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The paper uses hyperbolic models for the analysis of heat and moisture exchange in inhomogeneous porous materials in
which short heat pulses propagate. The heat transfer in sharply inhomogeneous media at room temperature is not described by
Fourier and Cattaneo laws, but is modeled by Guyer-Krumhansl-type equations. The O.V. Lykov system of equations of
interrelated heat and mass transfer taking into account the finiteness of heat and mass (moisture) transfer rates is solved using a
one-dimensional formulation. However, the heat propagation velocity is of the order of the sound speed, so due to the short
relaxation time, the solutions of the hyperbolic equation of thermal conductivity largely coincide with the solutions of the
classical parabolic equation, although there are some significant differences. They depend on processes occurring on the surface
(in thin layers) of porous bodies. The moisture diffusion rate in capillary-porous materials is approximately 10°...107 and more
times lower than the heat propagation rate, so, accordingly, the relaxation time of diffusion processes is much longer and should
be considered in mass transfer equations. Exact analytical solutions of the one-dimensional Guyer-Krumhansl equation are
obtained using the operator method. This equation is also used to study heat pulses of different shapes in the medium with
respect to phonon/ballistic methods of heat transfer. The obtained results are used to model the heat and moisture propagation in
thin films of capillary-porous bodies with account taken of molecular effects in systems of reduced dimension. The very short
heat pulses propagation simulating isolated heat waves is modeled with reference to Knudsen number, as well as the solutions
for the periodic initial function. The exact solutions of the above problems in the model of thin films of capillary-porous bodies
are obtained.

Keywords: Guyer-Krumhansl equation, heat and mass transfer, thin films, capillary-porous bodies, inhomogenuity,
Knudsen number, hyperbolic equation of heat and moisture transfer.

1. Introduction

The development of computer methods together with the computer technology’s advance made in
recent decades has substantially simplified the solution of many mathematical problems. Computer
methods are widely used to analyze mathematical models of physical processes. However, it is often
necessary to obtain and study analytical solutions for a deep understanding of physical phenomena and
their proper explanation. All the tools of mathematical physics are used for this purpose. One of the most
commonly used laws of physics in everyday life is the Fourier law of thermal conductivity relating
temperature changes to the heat flow using a linear dependence [1]. This model well describes the
phenomenon of thermal conductivity in homogeneous solid undeformed bodies under normal conditions.
However, Fourier's law does not apply to all materials (especially at low temperatures < 15K) and, as
noted by L. Onsager in [2], it can be considered only as an "approximate description of thermal
conductivity which neglects the time required to accelerate the heat flow", because it supposes an
instantaneous heat flow increase simultaneously at all points. The most significant physical phenomenon
that goes beyond Fourier's law is the so-called second sound [3], first discovered during experimental
studies of crystals in which heat pulses propagate [4-7]. To describe this phenomenon, a phonon
mechanism of thermal conductivity and corresponding Cattaneo equation are proposed [8]:
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(7:9+0,)T=D;-V*T , where D;— thermal conductivity of the material, 7 — relaxation time, 7 —

temperature, V> — Laplace operator, ¢— time. According to this theory, temperature fluctuations
propagate as attenuated waves in a medium with the velocity v, =./D, /7 . The Cattaneo model supposes

a finite rate of heat flow increase that follows a change in temperature at the boundary of the area. This
delay is characterized by time after the appearance of the temperature gradient, which in its turn reflects
the properties of the medium and describes the temporal relation between the beginning of the
temperature change and the reaction of the heat flow to this change. The time required to begin the heat
transfer is associated with phonon interactions that transfer heat and are a measure of the medium’s
thermal inertia. However, the Cattaneo model has contradictions of both physical and mathematical
nature [9-13]. In addition, the Cattaneo equation, although qualitatively describing the second sound,

gave incorrect values for the velocity of heat wave propagation /Dj/7, which differ from the

experimental data on the propagation of heat pulses in extremely pure nonmetallic Bi and NaF crystals at
low temperatures.

Therefore, the modeling of heat transfer processes with finite velocity in materials requires further
comprehensive research and improvement.

2. Literature review and problem statement
The most common Guyer-Krumhansl model [14] replaced the Cattaneo model and came down to
the corresponding one-dimensional thermal conductivity equation in the one-dimensional case [15]:

2.9 D (R w
(atz |€E—§atax2 )-F(x,t)—(a$+ﬂ )-F(x,t),

(a,e,&,ﬂ)=const.

