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While building continual models of the deformation of layer plates with orthotropic layers, the specificiti of unflexural and
flexural deformation from symmetric and oblique-symmetric components of bilateral loadings and temperature is considered.
This made it possible to specify the known continuum models, which make it possible to find an improved solution when
determining the stress-strain state of such plates. More accurate approximations for stresses and strains are introduced. A way of
precise satisfaction of all defining correlations of the layers of material under keeping the conditions of their contact is found,
while in the known continual models the dependence between the cross normal stress and cross deformation is only integral.

Keywords: refined continual model, multilayered plate, transverse shear, transverse compression.

Introduction. Analysis of exact three-dimensional solutions of particular problems of elastic
deformation sandwich plates [1,2] shows the principal difference of stress-strained state (SSS) under
bilateral symmetric and oblique-symmetric loadings of front surfaces that cause unflexural and flexural
deformation. Therefore, while constructing approximate SSS models it is necessary to introduce the
approximations of SSS along the transverse coordinate for symmetric components of loadings that
would add to the approximations of flexural models [3, 4, 5 and others]. Under unflexural deformation
taking into consideration of cross compression is necessary, because under symmetric cross loading the
purely shear models [3] lead to simply-zero solution. Options for taking into account transverse shear
and transverse compression in refined models for loadings that are symmetrical with respect to the
middle surface of the plate are given in [5, 6, 7]. Below are refined continuum models of deformation
of layered plates, in which the general order of differentiation of the solution equations does not
depend on the number of layers and in the approximations of the transverse components of stresses and
strains, the effect of symmetric and skew-symmetric loadings on both surfaces of the plate is separately
taken into account.

Materials and methods of research. SSS of rectangular plate having thickness % is being modelled
in orthogonal system of co-ordinates x, (@=1,3 x;=z). Orthotropic axes coincide with axes x, in

rigidly connected orthotropic layers of arbitrary »*) (k=1,n) thickness. Axes z is orthogonal to facial
surfaces of the plate z=a,,z=a, . Let's introduce the components of vectors of mechanic loading
Y,

0> Yo, 10 the directions of axes x, and temperature 7, 7, on the facial surfaces (Fig. 1) as a sum of

SYmmetric pog, Py, 1, and oblique-symmetric ¢, 4, T9, T, components (concerning the

middle surface z=a,,)— Fig. 2.

To postulate "rational" hypotheses for stress distributions across the thicness of transverse shear

ag‘) (i=1,2) and cross compression 0'%)

while modelling is the most rational. In these hypotheses, the
approximations for the transverse co-ordinate z are given in such way thet the static conditions of

contact of layers and the conditions on the facial surfaces are satisfied.
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Fig. 1. Calculation diagram of a rectangular multilayer plate of arbitrary thickness:
(a) — scheme of power and thermal load; (b) — cross-section of the plate parallel to the plane zx;
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Fig. 2. Schemes of reducing the load on the plate to the sum of two loads:

(a) — bilateral symmetrical load relative to the middle surface of the plate; (b) — bilateral oblique-symmetric load relative to the
middle surface of the plate

Besides, in the thick-walled elements of sandwich structures the character of transverse deformation

e§3> is significantly influenced by not only the stress 6 , but also by the deformation e,(] )

plain of the “structure” because of Poisson’s effect. Thls effect will be approximately accounted by

in the

means of the component e )| taking e ) in the form
k (k k k k k) 4 (k k k
efy) =o i) 1Ay + el + (0‘( Yo Al s agiHr® (1)
(k)

and introducing an additional to 5 hypotheses for e ). Trying to meet Hooke’s law precisely for Oy s

el and, at the same time, trying to meet all static conolition on the facial surfaces of layers for %' , such
things as (n+1) - differential dependences appear they don’t let the continual model to be built.
Then it is possible to define approximately hypothetical components u“‘) of the displacement

vector in the layer & from the equations [5]:

z —_— V4 z
ul¥) = vy + I5 e\Vdz;, s=1,.,k; i,j=12; u(k):vi—'[éugj)dz+'|‘5agj)3 o'ydz, ()
3 ; )

(24 1

where v;(x;) - unknown functions of tangential, and v;(x;) - normal displacements on voluntary

surfaces z=0, , accordingly, in the layers [/, ; gg},& and Aé?},(s are coefficients of matrixes of

pliability and rigidness of Hooke's law in axes x,; T ® s temperature, and a(k) - coefficients of the
temperature widening of the layer k£ in the directlons x, (hypothese (1) also takes into consideration

the transverse temperature “expansion”).
Here and further the particular derivatives are substituted by lower indexes after a comma.

