Dynamic analysis of the simultaneous movement of the jib lifting and crane turning mechanisms

Authors

DOI:

https://doi.org/10.32347/2410-2547.2025.115.335-346

Keywords:

jib lifting mechanism, crane turning mechanism, oscillatory processes, driving forces, dynamic loads

Abstract

The efficiency of jib cranes largely depends on increasing their productivity when performing loading, unloading, and installation operations. The simultaneous operation of individual mechanisms increases the productivity of jib cranes. The purpose of this study is to construct a mathematical model and perform a dynamic analysis of the crane jib system during the simultaneous operation of the jib lifting and crane turning mechanisms. The presented research is based on methods for constructing discrete dynamic models of a jib crane using second-order Lagrange equations, numerical methods for solving nonlinear ordinary differential equations, which are presented in the form of a computer program, and methods for dynamic analysis of the simultaneous motion of crane mechanisms. The problem of the dynamics of simultaneous motion of the jib lifting and crane turning mechanisms is solved in this article. The crane jib system is represented by a dynamic model with four degrees of freedom, which considers the main motion of the jib lifting and crane turning mechanisms and the oscillation of the cargo on a flexible suspension. As a result of the dynamic analysis, the kinematic, dynamic, and energy characteristics of individual links of the crane jib system are determined during the simultaneous operation of the jib lifting and crane turning mechanisms. The main movement of the drive mechanisms for lifting the jib and crane turning, as well as the low-frequency spatial oscillations of the cargo on a flexible suspension, were investigated. It has been established that the dynamic motion of the mechanisms depends on the character of the change in the driving forces of the drives. Low-frequency oscillations of the cargo on a flexible suspension practically do not dampen and continue throughout the entire movement cycle.

To improve the dynamics of simultaneous motion of mechanisms and minimise oscillatory processes of the jib system links, it is recommended to select modes of smooth change of driving forces of drives in transition processes (starting, braking), which ensure the desired movement of executive mechanisms and lead to a reduction in loads.

References

Fang Y., Wang P., Sun N., Zhang Y. Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Ind. Electron. 2014. Vol. 61. №. 1. pp. 414–427. DOI:10.1109/TIE.2013.2251731.

Герасимяк P.П., Леще, В.А. Анализ и синтез кранових электромеханических систем. Одесса. СМИЛ . 2008. 192 с.

Герасимяк Р.П., Найденко О.В. Особливості керування електроприводом механізму вильоту стріли під час обертання крана з підвішеним вантажем. Електромашинобудування та електрообладнання. 2007. Вип. 68. С. 11–15.

Loveikin V., Romasevych Y., Shymko L., Mushtin D., Loveikin Y. The optimization of luffingandslewingregimesofatowercrane. Journal of Theoretical and applied Mechanics. 2021 Sofia Vol.51.421–436.

Loveikin V., Romasevych Y., Loveikin A., Liashko A., Pochka K. Dynamic analysis of the simultaneous starting of the boom and load lifting mechanisms hoisting for the jib and the cargo of the jib crane a hydraulic for drive. Journal Strength of Materials and Theory of Structures. 2024. №113. pp. 149-160. DOI: 10.32347/2410-2547.2024.113.149-160.

Loveikin V., Romasevych Y., Loveikin A., Liashko A., Pochka K. Dynamic analysis of the joint movement of derricking mechanisms and lifting mechanisms of a load f steady-state tur of a jib crane Journal Strength of Materials and Theory of Structures. 2025. №114. pp. 111-126.DOI: 10.32347/2410-2547.2024.114.

Carmona I.G., Colado J. Control of a two wired hammerhead tower crane. Nonlinear Dynamics.2016. Vol. 84.No. 4. 2137–2148.DOI: 10.1007/s11071-016-2634-3.

Lee W., Kim D. H. Dynamic analysis of a tower crane using multibody system simulation. Journal of Mechanical Science and Technology. 2016. Vol. 30, Issue 8. pp.3475-3481.

Lee S. W., Lee J. W. Dynamic analysis of a luffing jib tower crane using Kane's method. Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-body Dynamics. 2017. Vol. 231, Issue 3. pp. 435–448.