(M

The linear component k =0 means the presence of sources in the equation (1) and the model
proposed by Guyer and Krumhansl assumes that £ =0. The Guyer-Krumhansl model complements
the Fourier heat diffusion and heat wave propagation with another heat transfer component acting on
scales L, which are of the same order as the average free path length of phonons / [16, 17]. Indeed, the
theories of Fourier [1] and Casimir [18] are insufficient to describe the heat transfer which depends not
only on the collisions between phonons, but also on the interaction of phonons at the boundary of the
medium. These so-called ballistic conditions (when the free path length of phonons is of the same
order with the size of the whole system) are actually observed in structures of small dimension, i.e. in
ultrathin films or fibers of capillary-porous bodies. Studies of ballistic thermal conductivity have
recently been a central preoccupation of scientists and have conducted mainly using numerical
methods [19-26]. Understanding whether heat transfer is determined by ballistic conditions in each
case is important from a practical standpoint, because ballistic phonon heat transfer requires an
assessment of conditions at the boundary of the medium and depends on them, not only on the
properties of the medium itself [17, 25, 27].

At the same time, it was shown that the Guyer-Krumhansl equation also describes the thermal
conductivity in macroscopic three-dimensional objects with significant internal inhomogeneity [28,
29]. Other studies [30-35] confirmed that the heat transfer in substantially inhomogeneous media at
room temperature is not described by Fourier and Cattaneo laws, but rather modeled by Guyer-
Krumbhansl-type equations [19, 21, 28] despite the absence of actual ballistic conditions / ~ L. Similar
results were obtained during studies of short heat pulses’ propagation [36] at normal temperature in
porous/capillary-porous materials. These results were considered afterward in a more general context
in [37]. Thus, obtaining solutions and studying the Guyer-Krumhansl equation are an urgent task with
many practical applications.

Using the methods of thermodynamics of irreversible processes authors [38, 39] created a theory of
interrelated heat and mass transfer during phase transformations. The obtained system of differential
equations in the one-dimensional case (taking into account the finiteness of heat propagation rates and
mass transfer) is as follows:
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or, . 9T _ a(i aT)W_pO_Q_%

9t g2 dx\cpy ox )
u, . Fu_d, ), 0(, 50T
W-'_T”'”?_ ax(a’” 8x)+ ax(a”’ o ox )’

where T — temperature, u — moisture content, 7,,, 7,, — temperature and mass (moisture) transfer

ot
relaxation time respectively, ¢— time, A — heat-conductivity coefficient, p,— dry body density, ¢ —
specific heat capacity, it/(cpo):a — temperature conductivity coefficient, y — phase transition

criterion which characterizes the ratio of changes in moisture content due to the evaporation and total
change in moisture content, O — evaporation heat. It is assumed in this study that @,, — moisture

diffusivity, o — thermal-gradient coefficient, as well as a — temperature conductivity coefficient does
not depend on the spatial coordinate x .
In addition, the situation when w — 0 further is being considered. As a result, the system of

equations (2) takes a simplified form:
or,. OT_ 2T
a9 T ox?’
Jdu 9u 9u o°T
W-i_ Tpm ?= a,, g-l‘am 5$

It is pointed out that the last term in the right part of the second equation of system (3) describes the
thermal diffusion of moisture process. The system of equations (3), as well as (2), plays an important
role in the study of the drying process of wet materials.

For example, use of the O.V. Lykov’s system of equations (2) or (3) allows to solve the two-
dimensional problem of non-isothermal moisture transfer in the wood material together with the
equation of moisture elasticity. As a result, the subsurface stresses during drying and limit strength
values under the assumption of orthotropic structure of wood material are determined. Studies showed
that the effect of thermal conductivity negatively affected the duration of the wood drying process.

Another example is the modeling of non-stationary interrelated processes of heat and moisture
transfer in plant materials under combined power supply in parallel to a constant and impulse ultra-
high frequency (UHF) exposure (as well as when irradiated with electromagnetic waves of the
millimeter range with a carrier frequency /= 50...60 GHz). It is shown that the creation of pulse and
pulse-step UHF/EHF (extremely high frequency range corresponding to mm range of electromagnetic
waves) modes allows to reduce the temperature effect on the processed material. Kinetic dependences
with respect to the finite rate of moisture transfer are established.

The relaxation time of thermal stress during the heat propagation in metals is ~ 10” s. The heat
distribution rate is of the same order as the sound velocity.

