIIOKHBIX MHOTO pa3
CTaTHYECKH HEONPEIEIEHHbIX CTEP)KHEBBIX CHUCTEM IPEMJIOKEHA UHCIEHHas METOAUKa
OIpEeIeHUs] ONTHMAIBHOIO  KONMYECTBA JIMIIHUX  CBisI3efl sl BBEACHHUS  YCHIIMH
HPEIBAPUTENBHOIO HAIPSKEHUSL.

KaroudeBble  cioBa: napaMerpuyeckas  ONTHMHU3ALMSLJMIIHAS ~ CBA3b,  yCWIIUE
HPEBAPUTENBHOIO  HAIPSDKEHMS, ONTHMAJIbHOE IIPEIBApUTENbHOE  HANpPsHKEHHE, aHAIU3
4yBCTBUTEIIbHOCTH, METO/L IIPOEKLIUH I'PAJJUEHTA.

YK 624.04, 519.853

FOpuenko B. B., Ilenewxo I. /] OnTuMajbHa KiIBKICTb 3aiiBUX B’si3eil ISl BBeJleHHsl 3yCHJIb
TONEPETHbOT0 HANPY)KEeHHsI MeTaJeBUX CcTepkHeBHX cucTeM // Omip MarepianiB i Teopis
criopyn: Hayk.-Tex. 30ipH. — K.: KHVBA, 2021. — Bumn. 106. — C. 68-91.

Y cmammi posensoacmuvcsa 3adava napamempuunoi onmumizayii Memanesux cmepilcHesux
cucmem, npedcmaeneHa K 3a0a¥a HeNiHIllHO20 NpPOSPAMYBAHHs 3i 3MIHHUMU (He8IOOMUMU)
po3Mipamu nonepeunux nepepizié eremMenmie KOHCMpPYKyii, a maxoic 3yCuiisamu nonepeoHb020
HANPYIICEHHS, WO B6005IMbCA Y GU3HAYeni 3ausi 6 131 cmepoicnesoi cucmemu. Cucmema obmedicetsv
OXONTIOE OOMECEHHS HECYUOT 30amHOCH, WO HOPMYTIOIOMbCsL 01 YCIX PO3PAXYHKOBUX Nepepisie
Hecyuux enemenmie KOHCmpyKyii, wjo nionaseac Oii ycix po3paxyHKosux KoOMOIHaAyil HA6aAHMAadNCeHb
nepwioi Spynu  SPaHUYHUX CMAHIG, A MAKOJC OOMEJCeHHs nepeMiyeHb GUHAYEHUX Y36
cmepoicHesol cucmemu, wo nionseae Oii yCix po3PaAxXyHKOSUX KOMOIHAYI HABAHMAMCEHb OpY2oi
epynu epanudnux cmanie. J{is po3e’a3ky 3a0aui napamempuyHoi onmumizayii 6UKOpUCmoe8y8ascs
Memoo npoexyii 2padienma (QYHKYii Memu Ha NOSEPXHIO AKMUBHUX OOMENCeHb 3 0OHOYACHOI
JKBIOayiclo Hes 130K 8 Nopyuwlenux oomedcennsx. s ckwaonux 6azamo paz cmamuiHo
HeBUSHAYEHUX — CMEepICHe8UX CUcmeM 3anpONnOHO8AHA  HUCENbHA MeMOOUKA  GUSHAYEHHS
ONMUMAnbLHOT KITbKOCmI 3ai6ux 8 sazell 0Jis 66e0eHHsl 3yCUb NONEPEeOHbO20 HANPYICEHHS.

In. 3. Ta6x. 1. bi6mior. 27 Ha3s.

VK 624.04, 519.853

Yurchenko V. V., Peleshko I. D. Optimal numbers of the redundant members for introducing
initial pre-stressing forces into steel bar structures // Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles — Kyiv: KNUBA, 2021. — Issue 106. — P. 68-
91.

The paper considers parametric optimization problems for the steel bar structures formulated
as nonlinear programming ones with variable unknown cross-sectional sizes of the structural
members, as well as initial prestressing forces introduced into the specified redundant members of
the structure. The system of constraints covers load-bearing capacity constraints for all the design
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sections of the structural members subjected to all the design load combinations at ultimate limit
state, as well as displacement constraints for the specified nodes of the bar system, subjected to all
design load combinations at serviceability limit state. The method of the objective function
gradient projection onto the active constraints surface with simultaneous correction of the
constraints violations has been used to solve the parametric optimization problem. A numerical
technique to determine the optimal number of the redundant members to introduce the initial
prestressing forces has been offered for high-order statically indeterminate bar structures.

