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Abstract. The behavior of a steel beam with variable flange width and web height under a uniformly distributed load is
considered. It is established that in certain steel [-beams with a simultaneous smooth decrease of flange width and web height in
the direction of decreasing bending moment, the maximum stresses occur in cross-sections where the maximum bending
moment does not act. Analytical dependencies for determining the optimal I-beam web height as a function of the rate-of-change
parameter for a linear law of flange width and web height variation were obtained by the Lagrange multipliers method. An
improved approach was developed for determining the regularities of linear variation of flange width and web height during the
search for a new topology of rational steel I-beam structures. Examples are provided.
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Introduction. The problem of finding a rational topology of steel beams with constant and variable
cross-sections has always been a relevant and interesting scientific challenge [1, 4, 5, 6, 8, 9, 10, 11,
12, 15, 16]. Such studies are important today from the standpoint of the historical development of the
theory and the advancement of optimal design. There is also an opportunity to unlock the potential of
well-known general theoretical approaches for solving new types of optimal design problems for I-
section steel beams [4, 5, 6, 7, 8]. Known scientific results exist for determining the optimal height of
steel I-sections with constant cross-section [1, 7, 8,10, 20], for beams with corrugated webs, as well as
for steel beams with variable web height [5, 6, 12, 16, 20, 21, 23, 25, 27]. A general approach of
finding the optimal height via an extremum of the steel consumption objective function has been used
to determine the optimal height of steel I-beams of constant and variable cross-section, taking into
account the development of limited plastic deformations [7]. The generalized problem of finding
optimal parameters of constant cross-section beams using the Lagrange multipliers method is presented
in the fundamental work [8].

Consideration of dynamic characteristics of beam systems [13, 14, 18, 19, 22] is also employed in
the search for a rational topology. Improvements and modifications of first-order gradient methods are
used to solve problems of multi-dimensional unconstrained optimization for various structural systems
[24, 26]. The need to design steel frame and bar structures for survivability and exposure to
temperature effects [18] has also introduced new challenges in researching and finding rational
structural systems in steel. For some beam systems, it becomes necessary to find rational cross-
sectional parameters considering the loss of stability of the flat bending shape; these problems are
solved by gradient methods and their modifications [12, 16, 21, 26]. On the other hand, given the
complexity of the stress—strain state of steel variable-section beams, an approach is applied in which at
the first stage the rational parameters are determined using the Lagrange multipliers method, and at the
second stage the design is refined with numerical studies by the finite element method [3, 8, 9, 13, 14].
Thus, the choice of approach for searching the optimal topology of steel beams is influenced by the
convexity (flatness) of the feasible solution region, the discreteness of the change of the design

© Dzhanov L.V., Bilyk S.I, Bilyk A.S.



156 ISSN 2410-2547
Onip matepiaiis i Teopis ciopy/Strength of Materials and Theory of Structures. 2025. Ne 114

parameters, the multimodality of the problem, the multiplicity of optimal solutions, and the complexity
of writing analytical approximation equations for structural, technological, economic and operational
requirements [2, 25, 26].

At the preliminary design stage for variable cross-section beams, it is necessary to conduct additional
studies to find rational parameters of steel I-beams in bending, given that the sections with maximum
stresses do not coincide with the sections where the maximum bending moments occur [4, 5].

Research Aim.To determine the patterns of influence of cross-section variability (web height and flange
width) of steel I-beams on the optimal parameters from the standpoint of minimizing steel consumption.

Investigation. A steel [-beam with variable stiffness along its length (1, 2) is considered. Notations
are adopted as follows: &, s — the height of the steel I-beam at a current coordinate z, and the initial
height of the I-beam at z=0, respectively; by, bso — the flange width of the variable cross-section at a
current coordinate along the length of the structure and at the cross-section at z=0, respectively; /- the
span of the beam. The slenderness of the I-beam web is denoted according to standard documents as
Ay = hy ! t, . Local stability and local strength of the flanges and web are assumed to be ensured. The

stability of the flat bending shape is provided by horizontal bracings of the structure. It is assumed that
the maximum bending moment M., acts at the initial cross-section, which has the maximum web
height. The initial cross-sectional area of the beam at z = 0 is given by expression: 24,k +1,hy = 4, .

