Parametric optimization of a cylindrical shell under static loads
DOI:
https://doi.org/10.32347/2410-2547.2025.114.328-338Keywords:
shell stability, parametric optimization, finite element method, thin-walled cylindrical shell, von Mises stress, displacement, strength and displacement in structures, cylindrical shell thicknessAbstract
Optimization in modern structural design plays a crucial role, particularly for thin-walled cylindrical shells, which are widely used in mechanical engineering and construction. Optimization enables the development of efficient design solutions that minimize structural weight while maintaining strength and stiffness. The main objective of this study is to perform parametric optimization of a cylindrical shell used for liquid storage, aiming to minimize its weight while considering operational loads such as liquid pressure, self-weight, and wind load. The finite element method (FEM) was employed to simulate the structural behavior under these external forces. The results of the study demonstrate that parametric optimization enables the identification of balanced design solutions that meet strength requirements while minimizing weight. This makes optimization not only a theoretical tool but also a practical necessity for enhancing the competitiveness of engineering designs.
References
Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P. Chyselna realizatsiia bahatokryterialnoi parametrychnoi optymizatsii obolonky minimalnoi poverkhni na kvadratnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multicriteria parametric optimization of minimum surface shell on a square contour under thermforce loading) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2022. – Issue 109. – P. 50-65.
Ivanchenko H.M., Koshevyi O.O., Koshevyi O.P., Grigoryеva L.O. Chyselne doslidzhennia parametrychnoi optymizatsii vymushenykh chastot kolyvannia obolonky minimalnoi poverkhni na trapetsevydnomu konturi pry termosylovomu navantazhenni (Numerical study of the parametric optimization of the forced oscillation frequencies of the shell of a minimal surface on a trapezoidal contour under thermal and power loading) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2023. – Issue 110. – P. 430-446.
Ivanchenko H.M., Cheverda P.P., Kushnirenko M.H., Kozovenko A.M. Analiz reaktsiy v elementakh prostorovykh skhem pry riznykh sposobakh zyednan (Analysis of reactions in elements of spatial schemes with different methods of connections) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2012. – Vyp. 90. – P. 163-170.
Koshevyi O.O. Optymalne proektuvannya tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttya. (Optimal design of cylindrical tanks with rigid coating shells) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2019. – №. 103. – P. 253-265.
Koshevyi O.O. Optymizatsiya stalnoho zvarenoho rezervuaru pry obmezhenni: napruzhen, peremishchen, vlasnykh chastot kolyvannya. (Optimization of steel welded tank with limitations: stresses, displacements, natural frequencies of oscillations). // Budivelʹni konstruktsiyi. Teoriya i praktyka: nauk.-tekhn. zbirnyk. K.: KNUBA. 2018. №.3.– P.34 – 50.
Hotsulyak Ye.O., Koshevyi O.P., Morskov Yu.A. Chyselne modelyuvannya obolonok, utvorenykh minimalnymy poverkhnyamy (Numerical modeling of shells formed by minimal surfaces). // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.- P.47-51.
Koshevyi O.P. Koshevyi O.O. Chyselne doslidzhennya vlasnykh kolyvan roztyahnutykh obolonok utvorenykh minimalnymy poverkhnyamy (Numerical study of natural oscillations of stretched shells formed by minimal surfaces) // Mistobuduvannya ta terytorialne planuvannya, №. 55. – Kyiv, KNUBA, 2015. – P. 215-227.
Koshevyi O.P. Koshevyi O.O. Vlasni kolyvannya obolonok minimalnykh poverkhon na kruhlomu ta kvadratnomu konturi. (Own oscillations of shells of minimal surfaces on a round and square contour) // Mistobuduvannya ta terytorialne planuvannya, №. 59. – Kyiv, KNUBA, 2016. – P. 234-244.
Koshevyi O.O., Koshevyi O.P., Hryhoryeva L.O. Chyselna realizatsiya bahatokryterialnoyi parametrychnoyi optymizatsiyi obolonky minimalnoyi poverkhni na pryamokutnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multi-criteria parametric optimization of minimum surface shell on a rectangular contour under thermforced loading) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2021. – Vyp. 108. – S. 309–324.
Koshevoy A.P. Ustoychivost plastin i obolochek slozhnoy formi (Stability of plates and shells of complex shape) // Soprotivleniye materialov i teoriya sooruzheniy: nauch.-tekh sbornik. – K.: KISI, 1991. – Vip. 59. – P. 65–71.