Summarizing of repeated lower indexes is introduced; at that i, j = I,_Z;a = 1,_3 . The sum of integrals in
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the quantity of z from the non-continuous function is marked as one integral of the given function [3-
5]. The upper index in brackets is the number of the layer.

(k ) (k)

Let's introduce the hypotheses for the stresses o, and for the component e, in deformation

el (1) in the symmetric structure looking like:

a) for oblique-symmetric normal loading q; =051+ 13,):
k k)2 k) 4
1(3()%) [OE B+ 159N B: ng%) =P gy + FP (2%)y,; (3)
el = 1 (s + 10 (s + 1P @y
b) for symmetric normal loading Din=—Py=Yan— 45"
k k) .3
l(3<)p L= 570G Bss §3(,J3) Pan + B (Ns; (4)
0 =1 s+ u? e
c) for symmetric tangential loading p; =050 +Y,):
k k) 2 Ko 4y, .
oy = 10+ S0 G o, =BV B ©)

k (k k 2 k 0
sy =@y + i s+ e

d) for oblique-symmetric tangential loading 9n=-90=Y,—D;:

(k) k _ k 3 k 5 . (k) (k)
Gin + Tig)s Oxigy =5 s + (I ey =€, ©)

(k)
%i3q) T
In brackets under functions fl-f,k)(z), Fs(k)(Z) and ,ui’”(z) the maximum stage of approximating
grade polinom at z is given. Hypotheses contain six unknown functions of the transverse shear
Bia(x;) and six unknown functions of the cross compression y(x;).
In unsymmetric structure the unflexural and flexural deformations for tangential loading are
interconnected. That is why the hypotheses (5) and (6) should not be separated. Symmetric tangential
loading causes an essential flexural deformation in a non-symmetric package of layers.

Hypotheses (3)-(6) and the contents of the functions f-(,k)(z) , F, fk)(z) got as specifying of the next

(k)

simpliest starting hypotheses for o3 : from the affect of loading q; - 0,3 =,,(x;); 033 = foqs3;

from py,, py - 0;3=0; 033 =p3,; from g, gy - 053 =¢;,; 033 =0; from the affect p, -
O3 = fopis 033 = Foyo(x;), where f,=2(z—ay)/h—1; Fy=(z—-ay)l(z—ay)/h-1].
In the procedure of the specifying the stresses U( ) were filled into (1), (2) by e(k> =0 and got

U‘) - into Cauchy's correlations and the law of Hooke. Further the specified expressions U( )

(k)

WEre

defined from the equations of steadiness o;,’,, =0 by means of integrating (mind, as for two beams

with elastic properties of the matter in the direction of axes x;), and with U-(k) were integrated with
the new unknown functions S,,, ¥, (like in [4-7]) - derivatives from loading and from functions v,
and also all static conditions were satisfied on the in-plane surfaces of the layers and of the plate

( (k)

Hypotheses for ¢*) are obtained from the correlation e ~e® 4%) / 4%). where deformations e

were defined from (2) with the consideratoin of hypotheses of the shear (3)-(6) for U(k) under

egé‘) =0 where the transition from f,;, to the functions y, was used, by the analogy to that used

while putting down the hypotheses for Ugé‘) . To decrease the quantity of approximating functions the

hypothesis about the similarity of different degree functions fl-f,k)(z) , Fs(k)(Z), ,uf/”(z) with the same

highest degree of z is introduced, if during the transition to the homogeneous plate these functions are
becoming linearly dependent.
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As a result, the functions fl-f,k)(z) , Fs(k)(Z), ,uf/”(z) in expressions (3)-(6) look like:

=] AR e-pdzs ki=Ln: r=Lk: s=Lr: p=li: ()

