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In the presented article the variational problem of optimization starting mode of a belt conveyor is stated and analytically
solved. In order to solve it a conveyor was modelled as dynamical system with three (connected in a chain manner with elastic
elements) masses dynamic model. Based on the equations, which describe their movement, the optimization criterion was
formed. It is the root mean square value of the driving force during starting mode. Finding the minimum of the optimization
criterion (integral functional) with satisfying the boundary conditions of motion presents the sense of a variational problem. In
order to solve it the Euler-Poisson equation was applied.The obtained optimal operation mode improved the productivity,
reliability and energy efficiency of the belt conveyor.
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Introduction

The work is aimed at increasing the efficiency of belt conveyors by choosing the drive mechanism
movement mode.

During transient processes of belt conveyors (starting, braking, speed changing, emergency stop)
there are significant dynamic loads in the elements of the drive mechanism and the belt. In the article
proposed to reduce the dynamic loads by optimizing the movement mode of the drive mechanism. For
this purpose, a conveyor is modelled as a dynamical system with three masses. The corresponding
system of equations have been developed. Optimization of the conveyor movement mode has been
carried out by minimizing of the integral criterion, which is the root mean square of the driving force
(it calculated during starting process). As a result of the carried out optimization, the start mode of a
belt conveyor, which minimizes the action of dynamic forces, has been defined. The starting mode
allows to increase the reliability of the conveyor and reduce the energy losses of the drive.

Analysis of publications

In the articles [2, 3] a mathematical model of metal suspended structure of a belt conveyor section
was developed. The problem of minimization of its weight was stated and solved. Researches involved
various conveyor parameters: capacity, profile of the metal structure, length of conveying, etc.
Obtained results may be used by designers for optimal development of conveyor supported structure.

In the scientific papers [4, 5] authors considered multiengine variable speed drives of belt conveyor
to decrease overloads in the belt. This goal was achieved by development of control algorithm of the
asynchronous conveyor drives with frequency inverters. Such approach is effective due to the fact, that
inverters are commonly used in modern conveying machinery. In the work [10] the statement about
exploitation of frequency inverters in belt conveyor drives is grounded in a similar manner.

In the article [6] the dynamical model of a belt conveyor was proposed. The corresponding
mathematical model — is a system of partial differential equations. However, focusing on the
dynamical processes in the belt authors has avoided the influence of the drive. Among other result,
obtained in the work, it is necessary to stress the optimization problem. Researchers selected six the
laws of belt conveyor accelerations and proved, that combination of polynomial and periodical (cos
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function) terms formed ideal acceleration law. Such a finding decreases dynamical forces in spite of
quite limited domain of optimal control search.

Forcing by the need of improving belt conveyor performance (in terms of electric energy and bulk
material losses), authors of the work [7] optimized the main parameters of conveyor and developed a
fuzzy-control system, that varies belt speed, based on the flow of the material. The closed-loop system
of control is fed with error of speed and its first time derivative. Thus, here fuzzy-PD-controller was
obtained. The model of the plant (conveyor), which is presented of third order transient function with
delay, was quite simple and it may be applied only as an initial approximation.

Article [8] proposes an estimation-calculation-optimization method to determine the minimum
speed adjustment time to ensure healthy transient operations (the accelerating and the decelerating).
With the suggested adjustment time, unexpected risks were avoided and the developed finite-element
model of a belt conveyor shown it’s an appropriate dynamic behaviour.

Analysis of these and other works revealed the need of deep substantiation of the optimal control
law of a belt conveyor during its acceleration. It should be found on the as much as possible domain.
Such an approach is presented in the current article.

Statement of the problem

During the movement of belt conveyors in the elements of the drive mechanism and the belt, there
are significant dynamic loads, which significantly affect the reliability of their work and energy losses.
Particularly dangerous are the dynamic loads during the transition processes (start, brake, change the
speed, emergency stop). At this point, high-frequency oscillations of both the belt and the drive
elements are generated. In the belt there are significant braking forces, which create additional stress
and, as a consequence, contribute to premature failure.

One of the ways to reduce the dynamic loads in the elements of the drive and the belt is to choose a
movement mode of the drive mechanism during the transition process. The greatest effect may be
obtained by exploitation of an optimization approach. Therefore, it is advisable to optimize a start mode
in a belt conveyor according to some criteria. Since the belt reliability (it is well-known, that belt is the
most expensive element of the conveyor), is affected by driving forced, it is desirable to form such a
criterion on that point. Minimizing such a criterion provides favourable (in terms of forces in the belt and
torques in the different parts of transmission of the machine) mode of movement of a belt conveyor.

Thus, the purpose of the work is connected with improving of the belt conveyor efficiency by
optimizing the drive mechanism/]s movement mode.

To achieve this goal, it is necessary to solve the following tasks: to develop a mathematical model of
the belt conveyor dynamics; to ground the criterion to minimize, which reflect the undesirable dynamical
forces in the belt; to optimize the belt conveyor starting mode; to analyse the obtained results.

