Numerical modeling of the stability of parametric vibrations of a high thin-wall shell of negative Gaussian curvature
DOI:
https://doi.org/10.32347/2410-2547.2018.101.45-59Keywords:
dynamic stability, parametric vibrations, finite element method, high thin-wall shell, hyperboloidAbstract
A numerical simulation of the stability of parametric vibrations of a high thin-wall shell in the form of hyperboloid under the action of the external surface pressure and axial compression was performed. The equation of dynamic stability of the shell was presented in the form of a static equilibrium equation with the addition of the D'Alambert forces of inertia, dissipative forces, and some components of the unexcited stress-strain state of the shell were depending on time. The reduced mass, damping, stiffness, and geometric stiffness matrixes of the shell were formed using the procedures of the finite element analysis software program. The problem of nonlinear statics was solved by the modified Newton-Raphson method. The stability of the shell under the action of the static component of parametric load of the two types are solved by the Lanczos method. A modal analysis of the shell without loads in a linear formulation was performed by Lanczos method. The frequencies and modes vibrations of the shell, which was loaded with the static component of the parametric load, were calculated. When were forming the models of the stability of parametric vibrations the features of the static and dynamic behavior of the thin-walled shell of negative Gaussian curvature under different types of load were taken into account. The research of the static and dynamic characteristics of the shell showed that the wall deformation shape have a large number of half-waves both in the radial and axial directions. Such a deformation of the wall in the form of bulges and dents is more dangerous than the deformation of Shukhov hyperboloid wall consisting of the rods.
References
Volmir A.S. Gibkie plastinki i obolochki (Flexible plates and shells). M.: Gostehteorizdat, 1956. – 419 s.
Timoshenko S.P., Voynovskiy-Kriger S. Plastini i obolochki (plates and shells). – M., 1963. 636s.
Volmir A.S. Ustoychivost deformiruemyih system (Stability of deformable systems).- M.: Fizmatgiz, 1967.– 784 s.
Abovskiy N.P., Samolyanov I. I. K raschetu pologoy obolochki tipa giperbolicheskogo paraboloida (To the calculation of a shallow shell type hyperbolic paraboloid) // Stroit, mehanika i raschet sooruzheniy. -1969, №6, s. 7-12.
Dehtyar A.S., Rasskazov A.O. Eksperimentalnoe issledovanie nesuschey sposobnosti obolochek tipa giperbolicheskogo paraboloida (Experimental study of the carrying capacity of shells of the hyperbolic paraboloid type). V sb.: Prostranstvennyie konstruktsii v Krasnoyarskom krae», vyip. IV. Krasnoyarsk, 1969, – s. 311-321.
Kato V., Nishimura T. Pokryitie, obrazuemoe sochetaniem giperbolicheskih paraboloidov. V sb.: Bolsheproletnyie obolochki (The coating formed by the combination of hyperbolic paraboloids). M.: Stroyizdat, 1969.– s. 167-195.
Rasskazov A.O. Raschet obolochek tipa giperbolicheskih paraboloidov (Calculation of shells like hyperbolic paraboloids). – Kiev, 1972. –175 s.
Berman F.I. K raschetu giperbolicheskoy obolochki pri deystvii nesimmetrichnoy gidrostaticheskoy nagruzki (To the calculation of the hyperbolic shell under the action of asymmetric hydrostatic load). Sbornik trudov TsNIIEPselstroy, №5, 1973.-s. 106-123.
Rzhanitsyin A.R., Em V.V. O raschete uprugih tonkih obolochek proizvolnoy formyi na osnove momentnoy teorii obolochek v pryamougolnyih koordinatah (On the calculation of elastic thin shells of arbitrary shape based on the moment theory of shells in rectangular coordinates )// Statika sooruzheniy. — Kiev, 1978. — S.88-91.
Bazhenov V.A., Gulyaev V.I., Gotsulyak E.O. Ustoychivost nelineynyih mehanicheskih sistem (Stability of nonlinear mechanical systems). Lvov, Vischa shkola, 1982. – 255 s.
Kovaleva E.A., Kovaleva L.V., Afanasev D.N. Giperboloidnyie konstruktsii V.G. Shuhova – primenenie v sovremennom stroitelnom proizvodstve (Hyperboloidal constructions by VG Shukhov - application in modern building production)// Dalniy Vostok: problemyi razvitiya arhitekturno-stroitelnogo kompleksa. – 2015. – № 1. – S. 157–160.