P = [ AR ashas® o[ " AQ [ i alfa?
7 =o® - 9(”>(a Yo ; 1 = 2p® —1;
Y =2 " (a,)~1; FO =0,5(F" + i (a,) —nt";

z a,
FB =p0 g0 = . o "Ndz - LO p"dz(z—ay)/h;

k k k k k k k
FO = =@, —ag) s = A LA ) = [ aa S =14

(k) _ . (k) _
Hay = J.cfz, Moy = L,

where f(’”(a ) - function at z=a,, 6, - Kroneker’s symbol and
j A<’>zdz/j "ADdz ;. o® —j A<’>dz/j A

ui

(/)dZ

§o=16, ], ¢0d==8,047 (a,)] " 9" d)/18,0) (a,)] " 9("d== 06, [ " g dz):
@ = [, R e 0 =l + Lokt
o @)= Aoz 0@ =] AR[ s o= [ alids
On the facial surfaces z =, and z =a, functions fm(k)(z), Fs(k)(Z) (s :2,5) have zero meaning and

the remaining ones are equal to 1 and -1. Functions fl-f,k)(z) ,Fs(k)(z) were used in [3-5 and others], while

fl.(zk)(z) are introduced in [3] and the remaining - are proposed here. Let's mark that introduced

approximations fi(sk) (2), F3(k> (z) coincide in quality with the given in [1] exact solutions for 653]‘ ).

Under the arbitrary directed vector of loading Yy, Y, the hypotheses will look like:
o) = [ B+ (00 DYy + oY, s a=13; i=12; (8)

o4y =F,y, +0.5(RY DY +0.5(FO+DY,, 5 p=2.5;
(k) =u ék)
In the linear elastic problem instead of (8) it is possible to consider 4 simplier problems (3)-(6)
under symmetric structure and 3 problems - under any structure of the package of layers.
In case of stationary facial thermal affect with the known temperature 7j,, 7, on the facial surfaces

Vei €=2,T.

z=a,, z=a, the distribution of the temperature T ®) along the thickness of the non-thick plate can

be introduced as a piece-linear law [8] with approximating function y,*. Using (3),(4) and dividing
the  temperature  into  symmetric T,(z)=(Ty+T,)/2=t, and  oblique-symmetric

T(Z) (zw(k)_l)tqna qn
o) =S @yt SE @Myt [ By s 0 =F Py, :p=2.5; ©)

where the division into unflexural (B;=y,=ys=y;,=0 under 7, =0) and flexural

=(T,, —T,)/2 components, let's take hypotheses in the form:

(B3 =73=74=76=0 under 7, =0) deformation is possible only in the case of symmetry of the

structure of the plate in its thickness.
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Functions S,-(k), w ) look like:

Si(lk) :I AN (r)dz_gjj‘ Az ‘//51“ :LZ (ﬂém)—ldz/‘[:n (ﬂgl))—ldz;

uj uj

S,g“_j AP 2y ~1)dz - 20, /h)j APz~ ¢z,

i & j w
where a< are average in the thickness of the plate coefficients of the temperature widening in the
directions X; ,and /1(k> is the coefficient of thermal conductivites in the direction of axes z .

The values of a are defined from two equations SI(I")(a )=0 and then ¢ ; from S(’”(an) =0.
They insure self-balance in the thickness of transverse shear stresses in the "free" plate with the piece-
linear dependence of 7'(z) from z.

In the thick plates, the distribution of the temperature along the thickness is recommended to depict in
the form of non-linear function [9] (namely, 7),(z) - in the form quadratic and 7,(z) - cubical
functions). Under it hypotheses (9) will not change, because the inﬂuence of non-linear (according to z)

component of the temperature will be taken into consideration in 6 ) by the functions Jia ) (2) Big -

Let's introduce the kinematic model (2) corresponding to hypotheses (3)-(6) or (8), (9) in a
summarized look (by analogy with [4, 5]):

w =v 4y (2, +Us p=25; u® =v, -y PP @y, (@B, + UL (10)

where U, are addings, containing components of facial loadings, temperatures and their derivatives.
The expressions for the SSS components may be obtained by filling (10) into the Cauchy’s
correlation and then into the law of Hooke. This leads to the unfulfilling in ¥ of static conditions

on the facial surfaces of layers, which in the problems of the curve has a little influence on the

accuracy of computation. However, the definition o{s’ from the law of Hooke and not from the

hypothes, allows to get a symmetric matrix of coefficients in the solutable system of differential
equations of the linear elastic problem:

L)+ Lo () + Loio (i) = Z,5 £ =15, (11)
Here L, (...) are differential operators of a not higher that the fourth level, and Z, are expressions

for loading and temperature. System (11) with the correspondent boundary conditions is gotten
according to the methodics [3-7] from the variational equation of Lagrange. The general order of
differentiation (11) does not depend on the quantity of layers (continual model), and the part of each of
the functions v;, B;, in it makes 2, and functions v;, y, - 4. That is why for each of the hypotheses

separately (1), (3)-(6) the general order of differentiation (11) will be given below.
Neglecting in hypotheses (1), (3)-(6) and in equations (11) the component e“‘) that is, the

influence of the Poisson effect on transverse deformations e§3> , it is possible to significantly simplify

the model and reduce the general order of differentiation of the system of resolving equations (11).
Let’s indicate the possibilily of executing of all conditions of the contact of layers, of the conditions

on the facial surfaces and of the correlations of Hooke’s laws in any continious kinematik model u“‘)

of the type (2), (10). For this, we ohould add to u§k> in (10) (2n+1) - unknown functions
2 (x i) xgk)(x ;) of co-ordinate surface
uf" =P (x)+ 00 ()20 (6 + 010 () 23(x)). (12)

For functions that are given in each layer with the facial surfaces z=a,, z=aqa,_,, the requirements
of their linear dependence are put on, as well as
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j“k oWdz =0; k=1n.
A1

This turns the differential dependences between xfk) (x;)s xgk) (x;), followed from the kinematic

and static conditions on the surfaces of layers for u{"" and ¢{®", into the algebraic ones. It is the
most convenient to choose (pg‘) in the form of power functions of z , for example:

k k k

W =22 b5 a =123 b =(a; +a,,)/2
bgk) = (a,f +a,a;_, +a,§_1)/3;

bgk) = (ai + aka,f_l + a,fak_l + ai_l)/ 4.

(0% will also contain the first derivatives of the

However, in this case the expression (12) for u
functions v;, shear functions f;, and the second derivatives of the functions vs, 7,

Ky o ky* ky*
u:(; ) =V3+y/§)“‘) 53(Z)v3’[i+l//i7) ’3(Z)yp+l//1(0”')

k k k % *
’3(2)7;;’1:""7751) s3"jsi+77§'a2'i 3Bt WUasg),
and displacements uim* obtained from (2) - are their second and third derivatives, accordingly, which
as a result will essentially increase the general order of differentiation of the resultant equation system.
That’s why this specification of the model has more of a theoretical interest.

Numerical results and their analysis. Numerical solutions, obtained according to the proposed
model (3)-(11) for maximum meanings of stresses o, =100") /g, and of displacement
uf = 10u§k)Gl(§> /(goyh) in square b xb,xh sandwich plates (meanings are in brackets in table 1 and
marked CS, in table 2) under boundary Navier-type conditoins practically coincide with the exact

three-dimensional solutions obtained according to methodics [1]. According to the results of the
calculations of a two-layer plate (b,/h=3), affected by the symmetric and oblique-symmetric

loadings g5, p;(where p; = p;,+ps,) 0,q; (Where q; =q,,+q,,). O;p;, the quality picture of
SSS, confirming suggested approximations taken in co-ordinate z in hypotheses is seen. Components
of loadings: [g3;p3,]1= g sin(my, /by)sin(zx, /by) 5 [q;,; pi]= g cos(mx; / b;)sin(mx; /b)); i+ ).
Characteristics of transversal-isotropic layers: WD =2n/3: WP =h/3; Gl(é” =10*MPa ;
E® =26GY; E{" =0,1E"; EP =05EW Gy =05GY; GY =02GY;
v =y =y =03, v =0,03; v =015; i,k=12.

The influence on the general SSS in symmetric component p; of the loading rises with the decrese
of the relative transverse normal rigidness of the layer (E§k>/Ei(k> <0,1), and the influence of
symmetric loading p; - with the decrese of the relative transverse shear rigidness of the layer
(GP/E® <0,1 by b,/h<3 and G /E® <0,02 by b,/ <5)rises.