Research results

To optimize the belt conveyor movement mode, we have presented a conveying machine in the
form of a three-mass dynamic model (Fig.1). Developing a dynamic model involves some
assumptions: all elements of a belt conveyor are solids except the belt, which has stiffness properties.
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Fig. 1. A dynamic model of the belt conveyor

In this model all the dynamic values and characteristics are reduced to the drive drum. In fig. 1 the
following notations are used: m; — reduced mass of the drive and drive drum; m, — reduced mass of
the conveyed load and the working branch of the conveyor; C — reduced stiffness coefficient of the
half of belt on the conveyor working branch; F' — reduced the driving force of the conveyor electric
motor; F), F,, F; —reduced forces of resistance of the first, second and third masses, respectively;

X, X, , x; —are coordinates of the centers of masses the first, second and third masses, respectively.
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Based on the accepted dynamic model, we may write a mathematical model of a belt conveyor. In
order to do this, we have used d'Alemberts method. We should consider the equilibrium each of the
massed under the action of active forces, resistance forces, inertia forces, and stiffness connections
forces between the masses. As a result, we obtain a system of three second-order differential equations,
which has the following form:

my X =F=C-(x —x;) - F;
My Xy =C- (X —Xx3)—C-(xy —x3)— Fy; (1)
my X3 =C-(xy —x3)—Fj.
We may reduce the system (1) to one sixth-order differential equation. In order to do this, from the
last equation (1) we express the coordinate of the second mass x, and its time derivatives via the

coordinate of the third mass and its time derivatives. In the following the designation has been done
xy = x . In addition, we make the assumption that values F;, F, and F; are constant. It allows to

carry out some calculations:

F
x2:x+%-jé+%; )
xzz-x+%-'x'; 3)
1w
x2=x+%-x. o

Taking into account the dependencies (2)-(4), from the second equation of system (1) we express
the coordinate of the first mass and its time derivatives via the coordinate of the third mass. As a result,
we obtain:

+2- . v F,4+2-F
)c1:)c+m2 e T L Wl 3. (5)
C c? C
+2. . Vv
)'clzfc+m2 M 2 2m3~x; (6)
C C
+2. w . 174
)'él:)'c'+m2 T e 2 2m3-x. (7
C C

After substituting the dependences (2)-(7) in the first equation of system (1) we obtain a differential
equation of the sixth order. It expresses the dependence of the drive mechanism driving force on time
derivatives of the third mass coordinate and dynamic model parameters:

B v VI

F=ay+a -X+ay,-x+a;-x; ®)
ag=H+F+1;
ay=my+my+my;
ay=(my-my+2-my-my+my-my)/ C; )

- 2.
ay=my-my-my/C”;
Qg3 =const.

From the previously conducted dynamic analysis of the belt conveyor [12], it was found that during
the starting process in the elements of the drive and the belt there are significant dynamical and energy
overloads, which depend on the driving force of the drive. In addition, high-frequency oscillations of
the belt are observed. To reduce the negative factors acting on the belt conveyor, we should optimize
its movement during starting mode. Since the undesirable properties of the belt conveyor depend on
the magnitude of the driving force, it should be the basis of the optimization criterion. In addition, the
driving force must be reflected in the optimization criteria throughout the starting process, i.e., the
optimization criterion must be presented in the integral form. To avoid the possible compensation
actions of the driving force negative and positive values, the integrand must be written in the quadratic
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form. Therefore, the criterion for optimizing the belt conveyor movement mode is the RMS value of
the driving force during starting:

" 1/2
F, {tl szdt:l : (10)
1o

where ¢ —time; ¢, —the duration of the conveyor starting process.

Since the criterion (10) reflects the undesirable properties of the belt conveyor (the action of the
dynamic forces) during the starting, it must be minimized.

In this regard, to determine the motion mode, we state a variational problem: to find the motion law
x=x(t), 0 <t <¢,that minimizes the criterion (10) and satisfies the boundary conditions of motion:

t=0:x,=0, x,=0, x,=0, X, =0, x;=x=0, X, =%=0; (11)
=0 X=X =X3=X,, X =V, X, =V, X3=X=V.
Obtained expressions (2)-(7) provide the basis for the boundary conditions (11) rewriting:
F w v
£=0:x =0, i=0,§=—13 520, x =—C (ﬂ-ﬁg —Fz} x=0;
ms my - m3 \ mMj
(12)

F w v
t=t:x =X, X=v,¥=——,%=0, x = ¢ (ﬂ-ﬂ—Fz}x:O.
3 my -m3 \ M
In conditions (11) and (12) x; — the position of the third mass of the dynamic model at the end of the
starting process, which is an unknown value and should be determined in further studies.
Variation problem (10), (11) can be rewritten in an equivalent form:

1
[ F2dt — min. (13)
0

Optimal law should meet the conditions (12).
In order to solve the stated problem, we introduce following notation:

P() =50+, 01 <t & ¥(0)= i) -—2, 0<t<1t,. (14)
aq aq
w w 174 174
Taking into account notation (14) and the following mathematical features x(¢)= y(¢), x(t) =y,
0 <t <t, we may write:
v oW . wov W W 2 4 d°
F=ay+a;-X+ay x+ay x=a;((ay | a))+X)+ay x +ay-x=ay-j+a,-y +az y= a1~d—2|—a2~d—4|—a3~ﬁ -y (15)
t t t
Variotainal problem (12), (13) may be solved via the necessary condition of the functional (13)
minimum, which is the Euler-Poisson equation [12]. For considered case it has the following form:
d> oF* d* oF* d° oF°
a? a7 a7
oy oy oy
The result of substituting expression (15) into equation (16) and using the rule of differentiation of a
complex function is presented below:
d—22(2-F-a1)+d—z(Z-F-a2)+d—66(2-F-a3)=0<:>
dt dt dt
2
d*F . d‘F_ d°F { T A }
Sap- +a,- +ay- =0|a —5+ay,—F+tay—-| -¥y=0.
Va7 a7 a Va? a5l
The obtained equation (17) is a linear, homogeneous differential equation of the 12-th order
concerning the unknown function y(f), 0<¢<¢ . In order to solve it, we have find the roots of a