Due to the short relaxation time, the solution of the hyperbolic equation of thermal conductivity
almost coincides with the solution of the classical parabolic equation (but it is not true for short and
ultrashort thermal pulses). The moisture diffusion rate in capillary-porous materials is approximately
10°...10” and more times lower, accordingly, the relaxation time of diffusion processes is much longer,
so it should be taken into account in the equations of mass transfer [38-42]. The relaxation time of the

€)

mass is related to the moisture conductivity coefficient by the ratio 7, =a,, / v2, where v, — mass

pm
propagation velocity.

3. The aim and objectives of the study

The objective of this paper is to establish hyperbolic models for the analysis of heat and moisture
exchange in inhomogeneous porous materials during the propagation of short heat pulses.

To achieve this aim, it is necessary to solve the following tasks:

— tosolve the O.V. Lykov's system of equations of interrelated heat and mass transfer taking into
account the finiteness of heat and mass (moisture) transfer rates;

— to obtain analytical solutions of the one-dimensional Guyer-Krumhansl equation;
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— to model the heat and moisture propagation in thin films of capillary-porous bodies with
account taken of molecular effects in systems of reduced dimension.

4. Investigation of the solutions to a system of differential equations describing an
interconnected heat and mass transfer processes in capillary-porous materials
Methods of mathematical physics together with the operator approach to the solution of differential
equations [43-45] and Laplace transforms allow to obtain an accurate analytical description of the
system’s thermal behavior taking into account similar effects at different values of its parameters [46-
48]. For this purpose, the equation (1) should be written as shown below:

o* 9 0’ d
(1 F*a;) F(x,t)=(kb . ——+kp ™ 2+,u) F(x.p), 4)
where 7 = 1/ g, u=p* /8, ky =a/e — Fourier-type thermal conductivity, and k, =oc/e — thermal
conductivity of ballistic type. If compared (4) to the first equation of system (3), then:

F(x,t)=T(x,t), T=T,, kr=a, k,=0, u=0. %)
Therefore, the natural generalization of the first equation of system (3) is the following (taking into
account ballistic effects):
or, . T _[ 9 0’
CAN = ( S T ©

where p # 0 means that heat sources are available in the system (3).
It should first be focused on the exact solutions of equation (6).

5. Exact solutions of Guyer-Krumhansl-type equation
It should be noted that the equation (6) is a particular case of a more general equation of the
following type:

(aa 5 +&(x)- 5 ] F(x,t)=D(x)-F(x,1), @)

where D(x) — differential operator affecting the x coordinate.

A partial solution of equation (7) is obtained after applying Laplace transforms, provided that the
integral coincides:

F(x,t)=C- exp[—— E(X)} J‘.ff ( 16§jxexp[ 5@2 (x)}exp[—4§.l§(x)].f(x), (8)

where F(x,0)=f(x) — initial condition, and C — a constant determined from another initial or
boundary condition.

In particular for the operator 5(x)=(a-8§+ﬂ)z(a-8§+u), a partial solution of the telegraph
equation (TE) is obtained:

(%4—5%)-}7()6 )= ( +ﬁ) F(x.t), )

(10)

Tpyr Tyr TPT'
The equation of (9) or (10) type is also called a hyperbolic equation of thermal conductivity with an
absolute term. The solution (8) of equation (9) or (10) attenuating on a semi-infinite interval of time at
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F(x,0)=f(x), F(x,00)=0 (as a reminder F(x,t)=T(x,t)) is one of the branches of the general

solution:
F(x,t):exp(—%g){cl (x)-expl:—%-\/ & +4l§(x)}+C2 (x)-exp|:+%w/ & +45(x):|}, (11)

where lﬂ)(x)=0(-8)2c +B and C,(x) are determined by boundary conditions.

Bounded solution of equation (1) or (4) or (6) at t &> o with the initial condition F(x,0)=f(x)

can be obtained by the method of operators using the technique developed in [41, 42,49]. It can be
written as shown below:

oo

F(x’t)zexp(—gti/rZ)-g)-tj aé { 2 5-(52+4ﬁ2)}><jexp(—§2)~§f(x)dC,

05‘/2 6o 0 (12)
§=exp{(%—4.§-a+2§-£+i~2\/2~5~§’)8§}, ?=—1.
Thermal conductivity operator S :
S=exp(ert-0?) (13)
gives a solution of the Fourier thermal conductivity equation:
0,F(x,t)=a-0>F(x,t), (14)
using the Gauss transforms of initial condition F(x,0)= f(x) [40, 43, 49]:
Flx r)=§f(x)=%-oj°exp = 1(&)dé (15)
’ 2\t e 4t ’
Thus, for the initial distribution f (x)=exp(—x?) :
Sexp(—x*)=exp(e-1-02 )-exp(=x?)=——exp(—x*/(1+ 40z 16
(=) =expet:0} Jexp(-+)=—enp(-*/(1+4a0) (16)
and for Dirac o-function:
g 1 2
§8(x)=explor-t-02)= -exp|—x~/4ot). 17
(x)=exp( X)zmp(/) (17)

For the equation of thermal conductivity in the form (10) while neglecting the finiteness of heat
propagation (its propagation velocity):

a=a, f(x):exp(—K-xz)-qm , (18)
where f(x) — distribution of specific heat flow in the direction OX-axis, W/m?; K — coefficient of heat

flow concentration of the source, 1/m%; q»,, — the highest heat flow in the center of the hot spot, W/m?,
For this case:

_ 1 . K-x*
T(x0)=om J+4a-Kt VXP( 1+40{-K-t) : (19)

If a heat source enters into the material (e.g. plate) ¢ J of heat every second, then it can be written
as shown below:

_T k) k) g Ny
= e dx= e dx=—"221.0 | 20
1 {qz'” qz'”{ NI 0)

where CI>(z)=(2/ \/;)Jexp(—zz)dz — probability integral.
0
For Dirac o-function:

~ 2
S&(x)=exp(a-r-a§)5(x)=2 Lm exp( jm). 1)
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In the context of thermal conductivity, the initial condition F(x,0)=0(x) simulates the propagation of

an instantaneous laser pulse in a material. This experimental technique is well-established for determining
the thermal conductivity of the substance [43, 50] and allows to make "sensitive" measurements, that is
why obtaining accurate solutions if F(x,0)=0(x) has a significant practical value.

Exact bounded by #— oo solution of Guyer-Krumhansl-type equation (1), (4) or (6) (u# 0) with
the initial condition f(x)=0(x) is written as follows:

2
olyelicae R )
F(x’t)|f(xk6(x)_ 87r% .[5\/’ ”Xp{ 1t6.§ 5(82+4ﬁ2)}x_.[° \/|E+ibé1 > (22)
where
§5(x)=exp(a-t-8§)5(x)=2 Lat exp( :{;). (23)

It can be written for equation (6) in a similar way:

2
exp(—t 1}, ) . exp{—é’2 e —— }d{
~ 1 4,U (a+lb§)
T 500 = N .[ Ve JE eXp{ 1t6~§ é( ]} ;‘; (24

T Tor \/|d+i1;§'l
where
Gkl g _+2§—kb, B =2JE k1 (25)
Tpr 2 Tpr Tpr pT

If the function of the initial condition can be approximated by the polynomial f (x): Zx" , the

n

solution will be as follows:

exp(— 28)l‘°° dé
F(x t)|f(x%2x _Z 4 J‘é\/7

where H ,(x, y) — Hermite polynomials of two variables [44 - 46]:

82 \ ' n—2r'y
Hn(x,y)—exp(y ox? }x - (n—2r "

, -
{ r z 5-(52+4ﬁ2)}><_jw exp(~{7 )}, (x,a+2i 5N JENS, (26)

w (27)
EO%H (s y)=exp(xt+ ytz),
where [1/2] — means the quotient of 1/2.

Non-periodic solutions of equation (10) with u = 0 can be further found using the paper’s approach
[47], i.e.:

a & o° 1 0
P g{T(X’I)}_ﬁ{T(X’I)}_E'E{T(X’I)}' (28)
The equation (28) is given as follows:
et S treot= L2 r(en) 9)
att 0 ke T aa T

where Cl2 = a/ 7,7 » C; — propagation velocity of thermal excitation (pulse) in the medium.

Non-periodic ("integral" according to Fourier method) solutions of the equation (29) can be found.

It is necessary to enter the characteristic relaxation time of thermal field 7, :

wave number £k :
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f= 2 [1+2i(@7,,) 31)

1
where @ —characteristic circular frequency of the short heat pulse. Along with the solution (31) and
the solution represented as path integrals, the equation (29) also describes non-sinusoidal thermal fields
in the time-space.