Functions f;,(x;) and y,(x;) in many problems can be neglected. However, in the places of the
localization of loading [5] and also in the relationship between coefficients of pliability of the material

aé?},(s in the different layers of more then 10°+10° [3], or under highly weak relative transverse shear

rigidness of the layer (G%)/E® <0,02 by b,/h<3 and GP/E® <0,005 by b,/h<5), they
specify SSS essentially.
Analysis of maximum stresses 61#1 = 1061({‘) / g, in three-layer square plate (b, /h =2 ), given in table

2 demonstrates it, where the solutions are compared to the exact solution (3D [1]) of the solution of the
given (SC, ) and simplified purely-shear flexural models S;, S, (in S; -only 8, #0, andin S, - only
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B; #0), and also according to the model considering cross compression SC; (only S #0; B, #0;

76 #0577 #0).
Table 1
Maximum stresses o, and displacement u} in two-layer plate (b, /h=3)
z/h Yo uy a3, O o33 a1, o5 Gt
| 26,02 -10,00 0 46,71 -25,15
(25,91) (10,00 (0,02) (46,80) (-25,20)
5/6 26,61 -0,90 1,72 23,10 -12,04
(26,53) (-0,88) (1,69) (23,14 (-12,06)
23 7 26,15 2,94 1,23 6,75 -3,35
! (26,08) (2,91) (1,20) (6,80) (-3,35)
13 26,13 2,78 -1,17 -7,47 3,75
(26,06) (2,79) (-1,19) (-7,43) (3,76)
0 24,61 -10,00 0 -52,70 28,38
(24,56) (-10,00) (0,01) (-52,96) (28,44)
| 67,25 0 10,00 61,18 -30,64
(66,94) (0,00) (9,96) (60,86) (-29,86)
5/6 62,93 10,74 7,84 24,09 -11,16
(62,65) (10,81) (7,83) (23,97 (-10,92)
23 . 59,65 13,22 3,45 -3,00 2,41
(59,30 (13,19 (3.45) (-2,89) (2,35)
13 59,55 10,93 -5,09 -8,06 3,17
(59,20) (10,87) (-5,07) (-7,96) (3,06)
0 59,98 0 -10,00 -45,86 22,39
(59,61) (0,00) (-10,02) (-45,62) (22,01)
| 4,61 -10,00 0 26,56 -14,30
(4,52) (-10,00) (0,03) (26,70) (-13,99)
5/6 4,51 -4,58 2,45 15,29 -7,67
(4,46) (-4,50) (2,45) (15,30 (-7,70)
23 . 3,01 -1,49 3,47 9,37 -4,24
! (2,89) (-1,42) (3.,40) 9,34) (-4.41)
13 2,60 1,72 3,31 6,88 -2,94
(2,60) (1,77) (3,38) (6,80) (-2,98)
0 3,27 10,00 0 32,56 -17,53
(3,24) (10,00 (0,00) (32,60) (-17,56)
| -12,30 0 -10,00 -6,96 1,44
(-12,22) (0.000) (-9,98) (-6,84) (1,44)
5/6 -6,06 -0,587 -9,85 -1,20 -1,62
(-6,04) (-0,596) (-9,88) (-1,14) (-1,63)
23 ?s 0,19 -0,232 -9,70 0,28 -2,39
(0,10) (-0,244) (-9,76) (0,22) (-2,41)
13 2,65 0,358 -9,78 -0,95 -1,75
(2,62) (0,369) (-9,80) (-1,02) (-1,80)
0 5,03 0 -10,00 -4,22 -0,04
(4,99) (0,000) (-9,98) (-4,36) (-0,12)
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Table 2
Maximum stress o, in three-layer plate (b, /h =2
s, |s, 21| sq | se, [spm| s | s, | s¢ | oSG | 3p
z/h 93 P

1,0 73,13 | 361,44 | 392,7 3089 306,1
0,95 | -123,3 | -171,2 | -159,4 | -147,1 | -149,2
0,95 | -0,965 | -0,009 [ 3,783 2,906 2,944
0,65 1,701 | -2,721 | -8,565 | 0,350 0,302
0,3 8,407 | 4,742 | 5,481 3,821 3,795
0,3 470,2 | 265.5 | 2452 230,5 2282 13,76 13,12 13,08

0 -569,1 | -495.4 | -506,9 | -373,8 | -368,9 -17,39 | -12,03 -11,76

z/h q, P
1,0 229,7 | 288,8 | 290,1 250,2 247,1 | -449.4 | -2753 | -251,2 | -238,7 -234,4
0,95 | 76,74 | 67,93 | 71,09 68,11 67,62 | -34,30 [ -57,94 | -49,56 | -77,12 -73,41
0,95 1,087 | 1,376 | 1,362 1,250 1,243 | -2,183 | -1,085 | -0,954 | -1,289 -1,234
0,65 | -2,622 | -3,646 | -4,508 | 0,101 0,083 5,500 2,215 | -1,426 | -0,206 -0,121
0,3 -0,443 | -1,063 | -0,705 | 0,160 0,142 0,480 | -1,049 | -1,096 | -0,120 -0,085
0,3 -22,01 | -65,15 | -65,23 | 11,06 9,081 66,52 | -63,30 | -70,38 | -3,141 1,348
0,15 | 83,78 | 82,03 | 81,04 | -7,033 | -3,452 | 155,59 | 68,6l 76,09 | -8,222 -3,301
0 -393,0 | -376,3 | -380,3 | -239,0 | -238,1 | -394,8 | -342,0 356,7 | -231,6 -225,5

