ISSN 2410-2547 35
Onip matepiaiis i Teopist ciopy/Strength of Materials and Theory of Structures. 2025. Ne 114

UDC 539.3

INVESTIGATION OF NONLINEAR DEFORMATION, BUCKLING AND
NATURAL VIBRATIONS OF ELASTIC SHELLS UNDER
THERMOMECHANICAL LOADS USING A UNIVERSAL THREE-
DIMENSIONAL FINITE ELEMENT

O.P. Krivenko,

Candidate of Science (Engineering), Senior Researcher

P.P. Lizunov,
Doctor of Science (Engineering), Professor

Kyiv National University of Construction and Architecture
31, Povitryanykh Syl ave., Kyiv, Ukraine, 03037

DOI: 10.32347/2410-2547.2025.114.35-43

The finite element method for solving problems of nonlinear deformation, stability, post-buckling behavior and natural
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Introduction

At present, the finite element method has become one of the most common numerical methods used
to study the stress-strain state (SSS), stability, and dynamics of shell structures [1-7 and others]. On its
basis, effective approaches to studying the behavior of shells of different classes have been developed.
Various finite elements (FE) specially developed for these purposes are often used to calculate shells. The
FEs are created mainly on the basis of shell theories or, less often, on the basis of three-dimensional
equations of the theory of thermoelasticity. The elements used have their own range of application, as a
rule. Modern and effective approaches are those in which the shell is considered as a three-dimensional
body with a small thickness [2, 4, 8-12]. In this case, two-dimensional theories of plates and shells and
one-dimensional theories of rods are not used to describe the behavior of the shell. However, certain
hypotheses regarding the stress-strain state of a thin shell are usually accepted. Almost any real shell
structure has a complex geometric shape. In addition to having non-canonical outlines, shell shapes can
have different geometric features, such as ribs, channels, holes, variable thickness, etc. Under real
operating conditions, thin-walled shell structures can usually be subject to mechanical and thermal loads
[9, 13, 14]. This necessitates the use of refined approaches from the standpoint of three-dimensional
thermoelasticity theory to analyze their behavior [2, 9, 15, 16]. A detailed review of approaches and
methods for numerical modeling of nonlinear deformation processes, stability and post-buckling behavior
of elastic shells of inhomogeneous structure can be found in the monograph [9] and in the overview
article [8].

Problem Formulation and the Research Method

The method of finite element analysis of the stress-strain state, buckling, post-buckling behavior and
natural vibrations of shells is based on geometrically nonlinear relations of the three-dimensional theory
of thermoelasticity and the principles of the finite element moment scheme [9, 15, 16]. This approach
made it possible to develop a universal three-dimensional finite element and a method for studying the
behavior of thin elastic multilayer shells with various geometric features along the thickness under the
action of a complex thermomechanical load. Thus, thin multilayer shells can have complex geometric
shape, constant and step-variable thickness, ribs, holes, channels, sharp bends in the mid-surface, etc. We
will call such shells of different classes: inhomogeneous shells, shells of inhomogeneous structure, shells
of inhomogeneous stiffness, and shells with thickness-variable parameters [15, 16]. A distinctive feature
of the developed universal 3D FE is the presence of its additional variable parameters. This approach
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allowed the use of a single universal FE in all sections when modeling shells with different
inhomogeneities. The single computational finite-element shell model (FESM) created on this basis takes
into account various geometric features of the structural elements and inhomogeneities of the thin shell
material. This significantly expanded the range of problems under consideration and simplified the
numerical implementation of the calculation method. The approximation of a thin multilayer shell of a
non-uniform structure is realized by one FE in the thickness direction.