Figs. 3. Tabs. 1. Refs. 27.

V]IK 624.04,519.853
FOpuenko B. B., Ileaewxo Y. J]. OnTHMajabHOe KOJHYECTBO JHIIHHUX CBsI3eii 111 BBedeHUs
YCWJIMIi NpPeIBAPUTEJILHOTO HANPSIKEHUs] METAJJIMYECKHX CTep:KHEBBIX cucTeM //
CoIpOTHBIIEHHE MATEPUAIIOB M TEOPHs COOPYXKEeHHit: Hayd.- Tex. coopH. — K.: KHYCA, 2021. —
Bein. 106. — C. 68-91.

B cmamve paccmompena 3a0aya napamempuyecKkon ONMUMUAYUU  MEMALTUYECKUX
CMEPIICHeBUX  CUCEM, NPeOCMAGNeHHAsl KAK 3d0aud HeIUHEUHO20 NpOSPAMMUPOSAHUs C
nepemMeHHbIMU (HeU36eCMHbIMU) PA3MEPAMU NONEPEUNbIX CeYeHUll INeMEHN08 KOHCMPYKYUU, d
maxaice yCunull npedsapumenbHo20 HAnpsdICeHusl, KOmopbvie 6600AMbCsl 8 ONpeodeieHHble TUUHUE
ceasu  cmepoicnegoll  cucmemvl. Cucmema 0panuyeHull 0X6amwvléaen OPaAHUdeHuss Hecyuell
cnocobnocmu,  copmynruposannvle O 6CeX PACHEMHBIX CEYEHUl HeCYWUx IIeMeHmog
KOHCmMpYyKyuu, nooaedicaujeli 0etcmsuio 6cex pacuemubix KOMOuHayutl Hazpy30K nepeol epynnvl
nPeoenbHbIX  COCMOSAHUL, a  MAKJCe O02PAHUYEHUsT NepeMeujeHull  ONnpeoeleHHbIX Y3708
CMePIHCHesOl  cucmempl, Nooaexcaujell Oelcmeuio 6cex PAacuyemublx KOMOUHAYUL HA2PY30K
6mMopoil epynnol NPeOeIbHbIX COCMOSHUL. [[isl peuleHus: 3a0ayu napamempuieckoi. OnmuMu3ayuu
UCNONL30BANCS MemOO NPOeKyuu 2paoueHma @yHKyuu yeau HA NOSEPXHOCHb  AKMUBHBIX
ocpanuyeHull npu 0OHOBPEMEHHOU JUKSUOAYUU He6 SI30K 6 HAPYUWIEHHbIX ozpanuyenusx. [l
CNIOJICHBIX MHO20 pa3 CMAMU4ecku HeonpeOeieHHbIX CIMEPIICHEGbIX CUCMEM NpednodiceHa
YUCTIEHHAs, MEMOOUKA ONpedeNeHusi ONMUMATBHO20 KOIUYeCmea TUWHUX C6in3ell 0N 66e0eHUs.
yeunuil npeosapumenbHo20 HanpNCeHus.

Wn. 3. Taba. 1. bubanor. 27 Ha3s.

ABTOP: 00KMOP MEeXHIYHUX HAYK, Npohecop Kagheopu Memanesux ma 0epes ssHux KOHCMpYKYitl
FOpuenko Bimanina Bimaniiena

Anpeca podoua: 03680 Vrpaina, m. Kuis, [Tosimpogromcokuii np. 31, Kuiscokuil HayionanibHuil
yHisepcumem 6y0ieHUYMeA i ApXimekmypu

Pobounii Ten.: +38(044)249-71-91

Moboinbuuii Tea..: +38(063)89-26-491

E-mail: vitalina@scadsoft.com

SCOPUS ID: 25637856200

ORCID ID: https://orcid.org/0000-0003-4513-809X

ABTOP: KAHOUOQM MEXHIYHUX HAYK, doyeHm Kagpedpu 0ydigeibH020 SUPOOHUYMEA

Ienewrxo lsan Imumposuy

Anpeca po6oua: 79013 Vrpaina, m. Jlveis, eyn.. Cm. bandepu 12, Hayionanonuil ynisepcumem
«/Ivsiscoka nonimexuikay

Pobounii Ten.: +38 (032) 258-25-41

Moboinbumii Tea..: +38(098)41-57-517

E-mail: ipeleshko@polynet.lviv.ua

SCOPUS ID: 25637832500

ORCID ID: https://orcid.org/0000-0001-7028-9653