(16)

(17)

characteristic polynomial:

0()=la, - 22 +ay - 2* +ay- 2T . (18)
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Since the polynomial (18) is a square of a polynomial of the 6-th order, it has 6 roots of the second
order. To determine these roots, we write the equation: @, -A* +a, -A* +a; -A° =0, in which to

reduce the degree we introduce the notation u = A? . As a result we have:

(@ +ay- ptay - 1?)=0. (19)
The roots of the equation have been defined as follows:

—-a iﬂaz —-4-a,-a

2 2 19 . (20)
2-a;

fy=0. 1)
For the belt conveyor with parameters: m; =490 kg, m, =425 kg, my;=95kg, F,=900N,
F,=F,=0N, C=18000N/m, v=1.6m/s, #;=3s. Numerical values of constants are: a,=900N,
4,=1010kg , a,=18,98 kg-s®, a;=0,06106 kg-s*. The roots of equation (19) are determined by these

constants according to (20): p; =-68,22; u, =-242,67; p;=0. The roots of a characteristic
polynomial may be found:

where i =4/—1 is an imaginary unit.
All roots A;, 4,, 45, ..., A¢ of characteristic polynomial Q(1) are second-order roots. Then the

Hia2 =

general solution of the linear, homogeneous differential equation (17) has the following form:
y(t): (Cl +C, -z‘)-cosocl -z‘+(C3 +C, -t)-sinocl -t+(C5 + Cs -t)-cosoc2 “t+
+(Cy +Cg t)-sinay -t +Cy 1> +Cpy 1> +Cpy -1 +Cpy 22)
j/(t): (C2 +Cya+C4 - -t)-cosoc1 -t+(C4 -C-a-C, o -t)-sinoc1 “t+
+(Cy+Cy-ay +Cy -0y -t)-cosay 1+ (Cy = Cs -ty = Cg -ty -1)-sinay -+ (23)
+3-Cy 1> +2-Cpy-1+Cyy 3
j}(t):(Z-C4 -C-a-C, o -t)-al -Ccos -t—(Z-C2 +C3-a+Cy - -t)-al -sino -t +
+(2-C8 -Cs-a,+Cq-a, -t)-a2 -cosa, -t—(Z-C6 +Cy-a, +Cs-a, -t)-a2 sina, -t+  (24)
+6-Cy-t+2-Cpp-t; 05151,
Substituting the obtained explicit form of the function j(¢#) from (24) into the dependence (14), we
find the image of the optimal acceleration:

.. .. a

x(t)=y(t)—a—‘l’;

. . a

x(f)= y(t)—a—(l)-t+Cl3; (25)
a

x(t)=y(t)—2'—(;l-t2+Cl3 t+Cy.

From expressions (22), (23), and (25) we find the constants C;; and C,, using the initial conditions
of motion, when ¢t =0, x=0 and x=0. As a result, we have obtained:
Ci+Cs+Cp,+Cpy =05
{Cz +C;-a;+C+C,-ay, +C +C13 =0.

From the presented above system we may find:

Ci3 ==C,=Cyr0=Cs = C7-ay = Cyy; (26)

Ciy=-C-Cs=Cy, . (27)

Substituting expressions (22)-(24) into (25) and taking into account (26) and (27) we have:
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x(t):(Cl +C, -z‘)-cosocl -z‘+(C3 +C4-t)-sinocl -z‘+(C5 +Cy -t)-cosoc2 t+

28
4

+3-Cy -t +(2 C —a—) t—=Cy=Cy-0-C4=Cy-05;
1
)'é(t):(Z-C4 -Ci-a-C,-a -t)-al -Ccos -t—(Z-C2 +C-a+C4 - -t)-al -sinoy -t +
+(2:C4 —C5-ay +Cg -y t)-ay-cosay -t —(2-Cy +Cy -0ty +Cq -y 1)ty -sina, £+ (30)
+6-Cy-t+2-Cpy-t, 014,

Here C,, C,, ..., C,, are the constants that should be determined by the boundary conditions of
motion (12). Since the components of the boundary conditions of motion at t=0, x=0 and x=0
have been already used in determining the constants C;; and C;, there 10 boundary conditions are
left. Note, that x, is an unknown value and it must be found as well.

Solution (28) of the differential equation (17) contains 10 coefficients C;, C,, ..., C;,. There is a
lack of one condition due to the fact, that x, is an unknown value [13].