The shell is modeled by a nonlinear elastic continuum subject to large displacements and small

strains. The displacements u*" of an arbitrary point are identified in a global Cartesian coordinate system
x"" . The components of the strain tensor ¢; are set in the local coordinate system x' by the tensor of

finite Cauchy—Green strains:
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me CF = ax® / ox' are the components of the coordinate transformation tensor.
Since the effect of thermomechanical loads is considered, the strains (1), which are called total [17-

. . . . T
19], consist of two different types of strains: elastic &,, and temperature &, :

e T
Consider a steady-state thermal process in which the temperature field in the shell 7=T7(x") is a
known function of coordinates, independent of the SSS. Thus, we neglect the coupling of the strain and

thermal fields of the shell. Since the shell is thin, the temperature may be considered linearly
distributed throughout the thickness of the layer. The effect of the mechanical O and thermal 7 fields

on the shell is represented as a single process of loading. It is characterized by a common parameter
P= P(Q,T ) In the algorithm, this relationship is specified as a function describing the effect of the
applied thermomechanical load. This approach allows us to analyze the behavior of elastic shells under
the influence of various modes of complex thermomechanical loading, including combined ones [9,
15].

The shell layers are assumed to be linearly elastic and are described by the generalized Duhamel—
Neumann law [18]:

e
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where
&/ =Ce, (4)
— are stresses dependent on total strains;
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— are stresses dependent on thermal strains; C”* are the components of the stiffness tensor; o, are

the components of the tensor of thermal-expansion coefficients.

Anisotropic inhomogeneous material of shell layers is modeled by traditional materials (isotropic,
transversely isotropic, and orthotropic [9]) and composite (unidirectional fibrous [16]). To describe
curvilinear anisotropy, we introduce an orthotropy basis to set the orientation of the principal axes of
the material relative to the mid-surface of the FE layer. The thermoelastic properties are assumed
constant during a step of loading.

Two hypotheses are used to describe the features of the SSS of a thin inhomogeneous shell [9,

15, 16]. The static hypothesis compressive assumes that the stresses ¢'' in the fibers of the  th layer
n

are constant throughout its thickness (along the x' -axis):
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acnsll /8x1 =0, (©6)

where n=1,m; m is a number of layers in the FE.

To satisfy the static hypothesis (6), it is necessary to correct law (3). The second hypothesis is the
non-classical kinematic hypothesis of a deformed straight line. The straight segment along the
thickness of the shell remains straight during deformation, although it is stretched or shortened. This
segment is not necessarily normal to the mid-surface of the shell. The displacements are assumed
distributed linearly along the thickness, which is conventional in the theory of thin shells. The
hypothesis allows us to combine three-dimensional FEs keeping the compatibility of coordinates and
displacements, and to naturally model sharp bends of the middle surface of the shell, which are typical,
for example, for faceted, folded and articulated shells.

The universal FE (Fig. 1) is based on the “standard” 3D 8-node isoparametric FE with polylinear
shape functions for coordinates and displacements [1, 2, 9] (Fig. 1, b) which is a classic three-
dimensional FE of the shell. It is named the casing finite element (CFE) (Fig. 1, a). The casing is
understood as a shell body without geometric features in thickness. We have developed a unified
model based on this universal FE that describes the multilayer structure of a material and geometrical
features of structural elements of an inhomogeneous shell. The geometric features of the shell are:
variable-thickness casing, ribs, overlays, channels, holes, sharp bends of the middle surface, etc.

The transformation of the CFE (Fig. 1, a) into a modified finite element (MFE) is achieved by
introducing additional variable geometric parameters of the “standard” FE. Using these parameters, the

necessary changes in the FE thickness and its shift along the x'-axis are implemented for modeling
sections of shells with a step-variable thickness. The MFE * (Fig. 1, c) is used to approximate sections

of shells with a step-increased thickness (e.g. with ribs). The MFE = (Fig. 1, d) is used on sections of a
step-decreased thickness (e.g. with channels).
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Fig. 1. Transformation of the universal three-dimensional finite element



38 ISSN 2410-2547
Onip matepiaiis i Teopist ciopy/Strength of Materials and Theory of Structures. 2025. Ne 114

For this purpose, a method of linear transformation of the coordinates of the nodes of the three-
dimensional CFE into the corresponding nodal coordinates of the MFE in the thickness direction,
along the x'-axis (Fig. 2, a) is used [9, 16]. This approach is a consequence of the adopted polylinear
law of coordinate change within the FE and the formulated non-classical kinematic hypothesis of the
deformable straight line. Figure 2 shows the transformation of the edge AB belonging to the CFE into
the edge AB of the MFE. At first, the edge AB increases (or decreases) to the value A4'B’' (Fig. 2, b),
and then shifts by the value 7, from point S to point S (Fig. 2 ¢).