Using normalized variables:

T=TO'.7’ ?=t'Tchar_l’ rl:x'(cl'rchar)_l s (32)
the equation (29) can be rewritten in dimensionless form:
27 A27 -
27 2F _, 9 o)

on* or’ or
Exact analytical solutions of the dimensionless telegraph equation (33) for describing variable non-
periodic thermal fields are presented as follows [47, 48]:

F=Yaf;, (34)
7
f373(051+041-20; ===, (35)
9
— —7) H 2. . _2— 2 T=
0, =exp( T)(?_H]) Iq( T°-1n ), =N. (36)

I; is modified Bessel function in the equation (36); the index ¢ is determined by the boundary

conditions on the surface of the deformed material 7=0.

The characteristic properties of integral functions (34) describing thermal fields in deformed media
are confined largely to the following:

1) ®q(r_,n1?:n =0, 7>0; (37)
2) using the known asymptotics of functions:

" _exp(-u) & (<1)"  I(G+(1/2)+n)
L(u)-15(u), = 2 S2n) 1@+(1/2)-n)

(3%)

where /" is gamma function, law of decrease of the thermal field ]Tq (35) can be found in any section at

T=n:

1 =3
~ = T . 39
Z‘?:n 227 @ (39)
Values of function ]75(? ) (35), which characterizes the law of decrease of the thermal field in any
section of the material / body during its processing by short wave pulses (f = 17) are given in Table 1.
Table 1
Dependence [, on T (t=n)

T _fq T _?q T _fq

0,1 200 1 0,2 50 1,6:10°
0,2 25 10 2-10* 100 2,0-107
0,3 7,4 20 2,510 - -
0,5 1,6 30 7,4-10° - -

0,8 0,4 40 3,1-10° - -
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6. Analysis of solutions of Guyer-Krumhansl equation for the plate with the finite thickness
(0). Using the Fourier method
The solution of equation (4) at u =0 after simple transformations takes the following form:

2’ 1 .9 a 9T\ [k | T
: b= |T= H—"— =, 40
[81‘2 Tpr at] [TpT axzj (Tijataxz 40

as the known method of variables dividing (Fourier method) is used.
The required solution (40) is presented in the following form:

T(x,t)=7(r) X (x), 1)
and as object for which the temperature field 7 (x,t) is found the plate of finite thickness 5 is chosen
(fig. 1).

Boundary conditions however are as follows:
2 2 3
8_2+L+i T = L'a_]; + k. aTZ , (42)
o2 T,y Ot Tpr Ox Tpr ) Otdx
4 -(a—T) =—o, T,at x=0; 1, -(a—T) =—o, T,at x=3 ; (43)
ot ot
0 =0 and the following is chosen for initial conditions of the
= problem:
= T|t:O:TO,x:O;TL:O:Tg,x:é,Tt:O:TO,
x=5 x=0,7|_ =T5, x=5. (44)
y The following notations are used in relations (43):
Fig. 1. The plate Ay — thermal conductivity of the material (at 7 =0),
for which the temperature field is determined a,,— heat-exchange/heat-removal  coefficients  of

surfaces x=0 and x=6 , respectively. In relations (43)
Ty, Ty, TO , T 5 — constants (a point above the function means the time differentiation ¢ ).
Functions X(x) in (41) are found using the following relations:
X, (x)=C,,-sin(4, - x)+C,, cos(,-x) , (C,,C,, ) =const , (45)
and eigenvalues A, are found using transcendental equation:

Ctg{ﬂn'3}= 13—0(1'062/15

RCETAILS n=123.... (46)

For function T (t):
T, ()= {Aln ) -sin(Q, 1)+ 4y, ). cos(Q2, t)} , (47)

n

where 4,,,4,, —constants, and y, and Q, are found using the following relations:

7n=l' L+,13. k_b] , n=1273,..;
2 Tpr Tpr

2112 (48)

o -{p.a_L| 1 2k . Q,>0, n=1,23,..
Tpr 4 Tyr Tyr

The general solution (40) can be presented as follows:

T(x,t)= if(r)-Xn (x) =i{Sln el7n) -sin(Q, - #)-sin(4, - x)+S,, ) -sin(Q, - £)-cos(4, - x)+
n=1

n=1
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+8,, &7 -cos(Q, - 1)-sin(4, - x)+S,, ) -cos(Q, - 1)-cos(4, -x)}, (49)
and constants S,,,S,,,5;,,5,, are found using initial conditions (43) and orthogonality of functions
{sin(ln -x),cos(4, x)} realized on the interval x e [0, 5] .

