Selection of the rational height of the steel roof trusses taking into account the effect of the impulse load
DOI:
https://doi.org/10.32347/2410-2547.2025.114.231-240Keywords:
steel truss structures, steel beams, dynamic work, bending, force impulse, analytical solutions, dynamic coefficient for deflection, dynamic coefficient for bending moment, numerical studies of dynamic coefficientsAbstract
The objective function of the aggregate steel consumption for the steel truss of the roof with a cross-lattice is described, taking into account the dynamic coefficient and the time of action of the concentrated impulse in the middle of the span of the structure. The objective function of the steel consumption describes the nonlinear patterns of the influence of the impulse load on the aggregate steel consumption for the steel trusses. The numerical research effects of the pulse action time on the selection of the rational height of the steel trusses with a cross-lattice with a span of 15.0 m and 18.0 m are carried out. It is established that when the dynamic coefficient for the bending moment is less than 1.0, a tendency to reduce the rational height of the steel truss of the covering is revealed relative to the constructive solution in the absence of an impulse load or a short time of its action. When the pulse load action time is increased to a value relative to the natural oscillation period τ1 /Тtr,1 > 0.2, the dynamic coefficient increases quite rapidly, which leads to an increase in the rational height of the steel truss structure of the roof with a cross-lattice. It is confirmed that a decrease in the pulse action time can result in a decrease in the values of the dynamic coefficient for deflection and bending moment, and the values of these quantities can be less than unity. It is also confirmed that an increase in the pulse action time to half the natural oscillation period (τ1 /Тtr,1 = 0.5) gives an approximation of the dynamic coefficient of the impulse for deflections to the value of the impact load kdin,η,2→2.0. The described patterns are related to two other patterns of influence on steel consumption. An increase in the overall bending stiffness of the structure leads to an increase in the dynamic coefficient, and accordingly to an increase in steel consumption for the structure, on the other hand, an increase in the height of the structure reduces steel consumption due to a decrease in steel consumption for the roof truss belts. Thus, taking into account two opposing trends leads to finding a rational height of the steel roof truss. The dynamic coefficient is also affected by the duration of the impulse and the ratio of the quasi-static load from the impulse to the self-weight of the protective enclosing structures.
References
Bazhenov V.A. Budivelna mekhanika i teoriia sporud. Narysy z istorii (Construction mechanics and the theory of structures. Essays on history) / V.A. Bazhenov, Yu.V. Vorona, A.V. Perelmuter. – K.: Karavela, 2016. – 428 p. https://scadsoft.com/download/History.pdf.
Bazhenov, Viktor Andriyovych. Dynamika sporud [Tekst]: pidruch. dlya stud. vyshch. navch. Zakl (Dynamics of structures [Text]: a textbook for students of higher education) / V. A. Bazhenov, YE. S. Dekhtyaryuk, YU. V. Vorona. - K. : Vipol, 2012. - 340, s. : rys., tabl. - Bibliohr.: s. 337-340. - 350 prym. - ISBN 978-966-646-120 -3 {in Ukrainian}.
Gaidaichuk V.V., Kotenko K.E., Mamedov A.M. Investigation of the dynamics of a three-layer shell structure of an elliptical cross-section under non-stationary dynamic loading// Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2023. – Issue 111. – P. 147-154. DOI: 10.32347/2410-2547.2023.111.147-154
Bilyk A.S. Vyznachennya optymalnykh konstruktyvnykh rishen ferm u ekspertniy systemi odnostadiynoho optymalnoho proektuvannya (Determination of optimal structural solutions for trusses in an expert system of single-stage optimal design)/ Zb. nauk.prats UNDPISK im. V.M. Shymanovskoho. – Kyyiv, vyd-vo «Stal», 2009, vyp. 4. – S.119-132. http://nbuv.gov.ua/UJRN/ZNPISK_2009_4_16 {in Ukrainian}.
Bilyk S.I., Ternoviy M.I. Numerical research of the coefficients of the dynamic work of steel framing covers reduced to a beam structure under the action of a concentrated impulsive load // Strength of Materials and Theory of Structures. Scientific-and-technical collected articles. – K.: KNUBA, 2024. – Issue 113. – P. 265-274..