Thus, by varying the additional parameters, the “standard” 3D FE is endowed with the properties of

a universal 3D FE, which allows for a unified modeling of a wide class of inhomogeneous shell
structures.
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Fig. 2. The procedure for converting the CFE into the MFE

To derive the governing finite-element equations for displacements, use is made of the moment
finite-element scheme (MFES) the principles of which have been developed by Sakharov [2]. We have
applied the MFES to the problem of geometrically nonlinear deformation of thin multilayer shells of
step-variable thickness under the action of thermomechanical loads [9, 16]. The MFES approximations
of displacements and strains guarantee a correct description of the rigid-body displacements of FEs,
which enhances the convergence and accuracy of solutions on coarse meshes.

The MFES represents the total strains (1) in the local coordinate system x' as truncated Maclaurin
series about the FE center, the point O (Fig. 1, d):
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The thermal strains & = T are given within the »th layer as truncated Taylor series about its

center, point O,,:
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With (7) and (8), stresses (2) are presented in the form of linear segments of Taylor series in
powers of local coordinates x' about the center of the # th layer of the FE:

6’7—N’1+M’1(x —xf, )+M’f °‘+2M” (" = xg, x” +Maﬁm§g>)x°‘xﬁ 9)
T T
”—N”+M”(x - xp, )+M” °‘+2M” (! = x, x” +Maﬁm§g>)x°‘xﬁ (10)

Thus, we have 51m11ar series (8) and (9). Their coefﬁments are obtained using the static hypothesis

ikl

(6) [9]. Using this hypothesis corrects the components of the stiffness tensor C** for the terms of

n
higher degrees of these series: B = i _ (CyllCllkl)/Cllll .
n n n n n

The study of the processes of geometrically nonlinear shell deformation is based on the general
Lagrangian formulation of the variational problem in increments, when the deformation process is
given as a sequence of equilibrium states at sufficiently small steps of thermomechanical loading. At
the current step of loading, the new shell geometry, the SSS and its prehistory are known. The
Lagrange variational equation in the finite element approximation has the form:

811 = (8Wpp — 84z )=0, (11)
FE

where 7 is the strain energy of the FESM; 8W,; and 84 are the works done by internal and
external forces of the FE, respectively; Y  is the sum over finite elements of the FESM.
FE
With the Duhamel-Neumann law (2), the virtual work of internal forces of the FE is given by

e T T
Wy, = [6"8e;dV = [G78e,dV - [o”8e,;dV =Wy —3Wpy . (12)
VrE VrE VrE
After substituting the strain and stress functions (7-10) into the dependencies (11) and (12), all the
defining relations of the SE are obtained, and in explicit form [9]

It is common practice to use the Cartesian displacements u313233 of FE nodes as unknowns for a 3D

FE (Fig. 1, b). For thin shells, it is appropriate to use the set of displacements of nodal points on the
mid-surface and the differences of nodal displacements on the bounding surfaces of the FE, as
unknown functions [9].

The equations obtained for three-dimensional finite element are universal, since they are derived in
a local coordinate system for a general FE (Fig. 1, d). When obtaining the system of governing
nonlinear equations for the FEMS, a method is used that takes into account the eccentric placement of
the FE on different sections of a shell with stepwise-varying thickness.