In order to determine the additional boundary condition, which will be used for calculation of x, ,

we have found a variation of the functional (13). Taking into account expression (15) the result may be
presented as follows:

ol . w VI . w VI
5FCK[x]:j ag+a -X+a, -x+az-x|-0lay+a -Xx+a, x+ay-x (dt=

| . v Vi Vi | . v Vi v
:a3-j ag+a;-X+a, - x+az-x -5xdt+a2-j ag+aX+a, x+ay-x|-0xdt+ (31)
0 0

1 B w iy
+a, J ag+a,-X+a, - x+az-x |-oxdt.
0
Calculation each of the integrals included in expression (31) in parts brings next result:

. w vy v\ v L
ay| agta;-X+ay x+ay x |0x—as| apX+a, x+ay x [Ox+

[ v VI N . .
a;- x +2-a2-a3-x+(al-a3+a2)-x+a1-a2-x+a0-a2 O%—

+

Vil
a x+2 Ayaz X +(a1 a3+a2)x+a1 ay x}5x+ +

~.
Il
|

i il w
+ a3 x+2 Ay-ay X +(2 a3+a2) x+2ay-a, x+a1 Xtay al}&c—

i 126 i v
a3 x +2 y-0y: x+(2 ay a3+a2) X +2:ayay x+ap % |0x

e xi N VI
+_[ a;y- x +2:ay-as x+(2 -ap a3+a2) X +2a,-ay x+a1 5xdt. (32)

Expression (32) must be zero at the extremal x(¢) of the functional (13). Taking into account the
expression of the integrand:
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w Vi
f:FIf: ag+a,-x+a, x+as-x|. (33)
The minimum condition of the criterion (13) is the Poisson equation:
6 g7
> (=1’ L%zo (34)
= At 5

After substituting expression (33) in equation (34) we obtain extended condition of the criterion
(13) minimum:

2 X1 X Vi Vi 1w

ajy- x+2-a,-a, -x+(2-a1 “ay +a§)- X+2-a,-ay-x+al-x=0. (35)

Since the variations at the initial # =0 and final moments ¢ = ¢, are equal to zero and the variation
of the function dx(¢) is arbitrary, expression (32) is zero under condition (35). The obtained equation
(35) is the Poisson equation for the functional (13). Since the integral in the right part of the expression
(32) becomes zero, the boundary expression included in (32) also equals to zero identically. Since
54(0) = 5¢(0) = 5%(0) = 5¥(0) = 5 x (0) = 5 x(0) = 5¢(t, ) = ¢(t, ) = ¢4, ) = 5 x (1, ) = 5 x(1,) =0, the
following condition must be meet:

X1 x vii 4
{af “x+2-a,-a;5- x+(2-a1 “a; +a§)- X+2-a,-ay-x+ai -')'c'(tl)}ﬁx(tl):& (306)

Since &(t,) is arbitrary, based on the equation (36), we may obtain an additional condition for

determining the integration constants in expressions (28)-(30), which are the solution of the differential
equation (17):

2 X1 X 274 Vv

ajy-x+2-a,-a;- x+(2-al “ay +a§)- X+2-a,-ay-x+al -%(t,)=0. 37)

Condition (17) and boundary conditions (12) determine the minimum of the functional (13). Since
conditions (32) and (37) include boundary values of time derivatives of the function (28) up to the 11-
th order, we differentiate this function starting from the third derivative (the first and second
derivatives were previously determined by dependences (29) and (30)):

X(6)=—(3C,+Cyoq +Cy0y tyor cosoyt—(3:C4—Croy—Cye0 o sinoy t—
V4 3 -
~(4Cy—Cy0,—Cy01y 1) 03 080 t+{4 Cg +C0y+ Cy0ty V03 sinQy 1

4

X(1)=(5Co+Cyoq+Cyo0y )0ty -cosoyt—(5C4~Croy—Cyo0 it hory sinoy t+
H5Cy+Cy0y+Cy 0ty ty 0y cosot+H5Cy—Cs -0t~ Cyotty t) 0t sinanyt;

VI

xX(0)=(6C4—Cyoy—Cy0y-tyog cosoyt—~(6-Cy+Cyoy +Cyroy )0y sinayt+
H6Cy—Cy0ty—Cy0ty 1 )05 -c0804,t~(6-C +Cr0ty+Cy 0ty 0t sin0ty 1

Vit p 6 .

x (0)=~7-Cy+Cyo+Cproy-tyorf cosoyt—(7-Cy—Cy-oy—Cy -0ty sinyt—

i
x (1)=—(8C4—Cyoy—Cy-0y-tyor -cosoyt+8 Cy +Cy0q+C o0y ot sinoy t—

~(8Cy—Cs0,~Cg0y tyr) cosat+8 C+Cyr01,+Cyo0ty 1) 0] sinenyt
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= — 8 8 .
x(O)=(9-Co+Cy-0q+C-0 -ty -cosoyt+9-C4—C-04 —Cy-04 1oty sinoy t+

HO-Cy+Cy01, +Cy0y 1y 05 costyt+(9-Cy—Cy-0,—Cy o0ty t) 05 sinesyt;

X\ 9 9 .
x(t)=(10-C4—Cy-oy—Cy -0t} -cos04t—(10-C,+Cy-04+Cy -0y t oy siney t+

H10-Cy—C5-0,—C0y 10ty c0s0,t—(10-Cy+Cy-0y+Cy-tty 1) 053 sinest;

X1
~(11C4+Cy0y+Cy0y )0y cosot—(11Cy—Cs 0, ~Cyo0ty t) 0ty sinay
0<r<t,.