7. Harmonic solutions of telegraph equation

Considering the evolution of the harmonic function exp(i -n-x) , i>=-1 in the equation (10) at
u=0. This result is of interest for any function which can be expanded in a Fourier series. The
operator exp{t-ai} action examined in [40-42], the exponential differential operator exp{ﬁ(x)}

does not add the new harmonics to the existing ones at ¢=0. There are the following initial
conditions:

aT(x’t) =Beinx (50)
ot » ’

In a similar way to (41), the following solution of the telegraph equation is obtained using (10) at
u=0:

_ inx
Ge™,

T(x,t)L:O =

ol )

pT
V=%+4 -4 .7,
TpT TpT

C2))

where the coefficients B, B, are expressed in terms of initial conditions at =0 :

B,+B,=G; Bl-(TLJrW}BZ-[TL—\/?j:—zB, (52)

pT pT
Therefore:

Nz Nz

8. Harmonic solutions of interrelated heat and mass exchange equations in thin capillary-
porous films
The O.V. Lykov system of equations describes the processes of heat and mass exchange in thin
capillary-porous films. In this respect, the finiteness of the of heat propagation velocity and the
ballistic effects of thermal conductivity are taken into account in the equation for 7(x,z). In view of

—2B+G-(1+\/;J 2B+G-(1+x/7}
B 32:

Bl:

(53)

the above, this system of equations has the following form:

6_T+T 62_T:a62_T+ 62—T

o P oar o oo 50
ou,  u_  du, o OT

oo ot "o " &t

The solution of the first equation of system (54) is found under the following periodic harmonic
conditions:

aT(x,t)
ot

T(x,t)| =Ge™,

_ inx 2
—0 =Be™, i"=-1. (55)

t=0
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T(x,t)=C,exp1in —L-(L+n2-kb-L\/U] +C,expiin _L.(L+n2.kb.L_\/E] ,
2\, Tpr 2\ 7,r Tyr (56)

2
U= L_H,Z.kb.L 49
Tpr Tpr Tyr

The solution (56) completely defines the dependence T (x,t) under the conditions (55). In this
respect, the constants C;,C, are found using the following relations:

—2B+G-(n2 -k, -1+1—J5]
Tor  Tpr
Cl = \/_]7 5
23U (57)
2B+G- (n ke - R +«/_j
C. = Tpr  Tpr
? WU
The solution of the second equation of system (54) is given as follows:
(360) =t (00 H 1t (1) (58)
the boundary conditions for u(x,z) however have the following form:
inx au(x’t) inx
“(x’t)L:o:Gl'e : TH):Bl-e . (59)
For u,,(x,t), the following relations can be written as follows:
_= ot 1 = ot 1
u(x,t)L:O =C exp {lnx—?(ﬁ+ \/71]}+ C, exp{lnx—a-[ﬁ— \/71]},
p p (60)
U= -4
Tpm Tpm

The constants C_‘1 and 52 can be found in the boundary conditions (59) using the following
formulae:

2B,+G,- (1—\/171]
2\JU;

o . (61)
20,

G =

E C2 =

the solution u ,,,(x,) can be found in the following form:
= et L2 L S 2 D S
upart(x,t)—Alexp{ln 5 (TpT +n” -k, Tor +\/Uj}+Azexp{mx 5 [TpT rn -k, Tor \/E]} (62)

The constants 4, and A4, are found using the following relations:

2
0 | 0 S-SR B 0 | R S-S 2l slen?)c:
4 {( 2)[TT+n k, TPT+\/U]+TPW (4)[T +n’k, Tﬂwﬁj +amn} a,-8{-n"}Cj; (63)

p pT

2
| D S U 8 | R - 22 leg sl=n?) .
4, {( 2)[1 ik, TPT+\E]+TW (4)[T +n’k, Tﬂwﬁj +a, n} a,-8{-n*}C,; (64)

p pT

9. Discussion of the results of hyperbolic models establishing for the analysis of heat and
moisture exchange in inhomogeneous porous materials
Using the method of operators, integral transformations, extended forms of orthogonal
polynomials, special functions and methods of non-Fourier analysis, exact analytical solutions for
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thermal conductivity equation in Guyer-Krumhansl model are established, as well as for hyperbolic
equation of thermal conductivity. The propagation of heat pulses of different shapes simulating real
experimental conditions (such as isolated heat wave, laser pulse, space-periodic heating) is investigated
on the basis of obtained exact solutions. The solutions are studied for a wide range of conditions,
including ballistic conditions together with the phonon heat transfer mechanism and heat diffusion.
The validity of the obtained analytical solutions is checked by direct substitution into the equation.

