Complex hydraulic studies of welded pipes with different visco-plastic characteristics
DOI:
https://doi.org/10.32347/2410-2547.2024.112.239-247Keywords:
pipe, deformation, crack, plastic zone, crack resistanceAbstract
For the first time, complex hydraulic studies of pipes welded according to three different schemes were carried out, which made it possible to combine pipes of different viscosities, which affects the performance of welding joints. It was found that in the experimental temperature range, the zone of thermal influence of the second welding variant has the greatest resistance to the initiation of fractures under shock loading, and the lowest - the first variant. The static strength and ductility of the welded pipe joints of the second and third pipe welding options are approximately equivalent, and the resistance to the initiation of the thermally affected zone in all options is almost the same and not lower than that of the base metal. The results of the performed experimental studies indicate a weak correlation in the area of small values of impact viscosity with the characteristics of resistance to fracture propagation of welding joints in the conditions of full-scale pipe tests. The characteristics obtained from tests of full-thickness DWTT specimens are closer than the Charpy specimens to the actual performance characteristics of the weld joints in the pipe. In particular, it was established that the values of Az (-150C)=0.75 kJ and Ar (-150C)=0.45 kJ provide satisfactory resistance to the initiation and propagation of fractures in welding joints (at the base metal level). These characteristics correspond to KSU-60 = 0.5 MJ/m2, which is close to the impact toughness requirements for the base metal (0.55 MJ/m2). The use of optimal structural materials, that is, materials with high resistance to hydrogen destruction of both the base metal and zones of welding joints subjected to a thermo-deformation cycle of welding. A significant effect can be achieved by technological measures that will reduce residual welding stresses, as well as significantly reduce stress concentrators due to structural improvement of the shape of the welding unit. Application of such heat treatment regimes that restore the stability of metal with a coarse-grained and defective structure. Use improved pipe steels and welding materials, such as 06G2BAand 08 KhMCHA steels, which are characterized by increased resistance to hydrogen embrittlement and high crack resistance in aggressive environments, for the construction of pipelines of responsible purpose.
References
Makarenko V.D., Hots V.I., Savenko V.I., Vladymyrov O.V., Makarenko Yu.V. Eksperymentalni doslidzhennia kinetyky rostu trishchyn ta nesuchoi zdatnosti trubnykh stalei pidzemnykh system vodovidvedennia (Experimental studies of crack growth kinetics and bearing capacity of pipe steels of underground drainage systems) // Opir materialiv i teoriia sporud: Vyp. №110.- 2023, S. 469-482.
Makarenko Y.V., Savenko V.I., Gorlach O.M., Zadorozhnikova O.V., Chyhyrynets O.E., Pobeda S.S. Doslidzhenniakinetyky rostu trishchyn pid diieiu statychnykh i navantazhen trubnykh stalei v koroziino-ahresyvnomu seredovyshchi (Study of the kinetics of crack growth under the action of static and loading of pipe steels in corrosion - aggressive environment) // NASE//Opir materialiv i teoriia sporud: Vyp. №110.- 2023, S.520-532.
NACE Standard TM01-77(90). Standard Test Method. Laboratory Testing of Metals Resistance to Sulfide Stress Cracking in H2S Environments // NACE. - Houston. P.O. BOX 218340.1990.-22 p.
Okada T., Hattori S. Relation Between Concentration of Salt Water and Corrosion Fatique Strength on 0.37 Percent Carbon Structural Steel, Fukui University, Japan: Theoretical Foundations of Engineering Calculations (Proceedings of the American Society of Mechanical Engineers); Publishing house Mir, 1985, No. 3, S.98-107.