The flange cross-sectional area varies along the beam length according to: 24, . =2b, .1, , while the

web thickness ¢, is constant

hz =h0(1_yh?)’ Z=l%hz:l =hn =7 =[1_Z_nj’ Af,z =tfbf’0(1$yb§)’
0

__z _bs, z
bf,z=bf,0(1+ybl_jﬁ yb=(l+b ]’ Aw,z=twa,0(1_yh7)' (1)
b 7,0

A feature of the formulation and solution of this problem is that the flange width change parameter
accounts for both a decrease and an increase of the flange width. It is also possible to vary the ratio of
flange area to web area. In equations (1), the web variability exponent (rate) coefficient: y,, and a
flange variability coefficient y, are introduced for a linear law of change.

The moment of inertia and the section modulus of the I-beam cross-section have the traditional
form, taking into account the variability of the web height and flange width by formulas (2). In
generalized form, the variation of the flange and web can be described by any power-law dependence

z z

h, =hy(1=7y, I_) =hofyzs bf,o(l— Y I_) = bf,oszs L, = lﬂ,

b b w0

3
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The problem of finding the optimal geometric dimensions of variable cross-section steel I-beams is
a nonlinear mathematical programming problem (3), [1]

2

. (3)
Amy, = ZpAlbﬂOtfsz + pAlhw’otwfhz — min.
In the strength constraints (4), a coefficient ky =1/kyy is also used — it defines the need to increase
the maximum section modulus of the I-beam at the section where the maximum bending moment
occurs, due to the occurrence of maximum stresses in another section

kMWMx zhz Qz
w(hby ) =222 Ry 20, uy (kb )=~ Ry, 20, )
21, t,h
kM,
MV vz ~Ry¥e, Ap.20, I, 1., >0. (5)
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Equations (4) and (5) are the conditions of complementary flexibility. The optimization problem
(3) is written in the space of variables 4., b;. (1, 2, 3) and with constraint functions in the form of
inequalities (4, 5, 6). The first inequality is the strength constraint in bending for each cross-section
along the beam; the second inequality is the shear strength constraint for the I-beam web at each
section along the beam. It is assumed that the flange cross-sectional area values are positive. It is also
assumed that the objective function (3) is continuous, twice differentiable, and convex at the extremum
point. The discreteness of standard profile sizes is not considered; a continuous variation of cross-
sections is assumed. A condition of linear change in web height and flange width of the steel beam is
adopted. This can be achieved in fabrication by cutting steel plate elements on CNC machines. The
minimization problem (3) is solved under the assumption that the web strength constraints are inactive.

Problem (3) is solved for a constant web thickness in a symmetric I-beam cross-section using the
Lagrange multipliers method [4]. It is assumed that the web thickness is unchanged along the beam’s
length (see condition (6))

m=0
hy [ h h
t,=t,. =——-2 — —2 = const. (6)
| A'WO hz A’WO
The Lagrange function has an analytical form (7) taking into account condition (4)
F(Ryn Ay oh) = pN (24, +t,h, )+ gy (Bt A, ),

hy kM -
F(;Lm’Af,z’hz) = pAl (thbf,()sz +O/’L—thJ +lm0 ( M :

-R Ve |- (7)
(hthz )3 ’
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By solving the optimization problem, the extremum points must satisfy the Kuhn—Tucker
conditions [4, 12]. Differentiating the system of equations (7) with consideration of (5) leads to a
system of three algebraic equations (8) with three unknowns: /., Az, Ao

OF (A1 Ap D) _
3(by o)
OF (A, As sh.)
9(hofi:)
OF (A Af s hey)
04,0

Further differentiation of conditions (8) yields a system of three nonlinear algebraic equations with
three unknowns: %., Az, Ao The first equation provides a formula for determining the unknown
coefficient 4,0 as a function of the changes in the flange and web dimensions

w

tbr o (Bo Sy )+

0

0 ®)