The static problem of geometrically nonlinear deformation of the shell is solved by a step-by-step
method. The algorithm for solving the stability problem employs the parameter continuation method, a
modified Newton—Kantorovich method, and a procedure for automatic correction of algorithm
parameters [9]. At each step s, characterized by a parameter A, = A (P,U), the stress-strain state of

the shell is determined: its new coordinates (deformed shape) and increments of the strain and stress
fields. Each step corresponds to an increase (or decrease) of the external load parameter P, which is
associated with the parameters of mechanical (Q ) and temperature (7' ) effects. The solution of the
nonlinear problem is the relationship between the parameter P and the displacement field U of the
FESM. This relationship is determined at each step of loading increment A P and is usually
represented by a load P -deflection U (P —U ) curve at the characteristic point of the shell (Fig. 3).
This curve reflects the behavior of the shell in the processes of nonlinear deformation, buckling, and
post-buckling behavior. The value P corresponding to the first maximum of the P—-U curve (it isa
point “a ™ in Fig. 3) is taken as the upper critical load P, . There is a loss of shell stability "in large".

This process is accompanied by a sharp transition from one stable equilibrium state of the shell to
another. If there is a branching point in the pre-buckling domain of the P—U curve this is (it is a point
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" g " in Fig. 3), then it determines the loss of stability of the shell "in the small". In this case, there is a

smooth change in the SSS, and the critical load can be taken as the load value P corresponding to the
first bifurcation point [9, 15, 16].
The adopted incremental approach allows

O | to ()= Ctg (o) U

A o not only to analyze the geometrically nonlinear
=>A =2 (P)--- deformation of the shell at each step of the
tg (o) < C tg (oec) thermomechanical load, but also to determine

the frequencies and shapes of natural
vibrations of the structure taking into account
the prestressed deformed state.

The modal analysis procedure is
implemented at each moment s of load
increment corresponding to the parameter A, .
The result of the calculation is a load P —
lowest frequency ®,” curve (P —o,) (Fig. 3),
the specified spectrum of natural frequencies

(o7, i=J), and the corresponding shapes of

natural vibrations. If there is a branching point
" g " in the pre-buckling domain of the P-U

Fig. 3. Algorithm for the complex solution of problems of N .
buckling and natural vibrations of flexible shells curve then the load P=P" for which W = 0

can be taken as the upper critical according to
the dynamic stability criterion. If there are no branch points, then the maximum point "a" of the

P-U curve corresponds to the upper critical load P.” according to both the static criterion and the
dynamic one (®; =0).
The algorithm for solving the buckling problem obtains branching points on the P-U curve. Of

course, the branching points are fixed with the accuracy of the load increment step. Qualitative theory
is used to accurately determine the branching point. The presence of at least one negative eigenvalue of
the linearized stiffness matrix for the FESM corresponds to a new equilibrium shell configuration. We
use the method to more accurately determine the branching point on the P—U curve and to draw the

adjacent deformation mode in its neighborhood. An asymmetric small imperfection defined by the
parameter m is introduced into the perfect initial shell shape. If n is small, it affects the neighborhood
of the branching point. This allows the branching point to become a critical one and we may to obtain
an adjacent deformation mode.

In addition, the developed complex algorithm (Fig. 3) for solving problems of stability and modal
analysis of shells under the action of thermomechanical loads also allows, using a dynamic criterion, to
determine the presence of the first branching point in the pre-buckling domain, if it exists.

Numerical calculation and analysis of results

We will illustrate the capabilities of the approach using the classical problem of determining the
critical load for a axisymmetric spherical panel subject to uniform pressure ¢ . The panel is clamped at

the edges. The possibility of the appearance of axisymmetric and non-axisymmetric shapes of buckling
for panels of different curvatures k=H/h is investigated. The change in curvature of the panel is

achieved by changing the thickness # keeping the rise constant (H =5).