Substituting the boundary conditions (12) into equations (28)-(30) and (38) and using condition (37)
brings a system of linear equations for determining the integration constants C;, C,, ..., C;, and the

value x, . Note, that we have used two of the initial conditions (position and velocity of the third mass)
previously. As aresult, we obtain the following system of equations:
(2:C4=Cron) 04 +(2:Cs~Cs- ) +2- Cro—ap fay =—F3 /m3;

—(3:C+Cy04)- 0 —(3:Cg+Co- )05 +6:Cy = 0;

C
_(4'C4_C1'0‘1)'0‘13_(4'C8_C5'0‘2)'“3 '(_'Fs_Fz)?

(5:C,+C5-01)-01 +(5:C4+Cs -0y )- 03 =0;
(C+Cy 1) cosayt, +(Cy +Cy -1y )-sinoyty +(Cs + Cy 1, )-cos oy, +(Cy + Cy 1) )-sinanyt, +

+C9-tl3+(Clo— %o )-rf—(c2+c3-al+c6+c7-a2)-tl—q—c5=xK;

2-aq
(CL+Cy 04 +Cy -0 -ty)-cosoyty +(Cy—Cy 04 = Cy -0y -1y )-sineyty +(Cq + Cq - 0ty + Cy - 0ty 1y )- cOS Uty +
+(Cy=Cs -az—Cé-0(2-tl)-sin(xztl+3-C9-t12+(2-C10—%)-tl—Cz—C3-al—C6—C7-a2 =v;

1
(2:C4=C-oq—Cy -0y -1y)- o -cosoyty —(2-C, + Gy -4+ Cy -0y -1y )- 04y sineyty +
+(2:Cy—Cs-0, = Cy- 0y 1)) 0ty -cOs Oty — (2 Cg + C -0t + Cy - 0ty -1y )- @y -sin 1y +
+6-Cy-t,+2-Cig—ay/ay=—F; [/my;
~(3:C+Cy04+Cy-04 1)) 0 -cosoyt; —(3-C, = Cp -y = Cy -0 1))- 04 -sinoyty —
—~(3:Co+Cy-0+Cy -0ty y)- 013 -cosyty —(3-Cy— Cs -0y = Cy - 0ty 1y )- 0 -sin 1y +6- Cy = 0; (39)

4:Cy—Cs 00— Cg 0ty 1) 03 -c08 Oty +(4- Cg+ Cq 0ty + Cy -0y 1y ) 03 SiN 01y =

C m
= .(_2.}73_}72);
my-msz \ ms

(5:C,+Cy- 0 +Cy04 1) -cosoyty +(5-C,— Cp -y = Cy -0 1)) -sinogty +
+(5:C4+Cy-0+Cy- 0ty -1))- 005 -cos oty +(5-Cy— Cs -0ty —Cy - 0ty 1y )- 03 -sin iyt =0;
_a{(l 1C, + Cy04+Cye-1,)- 01 -cos oty +(11C, = Gy = Coty -1, )- 01° -sim oty +

3 .
+H(11C +Cy0o + Cyoy 1) 0 -cos oyt +(11Cs — Csaty —Cyoty 1))ty -sinayty
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, {(9C2+C3al+C4al-tl)-af-cosocltl+(9C4—Clocl—Czocl-tl)-(xf-sin(xltﬁr ]
+. a2a3 -

—(2a1a2 +a;

2) (7C, + Gy + Cyaty ) o -cos ety +(7C, — Croy — Crant, )0 -sinoyty + .

(5C,+Cy-0q+Cy-04))-04 +(5:C4=Cy -0y —Cy-041)- 0 -sinoyty +
+2a,a,

,|3C,+Cyoq + ey 1))-0f -cos ety +(3C, — Coy = Croy -1, )-0rf -sineyy +
| (3C, 4y +Cyaraty )0 -cosctaty +(3Cs — Cota — Coty )02 -sin gty ~6C,
Execution proper calculation leads to the solution of the system of equation (39): expressions of the
constants C;, C,, ..., Cj, and finite position of the third mass x,, C, =0.042; C, =-0.002;
C;=0.006; C,=-0.009; C5=-0.007; C4;=0.004; C;=-0.002; C;=-0.001; Cy=8.517;
C, =0.725; x, =2,353. As a result of substituting the found expressions into expressions (28)-(30)
and (38), we determine the law of motion of the third mass x(¢#)=x;(¢) and its time derivatives.

Through the law of motion of the third mass according to the formulas (2)-(7) the law of motion of the
second and first masses of the dynamic model of the belt conveyor were determined.
Determining the motion law of all three masses, we find the optimal laws of:

1) the driving force (according to formula (8) and taking into account expressions (9), (30) and (38));
2) force in the belt

Fp=C-(x-x); (40)
3) the force in the belt when leaving the take-up drum
Fy, :C-(x2 —x3); (41)
4) the drive mechanism power
P=F-x. (42)

Based on the obtained dependences, the plots of kinematic (fig. 2-4), dynamic (fig. 5-8), and energy
(fig. 9) characteristics of the belt conveyor during optimal starting mode were built.

t, s

Fig. 2. Plots of the masses velocities

Here and further the following designations are accepted: black solid line refers to the third mass
characteristics; gray solid line — to the second mass characteristics; black dashed line — to the first mass
characteristics.