-12,61 | -13,40 -13,66
20,94 16,45 16,21
-2,914 | -2,700 -2,630
-1,817 | -1.207 -1,140
-2,847 | -2,752 -2,734

[=le] ool i=R=]
[=le] ool =] I=lw=}

Characteristics of the external orthotropic layers (k=1,3): M = 0,34 ; ) = 0,054 ;
ER = E® =10 MPa; E® =25E0); G% =005 =G, G =002 ;
v =y =y =y =025 and of the internal layer (k=2): E”=4x10°MPa;
G¥ =1,6x10°MPa ; G¥ =1,6x10*MPa ; v?) =0,25 . Increasing in 10 times in the given problem in
all the layers of all the modes of the shear Gl-(é” considerably approaches to 3D [1] the solutions

according S, and S, and the solutions according SC, becomes practically identical to the exact.

Conclusions. As can be seen above from the results of the test problems calculations, the
constructed mathematical model allows us to obtain results that are qualitatively and quantitatively
close to three-dimensional solutions. The model can be used to calculate the SSS of significantly thick
plates (a/h =2 ), with a wide range of changes to the parameters of the relative transtropy in the layer
(1<E;/E;<500, 1<G,/G;3<500; i=12) and significant differences in the stiffness of the

individual layers (E® / E®*D =103 +10°%).
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Cmamms naoitwna 06.12.2023

Typmosuii O.I"., ITuckynos C.O.
BUCOKOTOYHE MOJIEJTIOBAHHS JE®OPMAIIA CEHJIBIY-KOHCTPYKIII ITPH IBOCTOPOHHBOMY
CUMETPUYHOMY TA KOCUCUMETPUYHOMY HABAHTAKEHHI

