Tuning of vibro-impact nonlinear energy sinks under changing structural parameters. Part 2. Comparison with tuned mass dampers
DOI:
https://doi.org/10.32347/2410-2547.2025.115.13-32Keywords:
nonlinear energy sink, tuned mass damper, vibro-impact, primary structure, efficiency, comparisonAbstract
This paper studies the dynamics and efficiency in mitigating the primary structure (PS) vibrations with using the single-sided vibro-impact nonlinear energy sink (SSVI NES) and tuned mass damper (TMD). It is considered the PS coupled with vibro-impact and linear dampers with mass ratio of 2% and 6% under periodic excitation with change in structural parameters such as the PS damping, its stiffness, and exciting force intencity. The paper focuses on the ability of these dampers to maintain their tuning. The numerous numerical experiments, which results are reflected in expressive graphs and tables, convincingly show that both the SSVI NES and the TMD retain their tuning and demonstrate high efficiency in mitigating the PS vibrations across fairly wide ranges of these parameters. The TMD retains tuning no worse than SSVI NES, and in some cases even better. At the same time, SSVI NES, which always exhibits complex dynamics, provides narrow zones of bilateral damper impacts on the PS directly and on the obstacle located near the resonance. Thelighter SSVI NESsexhibit a specialbehavior. Their high efficiency is ensured by non-standard unusual values of large clearance and small dampingcoefficient. Furthermore, selecting the optimal SSVI NES design difficult because there are many sets of optimal parameters that provide their similar performance.
The energy approach is used to estimate the mitigation of PS vibrations, that is, the reduction of maximum mechanical energy of the PS is considered as criterion of mitigation. The energy of dampers, which is taken away from the PS energy, is shown. The zones of nonlinearity for SSVI NES include the zones of bilateral and unilateral damper impacts on the PS and obstacle; these zones also are shown. The characterisitics of irregular motion of SSVI NES are also shown.
References
Saeed A. S., Abdul Nasar R., Al-Shudeifat M. A. A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types // Nonlinear Dynamics. – 2022. – Т. 111, № 1. – С. 1–37. https://doi.org/10.1007/s11071-022-08094-y
Lu Z., Wang Z., Zhou Y., Lu X. Nonlinear dissipative devices in structural vibration control: A review // Journal of Sound and Vibration. – 2018. – Т. 423. – С. 18–49. https://doi.org/10.1016/j.jsv.2018.02.052
Lu Z., Wang Z., Masri S. F., Lu X. Particle impact dampers: Past, present, and future // Structural Control and Health Monitoring. – 2017. – Т. 25, № 1. – С. e2058. https://doi.org/10.1002/stc.2058
Wang J., Wierschem N. E., Spencer B. F., Lu X. Track nonlinear energy sink for rapid response reduction in building structures // Journal of Engineering Mechanics. – 2015. – Т. 141, № 1. https://doi.org/10.1061/(ASCE)EM.1943-7889.000082
Wierschem N. E., Spencer B. F. Jr. Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures // Tech. Rep. 045. – Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign, 2015. – https://www.ideals.illinois.edu/items/89701
Pagano D., De Angelis M., Andreaus U. Study on the Influence of Impact in Tuned Mass Systems // Earthquake Engineering & Structural Dynamics. – 2025. https://doi.org/10.1002/eqe.70058
Perna G., De Angelis M., Andreaus U. Optimal design of single-degree-of-freedom vibro-impact system under harmonic base excitation // https://doi.org/10.21741/9781644902431-70 (accessed: 29.09.2025)
Pagano D., Perna G., De Angelis M., Andreaus U. Nonlinear dynamic response of the vibro-impact systems subjected to harmonic ground motion under conditions of uncertainty on the gap size // International Journal of Non-Linear Mechanics. – 2024. – Т. 165. – С. 104816. https://doi.org/10.1016/j.ijnonlinmec.2024.104816
Chao C., Dai W., Shi B., Branson D., Yang J. Suppression of self-excited vibrations using tuned mass damper or nonlinear energy sink // Nonlinear Dynamics. https://doi.org/10.1007/s11071-025-11769-x
Dai X., Wei X., Tang L. Transient dynamics of a polynomial stiffness nonlinear vibration absorber: Theoretical and numerical investigations // International Journal of Non-Linear Mechanics. – 2025. – Т. 179. – С. 105242. https://doi.org/10.1016/j.ijnonlinmec.2025.105242
Caetano E., Cunha Á., Magalhães F., Moutinho C. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 1: Assessment of dynamic behaviour // Engineering Structures. – 2010. – Т. 32, № 4. – С. 1069–1081. https://doi.org/10.1016/j.engstruct.2009.12.034
Lin Z., Li H., Li A., Zhang Z., Kong X., Ding Q. Dynamic analysis of single-sided vibro-impact nonlinear energy sinks via forced response curves and application to vibration mitigation // Journal of Sound and Vibration. – 2025. – Т. 612. – С. 119150. https://doi.org/10.1016/j.jsv.2025.119150