From the plots it is seen that the steady velocity reach all of three masses. Moreover, the velocities
of the second and third masses at the beginning of the movement increase smoothly. A similar feature
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is observed when these masses reach a steady velocity. The velocity of the first mass at the beginning
and at the end of the optimal starting the movement increases more intensively compared to the second
and third masses. The same phenomenon is observed when the first mass reaches a steady speed.

The change in the velocity of the first mass at the beginning and at the end of the starting processes
may be explained by the fact that the driving force is applied to this mass. The smoothness of second
and third masses movement at the beginning and the end of a starting is provided by the existence of
stiffness of the belt (it modelled with C coefficient).

0.0 0.5 10 1.5 2.0 25 3.0
Fig. 3. Plots of acceleration of the masses

Analysis of the plots, that are presented in Fig. 3, shows that the fluctuations of accelerations are
more pronounced. The largest maximum value of acceleration (1.45 m/ s? ) corresponds to the third

mass, and the smallest one — 1.0 m/ s? — to the second mass. These masses at the beginning and end of

the starting have zero acceleration. However, the first mass at the beginning and end of the movement
(starting) has non-zero acceleration, which is one of the main reasons for the emergence of intense
oscillations of the masses. They continue until the end of the optimal starting.

005

0.00

Xq=X3, mis

-0.05F

0.000 0005 0010 0015 0.020 0.025 0.030
Xy=X3, m

Fig. 4. Phase portrait of the oscillations of the second mass relative to the first one

From the phase portrait of the second mass oscillations (relative to the first one) (Fig. 4), it is seen
that in the process of the optimal conveyor starting there are almost harmonic oscillations with slight
deformations of the belt (connecting element with coefficient of stiffness C) and small velocity
deviations of the masses m; and m, . Phase portrait characterises the undamped oscillations that occur

near the equilibrium (relative to each other) position of the masses.
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Fig. 5. Phase portrait of oscillations of the third mass relative to the second mass

Analysis of the phase portrait of the oscillations of the third mass relative to the second one (Fig. 5)
shows the presence of oscillations with much larger relative deformations of the connection element
and velocities deviations between masses (compared to the phase portrait on Fig. 4). The above phase
portrait also indicates undamped oscillations between the third and second masses.

Fig. 6 and 7 shows that the elastic force between the first and second masses varies according to the
harmonic aperiodic law. Its maximum value equals to 565 N, the minimum is zero. This law of elastic force
leads to a permanent change of stresses in the belt and, as a consequence, provides its fatigue failure.

The elastic force between the second and third masses varies according to the periodic law with a
small negative component (-25 N). Its maximum value equals to 137 N. In this part of the conveyor less
force is applied, but they are also variable and lead to fatigue failure of the belt.

The driving force (Fig. 8) has the oscillating feature. It varies from minimum (1380 N) to maximum
(1510 N) values. The average value during starting is 1445 N. The presence of the driving force at the
beginning and end of the starting of the driving force (for both of the cases it equal to 1457 N) leads to
oscillations in the mechanical system (belt, metal structure) of the belt conveyor.

500

400

300

(x7=x3)e, N

200

100 -

0.0 05 1.0 15 20 25 30
t,s

Fig. 6. Plot of the elastic force in the belt between the first and second masses
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Fig. 7. Plot of the elastic force in the belt between the second and third masses
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Fig. 8. Plot of the driving force of the belt conveyor drive mechanism

The power of the drive mechanism (Fig. 9) has an oscillating feature during the starting process. It

varies from zero to a maximum value (2.35 kW) at the end of the optimal starting.

2000

1500

1000

0.0 0.5 1.0 15 20 25 30
t, s

Fig. 9. Plot of consumed power of the belt conveyor drive mechanism
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Conclusions. In the presented article the variational problem of optimization starting mode of a belt
conveyor is stated and analytically solved. In order to solve it a conveyor was modelled as dynamical
system with three (connected in a chain manner with elastic elements) masses dynamic model. Based
on the equations, which describe their movement, the optimization criterion was formed. It is the root
mean square value of the driving force during starting mode. Finding the minimum of the optimization
criterion (integral functional) with satisfying the boundary conditions of motion presents the sense of a
variational problem. In order to solve it the Euler-Poisson equation was applied.

The determination of the position of the conveyor masses at the end of the starting was carried out
by calculation of variation of the integral criterion at the begin and at the end of the law of motion. As
a result, the system of algebraic equations was obtained. Their solution brought all the necessary
components of the optimal control problem solution: values of constants of integration and position of
masses at the end of starting.

For the optimal starting mode, the kinematic, dynamic, and energy characteristics of the conveyor
are determined. They show the presence of oscillations in the conveyor elements during the starting
and absence of the oscillations at the end of the starting mode. However, carried analysis supports the
statement about the need of further development of optimal modes of movement. One of the negative
feature of the obtained optimal law of motion — is quit big amplitudes of forces in the belt during
starting. Their minimization is the problem for further studies.
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Jlogetixin B.C., Pomacesuu 10.0., Kynonin P.A.., [louxa K.I.
ONTUMIBALISA CUJIOBOI'O PEXKUMY ITYCKY CTPIYKOBOI'O KOHBEEPA

PoGoTa HampaBieHa Ha MiABHMINEHHA €(EKTUBHOCTI CTPIYKOBMX KOHBEEPIB LUIIXOM BHOOPY PEXHMY PYXy NPHBOJHOIO
MEXaHi3My.