AHai3 Ta ouiHka HanpyxeHo-nedopmosanoro crany (H/IC) GararomapoBux IUIMT 3 OPTOTPONHUMHM IIapaMu HpH il
CTalliOHAPHOTO MOMNEPEeYHOro Ta JIOTHYHOrO HABAHTAXKEHHS € aKTyaJbHOIO 3ajadelo. BiH BKmodae B cebe po3paxyHKH Ha
MILHICTh 1 JeOpMaTUBHICTh PI3HUX OJHOPIIHMX i OaraTomapoBUX IJIACTHH 3 LIapaMM IOCTIHOI TOBIIMHU ajie JOBUIBHOI
OynoBU 3a TOBHMHOK IuAacTHHU. OO’€aHaHHSA MarepiayiiB 3 i30TPONHMMH Ta TPAHCBEPCAIBHO-I30TPONHUMHU  (BiZHUHMMHU
XapaKTepUCTUKAaMKM B 0OaraTomlapoBUi NakeT J03BOJISiE CTBOpIOBAaTH OaratodyHkuioHanbHi koHcTpykuii. HJIC Takux
KOHCTPYKIIil, 3Ba)KalouM Ha iX CTPYKTYypHY HEOJHOPIJHICTh Ta BIJHOCHO HM3bKY IOIEPEYHY XOPCTKICTh OKPEMHX ILapiB,
CYTTEBO I10B’s13aHUH 3 BILIMBOM Jie(hopMalliii monepeyHoro 3cyBy Ta aedopmartiii monepedHoro o0TucHeHHs. ToMy akTyalbHOO
€ 3aj1a4a yrouHeHoro moaemosanns HJIC mumr, sika 6 BpaxoByBaia ui Buau aepopmaniii. [pyHryrouncs Ha pos3kiaganni HJIC
IUIMTH Ha 3TMHOBI Ta O€33rMHOBI CKJIA/IO0Bi, NPOMOHYEThCS ONTHUMI3allisl PO3paxyHKOBOI cxeMH nedopMyBaHHS IPSIMOKYTHOI
OararomapoBoi rmtH. Lle cyrTeBo crpoirye Horo MopemoBaHHA. Jlis 0e33rmHOBOro Ta BUKIOYHO 3ruHoBoro HJIIC
1o0y/10BaHi B MPYXHii MOCTAaHOBIII ABOBUMIpPHI, BUCOKOI'O CTYINEHS iTEpalifHOro HaOIMKEHHS, ajle TPMBUMIPHI 32 XapaKTepom
Bigoopaxxenns HC moneni neopmyBaHHs GaraTomapoBux NPSIMOKYTHUX TUIMT 3 130TPOIHUMM, TPAHCBEPCAIbHO-130TPONTHUMHU
Ta OPTOTPOIHUMHM IIAPAMH, SKi JOCTATHHO MOBHO BPAaXOBYIOTh AedopMariil monepeyHoro 3cyBy Ta MONEPEYHOrO OOTHUCHEHHS
NIPU TIONEPEYHOMY Ta JOTUYHOMY HABAHTAXXEHHI IJIACTHHU. MoJienlb — KOHTHHYaJbHa, TOOTO KUIbKICTh PIBHSHB Ta IOPSIOK
JUQEepeHLiloBaHHS PO3PaxXyHKOBOI CHUCTEMM pIBHAHb HE 3aJeXWUTh BiA KubkocTi mapiB B rumTti. Lleit nopsmox
nudepeHLitoBaH S 1 KUIBKICTh PO3paXyHKOBUX PIBHSHb MOXE 3aJI€XKaTH JIMLIE BiJl MOPSAKY iTepauiiiHOro HaOJIMKEHHS MOAEI.
3anporoHOBaHO TAKOXK CIOCIO TOYHOrO BUKOHAHHA BCIX BU3HAYAJbHUX CITIBBIIHOLICHB IS IIApiB MaTepiaiy Npu AOTPUMAHHI
YMOB iX KOHTaKTy, y TOH 4ac fK y BiJOMUX KOHTHHYaJIbHHUX MOJEIISX 3aJ€XKHICTh MiXK MONEPEYHUMH HOPMAJIbHUMU HalpyraMu
Ta TONepeyHUMH JeopMalisiMU € TiAbKM iHTerpasipHo0. IIpUBEAEHO pe3yiabTaTH AHAIITHYHOrO PO3B’SA3KY 3ajadi
nebopMyBaHHS ~ NpPAMOKYTHOi IUIACTMHM TIpM TpaHMYHMX yMoBax Tumy HaB’e mix ai€o momepeyHoro Ta IOTHYHOTO
HaBaHTaXeHHs. Po3B’sA3aHHSAM TecToBHMX 3ajau JedopMyBaHHS [BOMIAPOBOI 3 TPAaHCBEPCAIbHO-I30TPONHUMH IIApaMH Ta
TPHIIAPOBOi 3 OPTOTPONHUMH HIAPaMH IIACTHH Ta MOPIiBHAHHAM PO3B’SI3KiB 3 OTPUMAHUMH 33 BiJIOMUMH METOAUKAMH TOUHUMHU
TPUBUMIPHUMHU PO3B’SI3KaMM IMX 3aj]ay, JaHO OLIHKY TOYHOCTI 3alpOIOHOBAHMX YTOYHEHMX Mojeneld. BcranoBineHo Mmexi
JIONyCTUMHUX MapaMeTpiB HPYKHHUX XapaKTePHCTUK TPAHCBEPCAIbHO-I30TPONMHMX i OPTOTPONHHUX IUIMT [JIsl 3aCTOCYBAHHS
3aMpoONOHOBAaHUX MOJIEIICH.

Ku1ro4oBi c10Ba: yrouyHeHa KOHTUHYaJIbHA MOJIENb, TIMTAa OaraTolaposa, MONepeyHuit 3¢yB, ornepeyHe OO THCHEHHSL.