If the term corresponding to the Fourier diffusion prevails in the equation, then the solution is expected
to attenuate rapidly; however the phonon way of heat transfer is suppressed. Conditions at the boundary of
the medium corresponding to the ballistic method of heat transfer also do not play a role in this case, and the
linear component makes a small contribution. It should be noted that even when the contributions of all
components of heat transfer (phonon, diffusion, ballistic) are of the same order of magnitude, the minimum
of solution can be achieved within the area of interaction of the material and the thermal field.

10. Conclusions

1. The Guyer-Krumhansl-type equation proves that the maximum principle may not be applied for it
(the maximum value of the thermal field amplitude in the material is reached either at the initial moment
t =0, or at one of the material’s boundaries), e.g. under strong ballistic conditions. The effective thermal
conductivity in the Guyer-Krumhansl-type equation significantly depends on the shape of the initial
pulse. Short point pulses propagate much faster than smooth heat waves. This fact is very important for
experimental measurements of thermal conductivity where sensitive experiments with thermal pulses are
well-established practice. The sources of the latter are usually pulse lasers. It is shown that the shape of
the initial pulse is of paramount importance for determining the presence of a ballistic type of heat
transfer in each case. This fact should be taken into account during experimental measurements.

2. When modeling the processes of heat propagation and heat and mass transfer in thin films, the
impact of the Knudsen number K,, which is often used in the analysis of flow dynamics, was
revealed. In this case, the Knudsen number characterizes the conditions for ballistic heat transfer. Thus,
if K, =1 the contribution of all heat transfer mechanisms in the Guyer-Krumhansl equation is

approximately the same, and if K, =0,1 the thermal conductivity a and ballistic component £, are two
orders of magnitude smaller than Cattaneo 7, 0T / ot* and Fourier 8T /0t terms. The propagation

of a heat wave in a thin film is weakly dependent on the Knudsen number. If the initial point pulse
(such as Dirac 3-function) interacts with a thin film of material then the solution significantly depends
on the Knudsen number. If K, =1 the value of the pulse is one order of magnitude greater than if K, =
0.1 at the same spatio-temporal point. Moreover, the corresponding relaxation time of this solution at
K, =01 exceeds the relaxation time by 2 orders of magnitude if K, =1: 74 _g; / T, -1 ~100. Thus,

the propagation of the instantaneous point pulse significantly depends on the Knudsen number. This is
confirmed by studies of the propagation of the periodic function’s harmonics f (x): exp(i-n-x) in

thin films having heat and mass transfer processes inside. The high value of the Knudsen number
improves the thermal conductivity, especially for higher harmonics.

3. The effective thermal conductivity determined in the context of the second law of
thermodynamics without local maxima of solutions in the Cattaneo equation (hyperbolic equation of
thermal conductivity) is practically constant and the effective thermal conductivity in the Guyer-
Krumhansl equation increases with the number of the spatial harmonic ~ exp(inx).

4. For the Cattaneo-type hyperbolic equation, the maximum principle is not followed. However, it
is possible mathematically, but such heat transfer is impossible in the context of the second law of
thermodynamics. The Guyer-Krumhansl equation realized in the model for thin films (in particular, in
capillary-porous bodies) also violates the maximum principle. Local maxima come out from the
addition of waves, however, they can be suppressed by an additional damping term ~o =k, -1/ T,r in

the equation of Guyer-Krumhansl-type at physically reasonable values of parameters. It dampens the
Cattaneo heat waves and temperature maxima, while restoring the relevant behavior of the system
according to the second law of thermodynamics. The effective heat transfer increases with the
harmonic number.
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Cmamms naodiiwna 12.09.2024

Yogniok F0.B., Yepeoniuenko I1.11., Mockeimina A.C., [luwuna M.O., Illyopa H.C., Iéanos €.0.
3ACTOCYBAHHSA I'MNEPBEOJIYHAX MOJEJIEN B AHAJI3I TEIIJIOBOJIOTOOEMIHY Y HEOJTHOPITHUX
HNOPUCTUX MATEPIAJIAX ITPA PO3NOBCIOJ)KEHHI KOPOTKHUX IMITYJbCIB TEIIJIOTH