Ilix yac excrutyaranii cTpiuKOBUX KOHBEEPIB B €IEMEHTAX NPUBOJHOIO MEXaHI3My Ta TAOBOI'O OpraHy BUHUKAIOTh CYTTEBI
EHepreTHYHi Ta JUHAMIYHI HaBaHTaXeHHs. HasBHI HaBaHTa)KE€HHS CyTTEBO BIUIMBAIOTh HA €HEPreTHYHI BTPATU Ta HAIiHHICTH
poOOTH NMPUBOAHOIO MEXaHi3My i TAroBoro oprany. Oco0anBO HEOE3NEYHUMH € EHEPreTHYHI Ta JUHAMIYHI HABAHTAXXEHHS i
4ac MPOXOPKEHHS MEPEeXiJIHUX MpoueciB (IyCK, rajlbMyBaHHS, 3MiHa MIBUAKOCTI PyXy YW 3MiHA NPOJYKTUBHOCTI Ta aBapiiHa
3ynuHKa). B 1iefi MOMEHT 3apoKyIOThCsl BHCOKOYACTOTHI KOJIMBAHHS K TATOBOTO OPraHy TaK i eJIeMeHTiB npusoy. Ilpu Takux
KOJIMBAaHHAX Y TATOBOMY OpraHi (CTpidili) KOHBeepa, BAHUKAIOTh 3HAYHI PO3PUBHI 3yCUILIA, SIKI CTBOPIOIOTH B HHOMY JI0JIaTKOB1
He OakaHi HampyXEHHA Ta SK HAaCIiJOK CIPHAIOTh NepeJyacHOMy pyiiHyBaHHIO. OKpiM TOro, BifOyBaeTbCs HarpiBaHHS
CTaTOPHHUX Ta POTOPHUX OOMOTOK €JIEKTPOBUIYHA, IO NPUIIBU/IIYE iX 3HOIIYBAaHHS Ta BUXiJ iforo 3 many.

J1y1s1 3SMEHILIeHHS JMHAMIYHUX HABAHTA)XXEHb 3aIPONIOHOBAHO 3AIHCHUTH ONTHUMI3ALII0 PEXUMY PyXy HPHUBOJHOIO MEXaHI3MY.
JUi1s 11bOT'O KOHBEEP MPEACTABICHO Y BUIIISI TPUMACOBOI AMHAMIYHOT MOJIEIi, Ha OCHOBI KOl CKJIAZACHO MATEMaTH4HYy MOJICIIb.
3 IPOBE/IEHOr0 AMHAMIYHOIO aHaJIi3y CTPIYKOBOTrO KOHBEEPY BCTAHOBIICHO, 110 I/l Yac MPOLECY MYCKY B €JIEMEHTAX MPUBOY Ta
TATOBOT'O OpPraHy MalOTh MiClI€ 3Ha4YHI CUJIOBI Ta €HEPreTHYHI NePEeBAHTAXKEHHS, SKi 3aJIeKaTh BiJl pyLIIHHOTO 3yCHIIIA IPUBOTY.
Kpim TOro crnocrepiratoTbCsi BUCOKOYACTOTHI KOJIMBAHHS CTpiuku. OCKUIBKM He Oa’kaHi BIACTUBOCTI CTPIYKOBOI'O KOHBEEpa B
3HAUYHIH Mipi 3aJ1eXKaTh BiJ BEJIMYUHU PYIUIHHOI CHIIM NPUBOAY, TOMY BOHA ITOBUHHA CKJIQJIATH OCHOBY KPUTEPiI0 ONTHUMi3aLii.
Kpim TOro pyuiiine 3ycuiuis npuBoJy MOBMHHO OyTH BiJoOpaxkeHe B KpUTEpil ONTUMI3alil NPOTArOM BChOTO MPOLECY PYXY,
TOOTO KpHUTepiil onTuMmizalii Mae OyTH NpencTaBleHUH B iHTerpaqbHOMY BHI. ISl yCyHEHHS MOXJIMBOI KOMIleHcauii Ail Ha
KOHBE€EP BiJI’€MHUX Ta JIOAATHIX 3HA4Y€Hb PYIIIHHOrO 3yCHIUIS, OCTAHHE MIOBUHHO MPEICTABIATUCH B IHTErPajJbHOMY KpHUTEPIl B
KBaZpaTHYHOMY BUTIIiAl. ToMy 3a KpuTepiit onTHUMI3alil pexuMy pyxy CTPIYKOBOrO KOHBEEpPAa OOPAHO CEPEeHbOKBAPATHUHE
3HAYCHHS PYIIIHHOrO 3yCHILIS TPHBOJLY 32 4ac ITyCKY.