Makarenko V.D., Kryzhanivskyi E.I., Chernov V.Yu. Problemy koroziinoi stiikosti promyslovykh truboprovodiv (Problems of corrosion resistance of industrial pipelines) // Naftova i hazova promyslovist. -2002.-№6.-S.42-44
Samoilenko M.I. Funktsionalna nadiinist truboprovidnykh transportnykh system (Functional reliability of pipeline transport systems) // Kharkiv: KhNAMP. – 2009.-184s
Nasonina N.G, Antonenko S.E. Analiz poshkodzhenosti vodoprovidnykh i kanalizatsiinykh merezh ( Analysis of the damage to water supply and sewerage lines) // Suchasne promyslove ta tsyvilne budivnytstvo. -2019.-Tom15.-№1.-S.23-34
Makarenko V.D., Gots V.I., Argatenko T.V. Doslidzhennia avariinykh truboprovodiv (Research of emergency pipelines) // Problemy vodopostachannia, vodovidvedennia ta hidravliky, vyp. 42. -2023.-S.49-58
Brydu A., Lafrance M., Provu I. Rozrobka novykh sortiv staly z pidvyshchenymy kharakterystykamy dlia transportuvannia kyslotnoho hazu i nafty (Development of new grades of steel with improved characteristics for the transport of acid gas and oil) //Neftehaz-Frantsyia –YuzychorAse, 1986. -19s
O. Chaplya, O. Radkevich, O. P’yasetsky, Y. Spektor Porivnialnyi analiz koroziino-mekhanichnykh vlastyvostei vitchyznianoi trubnoi stali 20YuCh z inozemnymy analohamy (Routine analysis of the corrosion-mechanical properties of 20YuCh laminated pipe steel with foreign analogues) //Mashynoznavstvo. -1999.-№8.- S52-56
Radkevich O., Chumalo G., Dominyuk I. Osnovnizakonomirnosti navodniuvannia ta poverkhnevoho pukhyrinnia trubnoi stali v sirkovodnevykh seredovyshchakh (Fundamentals of the regularity of flooding and surface fluff of pipe steel in deep-water environments) // Fiz.- khim. mexanikamaterialiv. - 2004. - Spets. vyp. № 4, t. 1. - S. 446-449.
Tyson W.R. HydrogenEmbrittlementandHydrogenDislocationInteractions // Corrosion. - 1980. Vol. 36, No. 8. - Рр. 441-443.
Ford F.P. Stress Corrosion Crackinq in Advances in Corrosions Science-1, Ed., R.N.Parkins, Applied Sсience Publishers, 2002.
Kawakubo T, Hishida M. Rozrakhunok pryskorenoho navkolyshnim seredovyshchem rostu trishchyny dlia neirzhaviiuchoi stali u vodi vysokoi temperatury na osnovi mekhaniky pruzhno-plastychnoho ruinuvannia (Restoration of medium-accelerated crack growth for stainless steel at high temperature water based on the mechanics of spring-plastic collapse) // Journal of Engineering Materials and Technology, 1995, Vol.107,p.240-245.
Makarenko V.D. Eksperymentalni vyprobuvannia truboprovodiv (Experimental testing of pipelines) // Nizhyn:NDU im.Mykoly Hoholia, 2020.-543s.
Makarenko V.D., Stognij O.V., Gots V.I. Polihonni vyprobuvannia hazoprovodiv (Testing sites for gas pipelines) Monohrafiia// Nizhyn: NDU im. M.Hoholia. -2023. – 160s
Makarenko V.D., Bilik S.I., Chigirinet O.E. Kinetyka trishchyno utvorennia v stalevykh konstruktsiiakh (Kinetics of crack formation in steel structures) // Kyiv:NUBiP Ukrainy. -2023. -248s
Meshkov Yu.Ya. Fizychni osnovy ruinuvannia stalevykh konstruktsii (Physical principles of destruction of steel structures) //Kyiv: Naukova dumka. -1981.-284s
Makarenko V.D., Stognij O.V., Gots V.I. Naturni vyprobuvannia truboprovodiv (Field tests of pipelines) Monohrafiia// Nizhyn: NDU im. M.Hoholia. -2023. – 154s
I.K. Pokhodnya, V.I. Shvachko, S.A. Kotrechko Vplyv vodniu na krykhkist konstruktsiinykh stalei ta zvarnykh ziednan (The influence of hydrogen on the brittleness of structural steels and welded joints) // Avtomat zvariuvannia. - 1989. - №5. - S.1 - 4.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.