The deformed state of the shell of revolution of ideal shape at the beginning of the load is
axisymmetric. This corresponds to the axisymmetric formulation of the problem, in which the
characteristic shape of buckling is axisymmetric. However, at high load levels, significant compressive
forces may arise in the mid-surface of the shell. This, in turn, can lead to the transition of an
axisymmetric form of equilibrium to a non-axisymmetric one. This moment on the P—U curve is

defined as the appearance of a branching point [20-22]. Moreover, this can occur in the pre-buckling
domain. After branching, two types of solution branches can be formed, on which the shell will either
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take on additional load or not. In the example under consideration, the branching point is identified
using the approaches described above — by the number of negative eigenvalues, by introducing a small
perturbation into the initial shape of the shell, and by conducting a modal analysis (MA).

The perturbation of the perfect shape of the mid-surface of the shell is introduced as an initial non-
axisymmetric imperfection by the formula nsin (r/a)cos (9) , where n=0.001 is the accepted value
of the disturbance parameter, » and ¢ are the polar coordinates, a is the radius of the support

boundary. Modal analysis is carried out for shells with ideal shape (n=0).

wo\J12(1-v? 2
9er Z%(Tv)(gj versus the

The dependence of the dimensionless critical load

dimensionless shallowness parameter

b=4/6.6k for an axisymmetric spherical For
panel is determined, where R is the radius of

the spherical shell; E,v are the elastic Tt
modulus, Poisson’s ratio. The obtained curves

q.> —b are compared with the data in [20] 08

(Fig. 4).
According to the data of [20], the
axisymmetric buckling mode (curve 2) 0B F =, 5 1=0,001

changes into an adjacent non-axisymmetric
mode when b=~5.5 (the origin of curve 4).
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(the origin of curve 3). For a panel with a : i T MCLE, MA |

perturbation of the perfect shape (n=0.001), " ) S ST !

the non-axisymmetric buckling mode is also at q 4 5 g 7 ||3
a nearby point b _: 5.56 (t_he origin of curve Fig. 4. Dependence of the critical load and buckling shape

5). Modal analySIS also gives a close value versus on the curvature of spherical shells of revolution

b=35.56 (the origin of curve 6). So, good
agreement is observed between the g.7 —b curves obtained in [22] and the MFES-based calculations.

Calculations using the MFES show that the values of critical loads obtained with b < 5.56 for
panels of perfect initial shape (n=0) and panels with a perturbation shape (n=0.001) coincide,

having an axisymmetric buckling shape. With the increase of the shallowness parameter 5, the
difference between the values of critical loads gradually grows to more and thanreaches almost 50% at
b =8. This occurs due to the transformation of the bifurcation point at » = 5.56 into a critical one and
the change of the pre-critical axisymmetric deformation shape into a non-axisymmetric buckling mode.

Studies of the effect of parameters of structural elements, thermal and mechanical loads, boundary
conditions, and other factors on the buckling and natural vibrations of flexible shells of a inhomogeneous
structure can be found in a number of scientific works by the authors, for example [9, 15, 16].

Conclusions

The proposed method, constructed from the unified positions of the three-dimensional geometrically
nonlinear theory of thermoelasticity and the use of the moment finite element scheme, allows solving
static problems of nonlinear deformation, buckling, post-buckling behavior and natural vibrations of a
wide class of thin elastic inhomogeneous shells under the action of thermomechanical loads.

The method is applied to identify the branching point of the solution on the load-deflection curve. The
analysis is performed using three approaches: by the number of negative eigenvalues, by introducing a
small perturbation into the perfect initial shape of the shell, and by conducting a modal analysis. It can be
concluded that the developed method is an effective tool for numerical study of buckling and modal
analysis of shells with detection of branching points and transition to adjacent branches of the solutions.
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Kpusenxo O.I1., Jlisynos I1.11.
JOCJIJKEHHS HEJTHIHMHOIO JE®OPMYBAHHS, CTIMKOCTI TA BJACHUX KOJIMBAHB ITPYKHUX
OBOJIOHOK ITPH JIli TEPMOMEXAHIYHUX HABAHTAXKEHB 3 BAUKOPUCTAHHSM YHIBEPCAJIBHOI'O
TPUBUMIPHOI'O CKIHYEHHOI'O EJIJIEMEHTA