Ivanchenko, H., & Kosheviy, O. (2024). Chyselne doslidzhennia stiikosti obolonky minimalnoi poverkhni na kruhlomu plani z urakhuvanniam heometrychnoi neliniinosti pry termosylovomu navantazhenni (Numerical study of the stability of the shell of a minimal surface on a circular plane taking into account geometric nonlinearity under thermal force loading) // Shliakhy pidvyshchennia efektyvnosti budivnytstva v umovakh formuvannia rynkovykh vidnosyn. 2024. № 53. S. 39-48.
Kosheviy, O. (2023). Bahatokryterialna parametrychna optymizatsiia peremishchennia i vahy obolonky minimalnoi poverkhni z priamokutnym planom, yaka skladaietsia z dvokh priamykh linii i dvokh pivkil pry termosylovomu navantazhenni (Multi-criteria parametric optimization of the displacement and weight of a minimal surface shell with a rectangular plan consisting of two straight lines and two semicircles under thermal force loading) // Shliakhy pidvyshchennia efektyvnosti budivnytstva v umovakh formuvannia rynkovykh vidnosyn. 2023. № 52. S. 41-54.
Kosheviy, O. Bahatokryterialna parametrychna optymizatsiia peremishchennia i vahy obolonky minimalnoi poverkhni na trapetsevydnomu konturi pry termosylovomu navantazhenni (Multi-criteria parametric optimization of the displacement and weight of the shell of a minimal surface on a trapezoidal contour under thermal force loading) // Mizhvidomchyi naukovo-tekhnichnyi zbirnyk: “Prykladna heometriia i inzhenerna hrafika”. 2023. №105. S. 134-150.
Kosheviy, O. Chyselne doslidzhennia stiikosti obolonky minimalnoi poverkhni na kvadratnomu konturi pry termosylovomu navantazhenni z urakhuvanniam heometrychnoi neliniinosti (Numerical study of the stability of the shell of a minimal surface on a square contour under thermal force loading taking into account geometric nonlinearity) // Mizhvidomchyi naukovo-tekhnichnyi zbirnyk: “Prykladna heometriia i inzhenerna hrafika”. 2024. №106. S. 133-147.
Kosheviy, O., Ivanchenko, H., Zatyliuk, G. Bahatokryterialna parametrychna optymizatsiia peremishchennia i vahy obolonky minimalnoi poverkhni na kruhlomu konturi, shcho skladaietsia iz dvokh pokhylykh elipsiv pry termosylovomu navantazhenni z urakhuvanniam heometrychnoi neliniinosti (Multi-criteria parametric optimization of the displacement and weight of the shell of a minimal surface on a circular contour consisting of two inclined ellipses under thermal force loading taking into account geometric nonlinearity) // Opir materialiv i teoriia sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2024. – Vyp. 112. – S. 209-221.
Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Altenbakh Y., Habbert U., Dankert Yu., Keppler Kh., Kochyk Z. Metod konechnykh élementov v mekhanyke tverdykh tel. (Finite element method in solid mechanics) // Vydavnytstvo Vyshcha shkola. Holovnoe yzdatelstvo – Kyev – 1982. – 480 p.
Bazenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiply connected ribbed shells and plates in a magnetic field. // Journal of Soviet Mathematics 66(6). –1993. – С. 2631–2636.
Cheung Y. K. The Finite Strip Method. Them. – Boca Raton. : CRC Press, 1997. – 416 p.
Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions // International Journal for Numerical Methods in Engineering, 2004. –61(2) – P.238-254.
Kroese D.P., Taimre T., Botev Z.I. Handbook of Monte Carlo Methods. — New York: John Wiley and Sons, 2011. 772 p.
Lobo M.S., Vandenbeghe L., Boyd S. Applications of second-order cone programming. // Linear Algebra and its Applications. – 1998. – Vol. 284, no. 1. – P. 193–228.
Yonekura K., Kanno Y. Second-order cone programming with warm start for elastoplastic analysis with von mises yield criterion. // Optimization and Engineering. – 2012. – Vol. 13, no. 2. – P. 181–218.
Wasiytynski Z., Brandt A. The present state of knowledge in the field of. Optimum design of structures. // Appl. Mech. Rew. – 1963. Vol. 16 no. 5. – P. 341-35.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.