2
h
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The second equation, after differentiation, also takes a simplified analytical form
2)\? 2
3 (hthz) - - 1 (hthz)
2(h0fhz) [tfbf,osz + 6ﬂrwfhz _ﬂ'mOkMWﬂ'wjthx,z tfbf,Osz +E Awfhz =0. (10)

Substitution of the expression in equation (10) leads to a relationship for the rational web height of
the beam, which can be used in approximate calculations
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Repeated substitution based on the strength conditions (4) in equation (11) provides sufficient
conditions for a rational cross-section of a steel I-beam

knwM . _ _>(h0fhz)2 =[ 1 (hofhz)2 ]_)(hthz)z
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Thus, a sufficient condition for the rationality (optimality) of a steel I-beam is the equality of the
web area and the total area of the flanges, that is A,,=2A4,, for each cross-section. This condition, in
turn, has been proven for constant cross-section beams [12]. Therefore, the sufficient condition for
optimality is the equality of the web area and flange areas in each current cross-section (13). The
optimal web height of the beam, taking into account condition (13), is determined by the analytical

formula (14)
3 k sz
(hfi)= 57 oy (14)
wity/lc

Thus, the degree of variability of the optimal height of a steel I-beam depends on the bending
moment distribution and, in general, does not exhibit a linear variation pattern (17). Therefore, it is
necessary to investigate the feasibility of using a linear variation of web height and flange width and its
influence on the occurrence of maximum stresses along the beam length.

Example 1. If the beam has a constant cross-section, then there is an immediate transition to the

well-known formula [6, 12]:
3 X,max
=1,0—>hy=,|=k —. 15
Ih o \/2 Mw WR,7, (15)

This confirms the validity of the analytical approaches by which the relationships [13,14] were
obtained for determining the regularities of the optimal web height and flange width in variable-
stiffness [-beams.

Example 2. A cantilever beam fixed at one end and subjected to a uniformly distributed load is

considered. The optimal height of the beam at each cross-section varies according to equation (14)
2

/
2 n \" - 2\
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If a nonlinear variation of the web height and flange width is assumed, a formula is obtained for
their change along the beam’s length that ensures an optimal structural topology

tfbf,Oszﬂ'wfhz + 1 ]

(12)

=210,y (13)
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Example 3. Based on the results obtained in Example 2, and previous findings by the authors, it
follows that under linear variation of web height and flange width in a steel I-beam, the maximum
stresses occur not in the section where the maximum bending moment acts.The normal stresses in the
current cross-section, taking into account the derived relationships, are determined by

At b 2 2\ N oy
L ‘;’O :l: Mx,O =4 l_—>MX,Z :MX,O (1—Z—HJ Mo :(I_Z_nJ 3 MW x,0 . (18)
(ho) 2 2 / / (ho) 7 1 £, +1

;LW hz 2 fhz 6
If we accept the optimality condition for each cross-section (13), which requires that the total area

of the flanges equals the web area, then for the section with the maximum bending moment, the
condition k;=1,0 holds true

(g )3 (l+lJ— 2 (ho)3 o - ki Mo 3 kM o2 2" " %0 (19)
0 Z'w 26 3 Aw o Wx,O 2 (hO )3 S v f2 1&4-1 |
& 2 fhz 6

Thus, for cantilever structures, the ratio of normal stresses in the flange of a steel I-beam at a given
section with coordinate z to the stress at the section with z=0 reflects the pattern of stress variation

along the length of the beam
X,z 1 § "

oo 3 2[1be+1JL "

2 f hz 6

Relationship (20) also identifies the cross-sections where maximum stresses occur.

Numerical studies were conducted using analytical expression (20) to evaluate the variation of
stresses in variable cross-section beams, depending on the changes in web height and flange width,
under the condition of maintaining the optimal ratio.