Samolyanov I.I. Prochnost, ustoychivost i kolebaniya giperbolicheskogo paraboloida (Strength, stability and vibrations of a hyperbolic paraboloid). Lutsk.: Lutskiy industrialnyiy institut, 1993. – 316 s.
Zhuravlev A.A., Yorzh E.Yu., Zhuravlev D.A. Derevyannyie konstruktsii giperbolicheskih obolochek (Wooden construction of hyperbolic shells). V sb.: «Legkie stroitelnyie konstruktsii». — Rostov-na-Donu: Rost. gos. stroit, un-t, 2000, s. 4-56.
Sunak O.P., Uzhehov S.O., Pakholiuk O.A. Do vyznachennia vnutrishnikh zusyl u polohii obolontsi vidiemnoi hausovoi kryvyny pry dii vertykalnoho navantazhennia (To the determination of internal forces in a smooth shell of a negative Gaussian curvature under the action of vertical load)// Resursoekonomni materialy, konstruktsii, budivli ta sporudy. - 2012. – Vyp. 23. − s. 411-416.
Shmidt G. Parametricheskie kolebaniya (Parametric oscillations). – M.: Izdatelstvo „Mir”, 1978. – 336 s.
Volmir A.C. Nelineynaya dinamika plastin i obolochek (Nonlinear dynamics of plates and shells). M.: Nauka, 1982. − 432 s.
Nayfeh A.H. The response of two-degree-of-freedom systems with quadratic nonlinearities to a parametric excitation// J. of Sound and Vibr., 1983. − vol. 88, No. 4. − p. 547-557.
Gaydaychuk V.V., Kyrychuk O.A., Paliy O.M. Dynamika povzdovzhnikh kolyvan tonkoi tsylindrychnoi obolonky (Dynamics of longitudinal oscillations of a thin cylindrical shell) // Opir materialiv i teoriia sporud. K.: KNUBA, 2007. - Vyp. 81. − s.148-153.
Vyp. 84. − s. 11-19.Gotsulyak Ye.O., Dekhtiariuk Ye.S., Lukianchenko O.O. Pobudova redukovanoi modeli parametrychnykh kolyvan tsylindrychnoi obolonky pry chystomu zghyni (Construction of a reduced model of parametric oscillations of a cylindrical shell under clean bend) // Opir materialiv ta teoriia sporud. K.: KNUBA, 2009.
Bazhenov V.A., Dekhtiariuk Ye.S., Lukianchenko O.O., Kostina O.V. Chyselna pobudova redukovanykh modelei stokhastychnykh parametrychnykh kolyvan polohykh obolonok (Numerical construction of reduced models of stochastic parametric oscillations of flat shells) // Opir materialiv i teoriia sporud. K.: KNUBA, 2011. - Vyp. 87. − s. 73-87.
Bazhenov V.A., Lukianchenko O.O., Vorona Yu.V., Kostina O.V. Dynamichna stiikist parametrychnykh kolyvan pruzhnykh system (Dynamic stability of parametric oscillations of elastic systems) // Opir materialiv i teoriia sporud. K.: KNUBA, 2015. - Vyp. 95. − s.145-185.
Bazhenov V.A., Lukianchenko O.O., Vorona Yu.V., Kostina O.V. Ob ustoychivosti parametricheskih kolebaniy obolochki v vide giperbolicheskogo paraboloida (On the stability of parametric vibrations of the shell in the form of a hyperbolic paraboloid) // Prikladnaya mehanika: Mezhdunar. nauchn. zhurnal. – 2018. – T.54. - №3. – s. 36-49.
Bazhenov V.А., Lukianchenko O.O., Vorona Yu.V., Kostina О.V. Stability of the Parametric Vibrations of a Shell in the Form of a Hyperbolic Paraboloid // International Applied Mechanics, 54(3), 274-286. DOI 10.1007/s10778-018-0880-4.
Rychkov S.P. MSC.visualNASTRAN dlia Windows (MSC.visualNASTRAN for Windows). M.: NT Press, 2004. – 552 s.
Downloads
Published
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.