Wu M., Li L., Li Y. Dynamic analysis of a container crane considering the coupling effect betweenspreader and cargo. Journal of Vibroengineering. 2019. Vol. 21, Issue 2. pp. 360–373.

Kim A., Kim J. Dynamic analysis and control of an overhead crane with multiple hoists using a sliding mode control approach. Journal of Mechanical Science and Technology. 2021. Vol. 35, Issue 8. pp. 4055–4065.

Xue G., Wu Y., Cai L. Dynamic analysis and control of a cable crane with dual winches. Journal of Sound and Vibration. 2013. Vol. 332, Issue 12. pp. 2937–2956.

MichnaM., KuttF., SienkiewiczŁ., RyndzionekR., KostroG., KarkosińskiD., GrochowskiB. Mechanical-Level Hardware-In-The-Loop and Simulation in Validation Testing of Prototype Tower Crane Drives. Energies. 2020. Vol. 13(21):5727. DOI:10.3390/en13215727.

Chwastek S.Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines. 2021. Vol. 51 (6). pp. 3230-3241.DOI:10.1080/15397734.2021.1920978.

Martin I.A., Irani R.A.Dynamic modeling and self-tuning anti-sway control of a seven degree of freedom shipboard knuckle boom crane. Mechanical Systems and Signal Processing. 2021. Vol. 153. article number 107441.DOI: 10.1016/j.ymssp.2020.107441.

Miranda-Colorado R. Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dynamics. 2021. Vol. 104. pp. 3581-3596. DOI: 10.1007/s11071-021-06443-x.

Mohammed A., Alghanim K., Andani M.T. An optimized non-linear input shaper for payload oscillation suppression of crane point-to-point maneuvers. International Journal of Dynamics and Control. 2019. Viol. 7. pp. 567-576. DOI: 10.1007/s40435-019-00536-7.

Mohammed A., Altuwais H., Alghanim Kh. An optimized shaped command of overhead crane nonlinear system for rest-to-rest maneuver. Journal of Engineering Research. 2023. Vol. 11, Issue 4. pp. 548-554. DOI: 10.1016/j.jer.2023.08.012.

Ouyang H., Hu J., Zhang G., Mei L., Deng X. Decoupled linear model and s-shaped curve motion trajectory for load sway suppression control in overhead cranes with doublependulum effect. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019. Vol. 233(10). pp. 3678-3689. DOI: 10.1177/0954406218819029.

Podolyak O., Khoroshylov O., Anenko K. Investigation of combined motion of lifting, slewing, and jib length adjustment mechanisms in crane DEK-251. Engineering. 2022. Vol. 28. pp. 18-25. DOI: 10.32820/2079-1747-2021-28-18-25.

Sun N., Yang T., Fang Y., Wu Y., Chen H. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: Design and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2019. Vol. 49(7). pp. 1408-1418. DOI: 10.1109/TSMC.2018.2871627.

Umaru I., Bashir H.A., Liman H. A gantry crane control scheme using hybrid input shaper and pid controller. Bayero Journal of Engineering and Technology. 2021. Vol. 16(1). pp. 93-103.

Wang J., Liu K., Wang S., Chen H., Sun Y., Niu A., Li H. Dynamic analysis and experiment of underactuated double-pendulum anti-swing device for ship-mounted jib cranes. Polish Maritime Research. 2022. Vol. 29(4). pp. 145-154. DOI: 10.2478/pomr-2022-0052.

Wang S., Wu J., Chen H., Ji Y., Sun Y. Dynamic analysis and experiment of the mechanical anti-swing device for ship-mounted cranes. Journal of Harbin Engineering University. 2019. Vol. 40(11). pp. 1858-1864. DOI: 10.11990/jheu.201805082.

Wu Q., Wang X., Hua L., Xia M. Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams. Mechanical Systems and Signal Processing. 2020. Vol. 144, article number 106968. DOI: 10.1016/j.ymssp.2020.106968.

Downloads

Published

2025-10-30

Issue

Section

Статті