Wang Y., Zhang J., Wang W., Wang Z., Hong J., Fang B. Research on the influence of finite contact stiffness on vibration reduction of a vibro-impact nonlinear energy sink system // International Journal of Non-Linear Mechanics. – 2025. – Т. 170. – С. 104991. https://doi.org/10.1016/j.ijnonlinmec.2024.104991
Fang B., Wang Y.-C., Mao G.-X., Wang W. Vibro-impact nonlinear energy sink dynamics in a harmonically excited weakly coupled two-degree-of-freedom linear oscillator // Chaos, Solitons & Fractals. – 2025. – Т. 199. – С. 116670. https://doi.org/10.1016/j.chaos.2025.116670
Zhang B., Zhang Z., Jiang J., Zhang Y., Li B., Li H., Xian H. Advantages of vibro-impact nonlinear energy sinks for vibration suppression of continuous systems: Coexistence of inter-modal energy scattering and targeted energy transfer // Communications in Nonlinear Science and Numerical Simulation. – 2025. – Т. 151. – С. 108993. https://doi.org/10.1016/j.cnsns.2025.108993
Zhong Y., Fang Y., Dekemele K., Ma X., Zhang Z. Vibration suppression using a programmable piezoelectric nonlinear energy sink // International Journal of Mechanical Sciences. – 2025. – Т. 303. – С. 110626. https://doi.org/10.1016/j.ijmecsci.2025.110626
Li S.-B., Ding H., Jing X. Identification and influence of cubic nonlinear damping of vertical track nonlinear energy sinks // Mechanical Systems and Signal Processing. – 2025. – Т. 238. – С. 113164. https://doi.org/10.1016/j.ymssp.2025.113164
Mao X.-Y., Wu J.-B., Zhang J.-N., Ding H., Chen L.-Q. Vibration control of NES for point-supported plate under arbitrary multi-frequency excitation // Communications in Nonlinear Science and Numerical Simulation. – 2025. – Т. 148. – С. 108863. https://doi.org/10.1016/j.cnsns.2025.108863
Wu X., Li G., Sun Y., Wang H., Chen Y. Theoretical and experimental exploration on the chattering control for the planar mechanism with clearance joint: using an asymmetrically constrained vibro-impact absorber // Mechanism and Machine Theory. – 2025. – Т. 215. – С. 106171. https://doi.org/10.1016/j.mechmachtheory.2025.106171
Athanasouli C., Yurchenko D., Kuske R. Analysis of Dry Friction Dynamics in a Vibro-Impact Energy Harvester // arXiv. – 2025. – arXiv:2502.12288. https://doi.org/10.48550/arXiv.2502.12288
Huang Z., Wang J., Zhang D., Wang X. Investigation of vibration suppression by nonlinear energy sink (NES) based on structure–wake oscillator coupled model // International Journal of Non-Linear Mechanics. – 2025. – Т. 178. – С. 105219. https://doi.org/10.1016/j.ijnonlinmec.2025.105219
Lizunov P., Pogorelova O., Postnikova T. Tuning of vibro-impact nonlinear energy sinks under changing structural parameters // Strength of Materials and Theory of Structures. – 2025. – Т. 114. – С. 11–22. https://doi.org/10.32347/2410-2547.2025.114.11-22
Wierschem N. E., Hubbard S. A., Luo J., Fahnestock L. A., Spencer B. F., McFarland D. M., Quinn D. D., Vakakis A. F., Bergman L. A. Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers // Journal of Sound and Vibration. – 2017. – Т. 389. – С. 52–72. https://doi.org/10.1016/j.jsv.2016.11.003
Li T., Seguy S., Berlioz A. On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink // Nonlinear Dynamics. – 2016. – Т. 87, № 3. – С. 1453–1466. https://doi.org/10.1007/s11071-016-3127-0
AL-Shudeifat M. A., Wierschem N., Quinn D. D., Vakakis A. F., Bergman L. A., Spencer B. F. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation // International Journal of Non-Linear Mechanics. – 2013. – Т. 52. – С. 96–109. https://doi.org/10.1016/j.ijnonlinmec.2013.02.004
Li W., Wierschem N. E., Li X., Yang T. On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink // Journal of Sound and Vibration. – 2018. – Т. 437. – С. 307–323. https://doi.org/10.1016/j.jsv.2018.08.057
Johnson K. L. Contact Mechanics. – Cambridge: Cambridge University Press, 1985.
Goldsmith W. The Theory and Physical Behaviour of Colliding Solids. – London: Edward Arnold Publishers Ltd, 1960.
Lizunov P., Pogorelova O., Postnikova T. Optimization of a vibro-impact damper design using MATLAB tools // Strength of Materials and Theory of Structures. – 2024. – Т. 112. – С. 3–18. https://doi.org/10.32347/2410-2547.2024.112.3-18
Lizunov P., Pogorelova O., Postnikova T. Influenceofstiffnessparametersonvibro-impactdamperdynamics // StrengthofMaterialsandTheoryofStructures. – 2023. – No. 110. – P. 21–35. – DOI: 10.32347/2410-2547.2023.110.21-35
Lizunov P., Pogorelova O., Postnikova T. Thesynergisticeffectofthemultipleparametersofvibro-impactnonlinearenergysink // JournalofAppliedMath. – 2023. – Vol. 1, No. 3. – P. 199. – DOI: 10.59400/jam.v1i3.199
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.