OnTuMizaniio pexuMy pyxy KOHBeepa 3JIHCHEHO UUIAXOM MiHiMi3alil IHTErpajJbHOrO IMHAMIYHOrO KpuTtepito. B
pe3ysbTaTi MPOBEAECHOI ONTHUMI3alii BHM3HAYEHO PEXUM IIyCKY CTPIYKOBOrO KOHBEEpA, SKMH 10 MIHIMYMY 3BOJHTH Jit0
JIMHAMIYHUX HABaHTAXXEHb. Takuil peXuM I1yCKy J03BOJIS€ MiJBUILYBATH HAJIHHICTh pOOOTH KOHBEEPA i 3SMEHIINTH €HEPreTUyHi
BUTPATH IPUBOJY.

Kuro4oBi ciioBa: 1uHaMiuHa MOZIENb, PEXHUM PYXY, CTPIYKOBHH KOHBEED, IPUBOJHUIT MEXaHi3M, AMHAMIUHI HAaBAHTaXKCHHS.

Loveikin V.S., Romasevich Yu.O., Kulpin R.A., Pochka K.I.
BELT CONVEYOR STARTING MODE OPTIMIZATION

The work is aimed at increasing the efficiency of belt conveyors by choosing the drive mechanism movement mode.

During the operation of belt conveyors, significant energy and dynamic loads occur in the elements of the drive mechanism
and traction body. The available loads significantly affect the energy losses and the reliability of the drive mechanism and the
traction body. Energy and dynamic loads during transient processes (starting, braking, changing speed or performance and
emergency stop) are especially dangerous. At this moment, high-frequency oscillations of both the traction body and the drive
elements arise. With such fluctuations in the traction body (belt) of the conveyor, significant breaking forces arise, which create
additional unwanted stresses in it and, as a result, contribute to premature destruction. In addition, the stator and rotor windings
of the electric motor are heated, which accelerates their wear and failure.

In order to reduce dynamic loads, it is proposed to optimize the movement mode of the drive mechanism. For this purpose,
the conveyor is presented in the form of a three-mass dynamic model, based on which a mathematical model was created. From
the conducted dynamic analysis of the belt conveyor, it was established that during the start-up process, significant power and
energy overloads occur in the elements of the drive and the traction body, which depend on the driving force of the drive. In
addition, high-frequency oscillations of the tape are observed. Since the undesirable properties of the belt conveyor largely
depend on the magnitude of the driving force of the drive, it should form the basis of the optimization criterion. In addition, the
driving force of the drive must be reflected in the optimization criterion during the entire movement process, that is, the
optimization criterion must be presented in an integral form. To eliminate the possible compensation of negative and positive
values of the driving force on the conveyor, the latter should be represented in the integral criterion in quadratic form. Therefore,
the rms value of the driving force of the drive during the start-up time was chosen as the criterion for optimizing the motion
mode of the belt conveyor.

Optimization of the conveyor movement mode was carried out by minimizing the integral dynamic criterion. As a result of
the optimization, the start-up mode of the belt conveyor was determined, which minimizes the effect of dynamic loads. This
start-up mode makes it possible to increase the reliability of the conveyor and reduce the energy consumption of the drive.

Keywords: dynamic model, motion mode, belt conveyor, drive mechanism, dynamic loads.
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Jlogetixin B.C., Pomacesuu FO.O., Kynonin P.A., [louka K.I. OnTumizanisi CHJI0BOro pe;xuMy NMycKy cTpiuKkoBOro Konseepa //
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YV npedcmaenenivi cmammi nocmaeneHo ma aHAniMuYHO PO38’A3AHO BaApIAYIIHY 3A0auy ONMUMIZAYIl NYCKOBO20 pedCcuUMy
cmpiukoeo2o koneeepa. [nsa ii eupiuienns Oyn0 3M00e1b06AHO KOHEEEpP AK OUHAMIYHY cucmeMmy 3 mpboma (3’€oHanumu
JAHYI02OM NPYIICHUMU enemMenmamu) macamu ounamiynoi moodeni. Ha ochosi pisuanv, wo onucyioms ix pyx, cgopmosaro
Kpumepiti onmumizayii. Ile cepeOHbOK6aOpamuuHe 3HAYEHHA DPYWIUHOI cumu Ni0 4ac NyCcKOB020 pPedCUMy. 3HAXO0OHICeHHA
MIHIMYMY Kpumepito onmumisayii (inmeepanibHo2o QyHKYIOHANA) i3 3a0080NEHHAM SPAHUYHUX YMOS8 PYXY MAE 3MIcm 8apiayiiHoi
3aoaui. [ns it eupiwenns sacmocosaro pisuannsa Einepa-Ilyaccona. Ompumanuii OnmMumManoHuil pexcum poobomu niosuuue
npoOyKmueHicms, HAOIHICMb Ma enep2oedeKmueHiCNb CIMpIuK08020 KOHBEEPA.
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In the presented article the variational problem of optimization starting mode of a belt conveyor is stated and analytically
solved. In order to solve it a conveyor was modelled as dynamical system with three (connected in a chain manner with elastic
elements) masses dynamic model. Based on the equations, which describe their movement, the optimization criterion was
formed. It is the root mean square value of the driving force during starting mode. Finding the minimum of the optimization
criterion (integral functional) with satisfying the boundary conditions of motion presents the sense of a variational problem. In
order to solve it the Euler-Poisson equation was applied.The obtained optimal operation mode improved the productivity,
reliability and energy efficiency of the belt conveyor

Fig. 9. Ref. 14.
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