Figure 1 presents the results of calculations for cantilever beams with variable cross-section under a
uniformly distributed load, showing the dependence of the ratio of normal stresses in the I-beam
flanges (o, ./0,0) on the relative position of the section along the beam (z//). Graph 1 shows that with
both web height and flange width varying (y,= y, =0,4) the maximum stress occurs at z//=0,4 and
exceeds the stress in the fixed (clamped) section—where the maximum bending moment acts — by
19,05% (0y,./0,0=1,1905). This stress exceedance occurs over the segment (0<z//<0,77). Graph 2 shows
the variation in (o, /0, () along the beam length for a case with web height variation y,=0,2; and flange
width variation y, =0,4. For such I-beams, stress exceedance is observed in the range (0<z/<0,4), with
a maximum stress ratio of (o,.-0,2/0,0=1,04167 Graph 3 corresponds to a beam with variable web
height and constant flange width (y,= 0,2, y, =0). Here, stress exceedance occurs within 0<z/<0,25,
and the maximum stress ratio is o,.-0,125/0,0=1,016. Thus, it is established that for any variation in
cross-sectional geometry, there are segments along the beamwhere the normal stress exceeds that in
the section with the maximum bending moment. Graph 4 illustrates the stress variation in a beam with
a constant web height and slightly varying flange width. In this case, stress exceedance is observed in
the interval (0<z//<0,075, where 0,..-0,05/0,¢=1,0013).

Figure 2 presents the results of studying the variation of stress ratios in current beam sections
depending on the parameters of geometric variability. Here, a “variability parameter” refers to the rate
of change of a linear dimension (web height or flange width) per unit length of the beam. Graph 1
(Fig. 2) illustrates the variation of relative stresses for a beam with piecewise variability of web height
and flange width: y,= 0,2 on segment (0<z//<0,275) and y,= 0,45 on (0,275<z/[<1,0) the flange width
increases with y, = -0,5 along 0<z//<0,7 and then decreases with: y, = 0,3 along 0,7<z//<1. Graph 2
shows a steel I-beam with variable web height along the entire span: y,= 0,2 for 0<z//<1,0; the flange
width increases over 0<z//<0,575 with vy, =-0,4; and then decreases on 0,575<z//<1,0 with y, =0,5.
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Graph 3 represents a beam with constant web variability y,= 0,3(0<z//<1,0) over the full length; flange
width changes with y, =-0,5 (0<z//<0,5); and y, = 0,25(0,5<z//<1,0). Graph 4 corresponds to a beam
with constant web height (y,=0; 0<z//<1,0), and variable flange width: y,= -0,5(0<z//<0,225); y, =0,3
(0,225<z/I<1,0).

1,2

0,8
0,6
0,4

0,2

-0,2

Fig. 1. Variation of normal stresses in cantilever beams with variable cross-section under a uniformly distributed load. Graph 1 —
variation parameters:y,= y, =0,4. Graph 2 - y,=0,2; y, =0,4. Graph 3 - y,= 0,2, y, =0 (flange width is constant). Graph 4 - y,=0
(web height is constant); y, =0,1
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Fig. 2. Variation of normal stresses in cantilever beams with variable cross-section under a uniformly distributed load. Graph 1 —
variation parameters: y;,= 0,2 (0<z//<0,2275), y»= 0,45(0,275<z/I<1,0); y» = -0,5 (0=z/I<0,7), y» = 0,38 (0,7<z/I<1). Graph 2: y;,=
0,2; (0=z/<1,0); y» =-0,4(0<2/1<0,575); y5 =0,5 (0,575<z/I<1,0). Graph 3 - y,= 0,3(0<z/<1,0); y» =-0,5 (0<z/I<0,5); y» =
0,25(0,5<z/1<1,0). Graph 4 - y,=0 (0=z//<1,0), y»=-0,5(0<z//<0,225); y, =0,3 (0,225<z/I<1,0)

The developed methodological approach for modifying the cross-section parameters of steel beams
allows for the determination of optimal structural configurations of I-beams, including the application
of a reverse variation law for flange width: y,= (1 - bs/ bp), b= by (1 + y, z/ [). However, this
approach is applied only to specific beam segments, while on other parts the flange width decreases
traditionally along the span: b.= by (1 - y;, 2/ [).
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Based on the conducted numerical studies, a comparison of the normalized weight of the beams
was also performed, as presented in Table 1.