Scientific-and-technical collected articles. – K.: KNUBA, 2024. – Issue 113. – P. 265-274. DOI: 10.32347/2410-2547.2024.113.265-274{in Ukrainian}.
Bilyk, A., & Ternovyy, M. (2024). Vybir ratsionalnoyi vysoty stalevykh balkovykh konstruktsiy z urakhuvannyam koefitsiyenta dynamichnosti pid chas diyi epizodychnoho navantazhennya (Selection of rational height of steel beam structures taking into account the dynamic coefficient during the action of episodic loading). Budivelni konstruktsiyi. Teoriya i praktyka, (15), 75–85. https://doi.org/10.32347/2522-4182.15.2024.75-85. {in Ukrainian}.
Krivenko O.P., Lizunov P.P., Vorona Yu.V., Kalashnikov O.B. A Method for Analysis of Nonlinear Deformation, Buckling, and Vibrations of Thin Elastic Shells with Inhomogeneous Structures // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2023. – Issue 110. – P. 131-149. DOI: 10.32347/2410-2547.2023.110.131-149.
Lukyanchenko O.O., Vorona YU.V., Kostina O.V. Veyvlet-analiz seysmichnoyi khvylovoyi reaktsiyi karkasnoyi budivli (Wavelet analysis of seismic wave response of a frame building) // Opir materialiv i teoriya sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2019. – Vyp. 103. – S. 131-144. http://opir.knuba.edu.ua/files/zbirnyk-103/10-103_luk_kos_vorona.pdf. {in Ukrainian}.
Metalevi konstruktsiyi: Zahalnyy kurs: Pidruchnyk dlya vyshchykh navchalnykh zakladiv. (Metal structures: General course: Textbook for higher education institutions) Nilov O.O., Permyakov V.O., Shymanovskyy O.V., Bilyk S.I., Lavrinenko L.I., Byelov I.D., Bilyk S.I., Volodymyrskyy. Vydannya 2-e, pereroblene i dopovnene / Pid zahalʹnoyu redaktsiyeyu O.O. Nilova ta O.V. Shymanovsʹkoho/.- K.: Vydavnytstvo «Stal», 2010. - 869 s. {in Ukrainian}.
Olshanskyy V.P., Olshanskyy S.V. Dynamichnyy efekt nesymetriyi sylovoyi kharakterystyky dysypatyvnykh ostsylyatoriv (Dynamic effect of asymmetry of the power characteristic of dissipative oscillators) // Visnyk NTU «KHPI». Seriya: Matematychne modelyuvannya v tekhnitsi ta tekhnolohiyakh . – Kharkiv : NTU «KHPI», 2021. – № 1-2 (2). – S. 65 – 75. DOI: 10.20998/2222-0631.2021.02.08. {in Ukrainian}.
Pysarenko H. S. Opir materialiv (Strength of Materials ) / H. S. Pysarenko, O. L. Kvitka, E. S. Umanskyy. – Kyiv: Vyshcha shkola, 2004. – 655 s. https://btpm.nmu.org.ua/ua/download/%D0%9F%D0%B8%D1%81%D0%B0%D1%80%D0%.pdf. {in Ukrainian}.
Bilyk, S., Bilyk, A., Tonkacheiev, V. (2022). The stability of low-pitched von Misestrusses with horizontal elastic supports. Strength of Materials and Theory of Structures, 108, 131–144. https://doi.org/10.32347/2410-2547.2022.108.131-144
Grebenyuk G. I., Veshkin M. S. Logical design of numerical calculation and optimization of bar systems under dynamic loads /Вестник ТГАСУ № 4, 2014// p.p. 106-116. https://cyberleninka.ru/article/n/razrabotka-algoritmov-chislennogo-raschyota-i-optimizatsii-sterzhnevyh-sistem-pri-deystvii-impulsnyh-nagruzok/viewer{in English}.
Daurov M.K., Bilyk A.S. Providing of the vitality of steel frames of high-rise buildings under action of fire // Strength of Materials and Theory of Structures: Scientific-and-technicalcollectedarticles – Kyiv: KNUBA, 2019. – Issue 102. – P. 62-68. http://opir.knuba.edu.ua/files/zbirnyk-102/09-102.pdf. {in English}.