Gurtovyi O.G., Pyskunov S.0.
HIGH-PRECISION MODELLING OF DEFORMATION OF SANDWICH STRUCTURES UNDER BILATERAL
SYMMETRIC AND OBLIQUE-SYMMETRIC LOADING

The analysis and assessment of the stress-strain state (STS) of multilayer plates with orthotropic layers under the action of
stationary transverse and tangential loads is an urgent task. It includes calculations on the strength and deformability of various
homogeneous and multi-layered plates with layers of constant thickness but arbitrary structure according to the thickness of the
plate. Combining materials with isotropic and transversely isotropic physical characteristics into a multilayer package allows you
to create multifunctional structures. The SSS of such structures, due to their structural heterogeneity and relatively low
transverse stiffness of the individual layers, is significantly associated with the influence of transverse shear deformations and
transverse compression deformations. Therefore, the problem of refined modeling of SSS plates, which would take into account
these types of deformations, is urgent. Based on the decomposition of the SSS plate into flexural and unflexural components, it
is proposed to optimize the design scheme of deformation of a rectangular multilayer plate. This significantly simplifies its
modeling. For unflexural and exclusively flexural SSS, a two-dimensional, high-degree iterative approximation, but three-
dimensional models of deformation of multilayer rectangular plate on a rigid foundation with isotropic, transverse-isotropic and
orthotropic layers are constructed in an elastic formulation. That models takes full account deformation of transverse shear and
transverse compression at transverse and the tangential loading of a plate. The model is continuous, that is, the number of
equations and the order of differentiation of the calculation system of equations does not depend on the number of layers in the
slab. This order of differentiation and the number of calculation equations can depend only on the order of iterative
approximation of the model. A way of precise satisfaction of all defining correlations of the layers of material under keeping the
conditions of their contact is found, while in the known continual models the dependence between the cross normal stress and
cross deformation is only integral. The results of the analytical solution of the problem of deformation of a rectangular plate
under boundary conditions of the Navier type under the action of transverse and tangential loads are given. By solving the test
problems of the deformation of two-layer plates with transversally isotropic layers and three-layer plates with orthotropic layers
and comparing the solutions with the exact three-dimensional solutions of these problems obtained by known methods, an
assessment of the accuracy of the proposed refined models is given. The limits of admissible parameters of elastic characteristics
of transversely isotropic and orthotropic plates for application of the offered models are established.

Keywords: refined continual model, multilayered plate, transverse shear, transverse compression.
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Typmosuii O.I'., [Tuckynoe C.O. BUCOKOTOUHE MOJeTIOBaHHSA JdedopMaliii ceHABIY-KOHCTPYKLil NMPH ABOCTOPOHHBOMY
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Ilpu nobyoosi konmuHyanbHux mooenei 0epopMy8anHs 6a2amowaposux niacmut 3 OpMoOmMpONHUMU WUAPAMU 8DAX0BYEMbCA
cneyuika Oe332uHaNbLHOI Ma Yucmo-32uHanbHoi depopmayii 6i0 cumempuuHoi ma KOCOCUMEMPUUHOT CKIAOOBUX OBOCIMOPOHHIX
Hasanmascenv ma memnepamypu. Lle 003601uno ymounumu 6i00Mi KOHMUHYATbHI MOOEN, Wo O00380AI0Mb 3HAXOOUMU
YmMoOuHeHe PiueHHs WoO0 HANPYHCEHO-0ePOPMOBAHO20 CMAHY MAKuXx niacmun. Beedeni mouniwi anpoxkcumayii O1s nanpye ma
deghopmayiil. 3anponorHo6ano Maroxic cnocio MoUHO20 BUKOHAHHA 6CIX BUSHAYANLHUX CNIGBIOHOUIEHb 0I5l WApie Mamepiany npu
O0OMPUMAHHI YMO8 IX KOHMAKmy, y moil 4ac 5K Y 6I0OMUX KOHMUHYATbHUX MOOENAX 3ANeHCHICMb MINC NOnepeyHuMu
HOPMATLHUMU HANPY2aMU Ma NONepesHUMU 0ePOPMAYIAMU € MINbKU IHMEZPATLHOIO.
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Gurtovyi O.G., Pyskunov S.O. High-precision modelling of deformation of sandwich structures under bilateral symmetric
and oblique-symmetric loading // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles —
Kyiv: KNUBA, 2024. — Issue 112. — P. 258-267.

While building continual models of the deformation of layer plates with orthotropic layers, the specificiti of unflexural and
flexural deformation from symmetric and oblique-symmetric components of bilateral loadings and temperature is considered.
This made it possible to specify the known continuum models, which make it possible to find an improved solution when
determining the stress-strain state of such plates. More accurate approximations for stresses and strains are introduced. A way
of precise satisfaction of all defining correlations of the layers of material under keeping the conditions of their contact is found,
while in the known continual models the dependence between the cross normal stress and cross deformation is only integral.
Tabl. 2. Ref. 9.
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