Table 1
Normalized steel consumption for cantilever steel I-beams with variable cross-section
Normalized steel consumption
Graph (from Cross-section variation m Percentage
Figure 2) bl’z =2 A+ Y Ay £
P 1 :
7= 0,2 (0<z/1<0,2275),
| 7= 0,45(0,275<z/I<1,0), 0.0167 89.19

7, =-0,5 (0<2/[<0,7),
7, = 0,38 (0,7<z/I<1)

yh: 0,23 (OSZ/ISLO),
2 v =-0,4(0<2/1<0,575), 0,1712 91,78
v, =0,5 (0,575<z/I<1,0)

7= 0,3(0=z/<1,0),
3 75 =-0,5 (0<z/I<0,5), 0,1703 90,97
7= 0,25(0,5<2/I<1,0)

7=0 (0<z/I<1,0),
4 7= -0,5(0<z/1<0,225), 0,1875 100%
7, =0,3 (0,225<z/I<1,0)

Conclusions. A methodological approach was developed to determine the rational topology of
steel I-beams with variable stiffness under uniformly distributed loading. It was shown that for such
beams, where both web height and flange width vary, the maximum normal stresses do not occur in the
cross-section with the maximum bending moment.

The problem of determining the optimal cross-sectional height was solved using the Lagrange
multipliers method along with the Kuhn—Tucker conditions. For steel I-beams with variable geometry,
the sufficient condition for structural optimality that the web area equals the total area of the flanges
was confirmed.

However, under linear reduction of web height and flange width along the direction of decreasing
bending moments, there are cross-sections where the normal stresses in the flanges exceed those in the
section where the maximum moment acts. This indicates the presence of multiple governing (critical)
sections in beams with variable stiffness.

Accordingly, the physical-mathematical model of the stress—strain state in bending was expanded
to include the possibility of finding a rational structure by accounting for reverse variation of the flange
width parameter— i.e., in certain segments, the beam height decreases or remains constant, while the
flange width and area increase relative to the section with the maximum bending moment.

Such a design solution helps reduce stresses under linear variation of the web height and flange
width along the beam length and provides justification for a rational topology of a steel I-beam with
stepped, smooth stiffness variation and different rates of change in web and flange geometry.

The numerical studies demonstrated the possibility of reducing steel consumption and increasing
the efficiency of variable cross-section I-beams based on the obtained results. In addition, the existence
of an admissible set of rational solutions for the stated optimization problem was confirmed.

Thus, the task of determining a rational cross-section of a steel I-beam with linearly variable
flange width and web height constitutes an optimization problem with well-defined and appropriate
conditions.
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Jicanos JI.B., binux C.1., Binuk A.C.
PALIOHAJIBHA TOIIOJIOT'ISI CTAJIEBUX JIBOTABPOBUX BAJIOK I3 PI3BHUMU I'PAJIEHTAMU 3MIHU
BUCOTH CTIHKH I INUPUHU MOJALb HA BUSHAYEHUX CEKIISAAX MO TOBXKWHI KOHCTPYKIII