Dynnyk A. Stability of elastic systems / A.N. Dynnyk . - M .: ONTI, 1935. -186. https://www.twirpx.com/file/2146790. {in English}.
Hohol M., Marushchak U., Peleshko I., Sydorak D. (2022) Rationalization of the Topology of Steel Combined Truss. In: Bieliatynskyi A., Breskich V. (eds) Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-85057-9_9.{in English}.
Lizunov P.P., Pogorelova O.S., Postnikova T.G. Selection of the optimal design for a vibro-impact nonlinear energy sink//Strength of Materials and Theory of Structures: Scientific-and-technical collected21,22, articles. – K.: KNUBA. 2023. – Issue111. – P. 13-24. DOI: 10.32347/2410-2547.2023.111.13-24. {in English}.
Leonid S. Lyakhovich, Pavel A. Akimov, Boris A. Tukhfatullin Аssessment criteria of optimal solutions for creation of rods with piecewise constant cross-sections with stability constraints or constraints for value of the first natural frequency part 2: numerical examples. International Journal for Computational Civil and Structural Engineering, 15(4). (2019) - р.р.101-110. DOI:10.22337/2587-9618-2019-15-4-101-110. {in English}.
Nuzhnyj, V., & Bilyk, S. (2024). Revealing the influence of wind vortex shedding on the stressed-strained state of steel tower structures with solid cross-section. Eastern-European Journal of Enterprise Technologies, 3(1 (129), 69–79. https://doi.org/10.15587/1729- 4061.2024.306181. {in English}.
Peleshko I. D., Yurchenko V. V. Parametric optimization of bar structures with discrete and continuous design variables using improved gradient projection method // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2023. – Issue 110. – P. 178-198. DOI: 10.32347/2410-2547.2023.110.178-198
Рerel'muter А. V. Synthesis problems in the theory of structures (brief historical review) https://cyberleninka.ru/article/n/zadachi-sinteza-v-teorii-sooruzheniy-kratkiy-istoricheskiy-obzor.{in English}.
S.P. Timoshenko, and J.M. Gere, “Theory of Elastic Stability”, New York: Mc-Graw Hill, 1961. https://structures.dhu.edu.cn/_upload/article/files/c2/53/6997426d46cb8f09fcd5d26175e2/5bcfea4b-34b9-48f7-966b-a74ab5ddae8c.pdf. {in English}.
V. Volkova. Dynamic Smoothing Effect in Non-Linear Dynamic System under Polyharmonic External Excitation. In Materials Science Forum (Vol. 968, pp. 421–426). 2019. Trans Tech Publications, Ltd. URL: https://doi.org/10.4028/ www.scientific.net/msf.968.421. {in English}.
Shugaylo, О., Bilyk, S. (2023). Development of Safety Assessment Methods for Steel Support Structures of Nuclear Power Plant Equipment and Piping under Seismic Loads. Nuclear and Radiation Safety, 1 (97), 20–29. https://doi.org/10.32918/nrs.2023.1(97).03
Shugaylo O-r P., Bilyk S.I. Research of the stress-strain state for steel support structures of nuclear power plant components under seismic loads. Ядерна та радіаційна безпека. 2022. C. 15-26. https://doi.org/10.32918/nrs.2022.3(95).02.
Shugaylo О. P., Bilyk S.I. Safety assessment of the steel structures of nuclear power plants units considering special operation conditions // Strength of Materials and Theory of Structures. Scientific-and-technicalcollectedarticles. – K.: KNUBA, 2023. – Issue 111. – P. 113-124. DOI: 10.32347/2410-2547.2023.111.113-124
Paweł Zabojszcza, Urszula Radoń. Optimization of Steel Roof Framing Taking into Account the Random Nature of Design Parameters Materials 2022, 15(14), 5017; https://doi.org/10.3390/ma15145017/
Anatoly Perelmuter a, Vitalina Yurchenko Parametric Optimization of Steel Shell Towers of High-Power Wind Turbines Procedia Engineering Volume 57, 2013, Pages 895-905. https://doi.org/10.1016/j.proeng.2013.04.114.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.