VY craTTi HajaHi TOJIOBHI OCOOJIMBOCTI METOJY PO3B’SI3yBaHHS CTATMYHHUX 3ajay HeNiHiMHOro aeopmyBaHHS, CTIHKOCTI,
3aKPUTHYHOI MOBEAIHKM Ta BIACHUX KOJMBAHb LIMPOKOrO KJIACY TOHKUX INPYKHUX HEOAHOPIIHUX OOOJIOHOK pi3HOI dopmu i
CTPYKTYpU MpU Jil TEPMOMEXaHIYHMX HaBaHTaXeHb. MeToj MoOyAOBaHWH 3 €JUHUX IO3ULIH TPUBUMIPHOI I'€OMETPUYHO
HeJiHIHHOT Teopii TEPMONPYKHOCTI HA OCHOBI METOJly CKIHYEHHHX €JIeMEHTIB. BUKOpHCTOBYETHCS yHIBEpCAIbHUN TPUBUMIPHUI
CKIHYCHHHH €JIEMEHT, BIZIMIHHOIO PHCOIO SKOTO € HasBHICTh HOro 10JaTKOBUX 3MiHHMX napaMetpiB. Takuii npuiiom 1aB 3mory
NP MOJICIIOBAHHI OOOJOHOK 3 PI3HUMHM HEOJHOPIAHOCTSAMU 3aCTOCOBYBATH Ha YCIX JUISHKAX €IMHMH YHIBEepcaJbHUI
CKiHYeHHMH eneMeHT. Ha wilf OCHOBI CTBOPEHO pPO3PaXyHKOBY MOAENIb, IO BPAaXOBY€ TI'E€OMETPHUYHI OCOOIMBOCTI
KOHCTPYKTHBHUX €JIEMEHTIB 1 HEOIHOPIAHOCTI Marepiajly TOHKOI OOOJOHKH (3MiHHICTH TOBIMHH, 3JIaMH Ta I'DaHOBaHICTh
00IIMBKH, pedpa, HaKIIaK1, BUIMKH, OTBOPH, BCTABKH, OaraTolapoBy CTpyKTypy matepiany). B anropurmi po3s's3aHHs 3agadi
CTIHKOCTI OOOJIOHKM BM3HAYAIOTBCS TOYKM PO3TATYKEHHS 3 MOXIMBICTIO TOOYIOBM B OKOJNUISX CYyMDKHHX (opm
nedopmyBanHs. Po3po0i1eHO METO/ KOMIUIEKCHOTO PO3B’SA3yBaHHS 3ajay CTIMKICTh 1 BJIACHUX KOJMBaHb OOOJOHOK Ipu Jii
TEPMOMEXaHIYHUX HaBaHTaxkeHb. Ha 0a3i Takoro minxoay BTpaTa CTIHKOCTI BH3HAYAETHCSH 3a CTATUYHMM 1 JMHAMIYHUM
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kputepisimu. Ha dncensHoMy NpHKIIaji MpoAeMOHCTPOBaHA epeKTHBHICTb METOLy. MeTo/| 3aCTOCOBAHO AJIs BUSABICHHS TOUKH
po3ray’KeHHs PO3B’sI3Ky Ha KPHBIil «HaBaHTAXCHHS-TIPOTUHY JUIs TAHEJIeH Pi3HOI KPUBU3HU.

Kuaro4oBi cjioBa: 000JI0HKa HEOAHOPIAHOI CTPYKTYPH, YHIBEPCAJIbHUI TPUBUMIPHUI CKIHUCHHHH €JIEMEHT, T€OMETPUYHO
HeniHilHe 1e(opMyBaHHs, CTIHKICTh, BJIACHI KOJMBAHHSA, MOMEHTHA CXeMa CKiHYEHHHUX €JIEMEHTIB.