Po3po0i1eHo METOAMYHUI MiJIXiA 10 MOIIYKY palioHaJIbHOI TOIMOJIOTIT CTAJIEBUX IBOTABPOBHX OAJIOK 3MIHHOI JKOPCTKOCTI
i yac Aii piBHOMIpPHO PO3MOAIJIEHOr0 HAaBaHTAXKEHHS 110 JOBXHHI KOHCTPYKIUIi. [Toka3aHo, 110 Juis Takux 0ajok 3i 3MiHHOIO
BHCOTOIO CTIHKH i MOJIMI(b MAaKCUMaJIbHA HAIpyra He BUHHMKAE B Mepepisi, Jie i€ MaKCUMaJIbHUH 3rMHAJIbHUA MOMEHT. 3ajaya
HOLIYKY ONTHMAJIbHOI BHCOTH IEpepi3y BUPIIIYeThCs 3 BUKOPHCTAHHAM METOAY MHOXHHMKIB Jlarpamxka Ta 3 BUKOPHCTaHHAM
ymoB Kyna-Takepa. [{ns crayjeBux ABOTaBpOBUX OasioOK 31 3MIHHOIO BHCOTOIO CTiHKM 1 LIMPUHOIO MOJHMIb IiJTBEPIKEHO
JIOCTAaTHI YMOBU ONTHMAJIbHOCTI BCi€l KOHCTPYKIIi: PIBHICTh IO CTIHKM JOPIBHIOE IUIOIII ABOX HOJIMIb. AJie IIPH JIiHIHHOMY
3MEHIIEHHI BUCOTH CTIHKH i IIMPUHHM MOJHMIb Y OiK 3MEHILEHHS 3rMHAJIbHIUX MOMEHTIB 110 JOBXHHI KOHCTPYKLIi MaroThCsl HOB1
PO3paxyHKOBI Iepepi3u, B sIKUX HOPMaJIbHI HANpPY)KEHHS B MOJIMLAX MEPEBHUIIYIOTh HOPMAJIbHI HAIIPYXKEHHs B Iepepisi, 1e aie
MaKCUMAaJbHUH 3ruHaIbHUA MOMeEHT. lle o3Hauae, o B Oaiui 3MIHHOI XOPCTKOCTI € KijJlbKa pPO3PaxyHKOBHX Iepepi3iB.
3anporoHoBaHa BJOCKOHAJIEHa (pi3MKO-MaTeMaTHYHA MOJIEIIb HAIPYKEHO-/1e(pOPMOBAHOI0 CTaHy ABOTABPOBOT OAJIKH IIPH 3THHI.
CraneBa 0ajika JIBOTaBpOBOTO IEpepi3y 3 HOBOI TOINOJIOTIEI0 Mae MOKJIMBICTh aJIaNTYBaTUCS 10 HANPYXeHO-IedopMoBaHOro
CTaHy 3 ypaxyBaHHSIM 3BOPOTHOTO 3MiHM IapamMeTrpa LIMPUHHM TOJIB (BHUCOTa OAlKU y BU3HAYCHOMY Ci4E€HHI 3MEHIIyeThCs abo
3aJIMINAETHCS MOCTIHHO, @ MIMPUHA 1, BIIMOBIIHO, IJIOMIA MTONEPEYHOro CiYeHHS MOJUIb 301IbLIYEThCS BITHOCHO CiYeHHS, 1
Jlie MaKCHMaJbHUH 3rHHANbHUII MOMEHT). Take y/JOCKOHaJleHe KOHCTPYKTHBHE pIllICHHS J03BOJISE€ BHPILINTH 3ajady
JIOCSITHEHHS HANpPY)XKEHHS B IOTOYHMX Iepepizax, sKi He MEepEeBMINYIOTh MILHICTh CTaji 3a TPAaHHULCI0 TEKYy4OCTi, MO BCiit
JIOBXKHMHI cTaneBoi 1BOTaBpoBOi Oanku. IIpoBeneHi YMCIOBi TOCHIKEHHS TOKAa3ald MOXJIMBICTh 3HAHTH HOBI KOHCTPYKTHBHI
PpilIEHHS palioHaIbHUX KOHCTPYKIIIH CTaJeBUX JIBOTABPOBUX 0aloOK 3MiHHOTO nepepizy. Takoxk rmokazaHa JOIMyCTUMa MHOXKHHA
palioHaJbHUX pIllIEHb 32 pe3yJbTaTaMH BUKOHAHUX JOCIHIUKEHb. TakMM UYMHOM, 33jla4a IOIIYKY pPaliOHAJIbHOI TOMOJOTIi
CTaJEeBUX JBOTABPOBUX OAJIOK 3 JIIHIHHO-3MIHHOIO INMPHHOIO TIOJIKM i BUCOTOIO CTIHKM € 3a[a4yel0 3 aJeKBaTHUMHU yMOBaMH
HPOCKTYBAHHSL.