Y poboti BUKOpUCTaHi rinepOostiuHi MOJIeNi Ul aHali3y TeMJIOBOJIOr000OMiHYy y HEOJAHOPIAHUX MOPUCTUX MaTepiaiax, y SKuX
PO3IOBCIOJUKYIOTBCS KOPOTKi iMIysbcu TertotH. Teruionepenaya y pi3Ko HEOJHOPIIHMX CEPENOBUINAX INPU KIMHATHIN
Temneparypi He omnucyetbest 3akoHamu @Dyp’e Ta Karraneo, a mozjemoerbcs piBHAHHAMM Tuny [toepa-Kpymxancns. Y
OJTHOBMMIpHIl MOCTAaHOBIII PO3B’sA3aHa CHCTEMa PiBHAHb B3a€EMO3B’A3aHOr0 TEIUIO- Ta MacooOMiHy, orpumana O.B. JIukosuwm,
sIKa BPAaXOBY€ CKIHYEHHICTh IIBMIKOCTEH MEpEeHOCy TeIoTH Ta Macu (Bosioru). IIpum 1pboMy IIBHAKICTH PO3MOBCIOKEHHS
TEIJIOTH TIOPSIKY IUBMJKOCTI 3BYKY, TOMY BHACHiJJOK MAaJOCTI 4acy penakcauii po3B’s3Kd TrinepOoIiuHOro piBHSHHSA
TEIJIONPOBIAHOCTI 6araTo y 4oMy CIiBIAJaloTh 3 PO3B’A3KaMU KIACHYHOIO MapaboJliyHOro PiBHAHHS, X0oua i ICHYIOTh HEBHI
CyTTeBI BiMiHHOCTI. BOHM 3anexath Bi NpoleciB, 10 BiIOyBalOThCAd Ha MOBEPXHi (Y TOHKUX HPOLIAPKAX) MOPUCTHX TLIL
IBuakicTs qudy3il BOJIOrH B KaniIipHO-MTOPUCTHX MaTepianax npudmusHo y 106...107 i Oinblue pa3iB MEHIIA 3a MIBUAKICTH
PO3MOBCIOJUKEHHS TEIUIOTH, TOMY, BIANOBiZHO, yac penakcauil audys3iHHUX npoueciB 3HA4YHO OLNBIIMK 1 Yy PpIBHAHHAX
MacorepeHocy ioro Tpeda BpaxoByBaTi. OTpUMaHi TOYHI aHATITHYHI PO3B’S3KM OJHOBUMIpHOro piBHsAHHS [toepa-Kpymxancis
3a JIONOMOI'0K0 OIIEPATOPHOTr0 MeToAy. BkazaHe piBHAHHS TaKOX BUKOPHCTAHE /Ul BUBYEHHS IMITyJIbCIB TEIUIOTH Pi3HOT hopmu
y CepeloBulli 3 ypaxyBaHHSAM (DOHOHHOro/0ajicTUYHOro crnocoOiB Temtonepenayi. OTpuMaHi pe3ysbTaTH 3aCTOCOBAHI IS
MO/ICIIIOBaHHS PO3MOBCIO/PKCHHS TEIUIOTH 1 BOJIOTH y TOHKMX IUTIBKAX KalliJIAPHO-MOPUCTHX TiJl i3 ypaxyBaHHSIM MOJICKYJIIPHUX
edeKTiB y cucTteMax 3HHKEHOI PO3MipHOCTI. MOZAENIOETHCS PO3MOBCIOJKEHHS YK€ KOPOTKUX TEMJIOBHX IMIYJBCIB, IO
MOJIEJIIOIOTh 130JbOBaHI TEIJIOBI XBHJI i3 ypaxyBaHHAM uucia KHynceHa, a TakoX pO3B’SI3KM U1 MEPIOAMYHOI MOYaTKOBOT
dynkuii. JJocnijkeHi TOYHI Po3B’A3KH BUILEBKA3aHUX 3a]a4 y MOJIENl TOHKHX IUIIBOK KaniIsgpHO-TIOPUCTHX Tl

KuarouoBi cioBa: piBHsHHS ['toepa-KpyMxaHCis, TEmIoMacooOMiH, TOHKI TUIIBKH, KaniIspHO-TIOPUCTI Tijla, HEOAHOPIIHICTb,
yucnno Kuyzcena, rinep0ostiuHi piBHAHHS TEIJIO- i BOJIOTONEPEHOCY.
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