Krivenko O.P., Lizunov P.P.
INVESTIGATION OF NONLINEAR DEFORMATION, BUCKLING AND NATURAL VIBRATIONS OF ELASTIC
SHELLS UNDER THERMOMECHANICAL LOADS USING A UNIVERSAL THREE-DIMENSIONAL FINITE
ELEMENT

The article presents the fundamentals and features of the method for solving static problems of nonlinear deformation,
buckling, post-buckling behavior and natural vibrations of a wide class of thin elastic inhomogeneous shells of various shapes
and structures under the action of thermomechanical loads. The method is developed from the unified positions of the three-
dimensional geometrically nonlinear theory of thermoelasticity based on the finite element method. A universal 3D finite
element is used. The distinctive feature of the finite element is the presence of its additional variable parameters. This approach
allowed for the use of a single universal finite element in all sections when modeling shells with different inhomogeneities. On
this basis, a unified model has been developed that takes into account the geometric features of the structural elements and the
multilayer structure of a material of the thin shells (constant or piecewise variable thickness, ribs, cover plates, channels, holes,
sharp bends in the middle surface, layers, etc.). The algorithm for solving the shell buckling problem finds the branching points
and allows obtaining adjacent deformation modes in their neighborhood. A method for the integrated solution of problems of
stability and natural vibrations of shells under the action of thermomechanical loads has been developed. Based on this approach,
the loss of stability is determined by static and dynamic criteria. The efficiency of the method is demonstrated by a numerical
example. The method is used to identify the branching point of the solution on the load-deflection curve for panels of different
curvatures.

Keywords: shell of inhomogeneous structure, universal 3D finite element, geometrically nonlinear deformation, buckling,
natural vibrations, finite element moment scheme.
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Kpusenxo O.I1, Jlisynos I1I1. JlochifzkeHHs1 HeJliHiliHOro nedopmMyBaHHS, CTiKOCTI Ta BJIACHMX KOJMBAHb NMPYKHHX
000/10HOK Npu Aii TepMoOMeXaHiYHMX HABAHTA’KeHb 3 BHKOPHCTAHHSM YHiBepcajabHOro TPHBHMIPHOIO CKiHYEHHOIO
ejiemeHTa // Onip MaTtepianiB i Teopis criopya: Hayk.-tex. 30ipH. — Kuis: KHYBA, 2025. — Bun. 114. — C. 35-43.

Posenanymo memoo cKiHueHHUX enemeHmié ONid pO38 SI3aAHHA 3A0ay HENiHIUHO20 0eOpMYSaHHs, CMILKOCMI, 3aNKPUMUYHOT
N0GeOIHKU MA GNIACHUX KOIUBAHb UUPOKO20 KIACY MOHKUX HEOOHOPIOHUX 0O0IOHOK Ni0 O0I€I0 MepMOMEXAHIYHUX HABAHMAIICEHD.
Ha ocHogi ceomempuino HeniHiiHUX Cnig8IOHOUIEHb MPUBUMIDHOT meopii mepMOnpyHCHOCHI MA BUKOPUCMAHHA MOMEHMHOT
cXemu CKIHYeHHUX eleMeHmie no6y0oeaHo epexmueHull KOMR IOMepHUll aieOpumm aHanizy nogedinku ob6onoHok. Hucnosuil
NPUKIAO OeMOHCMPYE eeKMUBHICMb PO3POOIEHO20 NIOX00Y.
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Krivenko O.P., Lizunov P.P. Investigation of nonlinear deformation, buckling and natural vibrations of elastic shells under
thermomechanical loads using a universal three-dimensional finite element // Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles. — Kyiv: KNUBA, 2025. — Issue 114. — P. 35-43.

The finite element method for solving problems of nonlinear deformation, stability, post-buckling behavior and natural
vibrations of a wide class of thin inhomogeneous shells under the action of thermomechanical loads is considered. An effective
computer algorithm for analyzing the behavior of shells is developed based on the geometrically nonlinear relations of the three-
dimensional theory of thermoelasticity and the use of the finite element moment scheme. A numerical example demonstrates the
effectiveness of the developed approach.

Fig. 4. Ref. 22.
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