Kuro4oBi ci1oBa: cranesi KOHCTPYKIIIT 0a0K, MOJIEIIOBaHHS, CTAJIEBl ABOTaBPOBI OAJKM 3MIHHOTO Hepepisy, onTHMallbHa
TomnoJjoris, 1insoBa ¢yHkuis, ymosn Kyna-Takepa, MeToq MHOXHHKIB Jlarpanxka, craieBi Oanku i3 pi3HMMH NapaMmeTpaMu
LIBUAKOCTI 3MiHM BUCOTH CTIHKH 1 IIMPUHU MOJIUIb HA OKPEMUX AUISIHKAX, pallioHaIbHA TOMOJIOT{ CTaneBoi ABOTaBPOBOI OasiKu
3 aJleKBaTHUMH YMOBaMH MPOCKTYBaHHS.

Dzhanov L.V., Bilyk S.1., Bilyk A.S.

RATIONAL TOPOLOGY OF STEEL I-BEAMS WITH VARIOUS GRADIENTS OF CHANGING WALL
HEIGHT AND SHELF WIDTH AT SPECIFIED SECTIONS ALONG THE LENGTH OF THE BEAM

A methodological approach has been developed for determining the rational topology of steel I-beams with variable
stiffness under uniformly distributed loading along the beam length. It has been shown that for such beams, with varying web
height and flange width, the maximum stress does not occur in the section where the maximum bending moment acts. The
problem of finding the optimal cross-sectional height is solved using the Lagrange multipliers method in conjunction with the
Kuhn-Tucker conditions. For steel I-beams with variable web height and flange width, the sufficient condition for structural
optimality is confirmed: the area of the web is equal to the total area of the two flanges. However, under linear reduction of web
height and flange width in the direction of decreasing bending moments, new critical cross-sections arise along the beam length
in which the normal stresses in the flanges exceed those in the section with the maximum bending moment. This indicates that
beams with variable stiffness may have multiple governing sections. An improved physical-mathematical model of the stress—
strain state of I-beams in bending is proposed. A steel I-beam with the proposed new topology has the ability to adapt to its
stress—strain state by introducing reverse variation of flange width: in selected sections, the beam height decreases or remains
constant, while the flange width and accordingly the flange cross-sectional area increases relative to the section where the
maximum bending moment acts. This improved design approach allows for achieving stress levels in all current cross-sections
that do not exceed the yield strength of steel along the entire length of the I-beam. The numerical studies conducted demonstrate
the possibility of finding new rational design solutions for variable cross-section steel I-beams. The existence of an admissible
set of rational solutions based on the obtained results has also been confirmed. Thus, the problem of determining the rational
topology of steel I-beams with linearly varying flange width and web height represents a design task with appropriately
formulated and adequate design condition.

Keywords: steel beam structures, modeling, variable cross-section steel I-beams, optimal topology, objective function,
Kuhn-Tucker conditions, Lagrange multipliers method, steel beams with different rates of web height and flange width variation
in specific segments, rational topology of steel I-beams with adequately formulated design conditions.
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Loxcanoe JI.B., binux C.I, binux A.C. PanioHaJbHa TOMOJIOTiA cTajJeBUX ABOTABPOBHMX 0alok i3 pisHMMHU rpagieHTamu
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Y cmammi pospobreno memooonociunuii nioxio payioHanbHO20 NPOEKMYSAHHA CMAlesux 080mMaAeposuUx 0OAnOK npu Oii
PIBHOMIDHO PO3NOOINEHO20 HABAHMANCEHHA 3 YPAXYBAHHAM pI3HOI JNIHIUHOI 3MiHU 6uCOMU CMIHKU | WUPUHU NOIUYL Y
BUBHAYEHUX CEKYIAX NO O0BIHCUHI KOHCMPYKYII.
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The article presents a generalized methodology for determining the dynamic coefficients for deflections and bending moments of
the dynamic operation of a steel roof truss structure under the action of a concentrated impulse and after the load has ceased.
Figs. 2. Tabl 1. Refs. 42.
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