Definition of the stress-strain state of a glued laminated timber beam reinforced with composite strips using experimental method

Authors

DOI:

https://doi.org/10.32347/2410-2547.2024.112.43-51

Keywords:

electrotensometry, clock-type indicator, glued laminated timber, glued laminated timber constructions, composite strips, stress, stress-strain state, reinforcement with composite strips, strain gauges

Abstract

The trend in the development of the construction industry worldwide requires increasing attention to ecological aspects, which means that materials with minimal negative impact on the environment are becoming increasingly popular. At the same time, these materials must possess high strength and durability against various external influences and loads. From this perspective, constructions made of wood and its derivatives are gaining the most popularity. Such constructions, made from renewable natural resources, exhibit relatively high strength at relatively low density, thus belonging to such materials. Although wood has its drawbacks, such as susceptibility to drying, rotting, and anisotropy of properties, these drawbacks can be completely mitigated in glued laminated timber structures. Glued laminated timber beams, which are the primary structural element of many buildings and structures, are the most widespread. Therefore, the issue of significantly increasing their rigidity and strength through reinforcement with composite materials is particularly relevant.

This article proposes a methodology for determining the stress-strain state of a glued laminated timber beam reinforced with composite strips. The results include deformation parameters of the experimental model, actual elastic modules during bending, maximum longitudinal stresses at the center of the span, along the load application axis, and along the support axis. Additionally, maximum transverse and shear stresses along the load application axis and along the support axis are determined. The actual maximum load-bearing capacity of the experimental model reinforced with composite strips is established.

Author Biographies

Mykola Komar, Kyiv National University of Construction and Architecture

Graduate student of the department of metal and wooden structures

Denys Mykhailovskyi, Kyiv National University of Construction and Architecture

Doctor of technical sciences, professor, professor of the department of metal and wooden structures

References

Mykhailovskyi D.V. Svitovyi dosvid i perspektyvy rozvytku bahatopoverkhovoho budivnytstva z derevyny (World experience and prospects of development of multi-story timber construction). // "Visnyk Odeskoi derzhavnoi akademii budivnytstva i arkhitektury" Vypusk 61, 2016; Odesa: ODABA, 2016. - 468 s. - S. 270 - 277.

Mykhailovskyi D.V. Zastosuvannia derevyny ta derevynnykh materialiv u budivnytstvi (Utilization of wood and timber materials in construction). // Mezhdunarodniy ynformatsyonno-tekhnycheskyi zhurnal Oborudovanye y ynstrument dlia professyonalov (derevoobrabotka) - №4 / 199. Kharkiv, 2017. 80 s. S.40 - 44.

Borysiuk O. P., Melnyk S. V. Pidsylennia zghynalnykh zalizobetonnykh konstruktsii suchasnymy materialamy (Strengthening of flexural reinforced concrete structures with modern materials). Resursoekonomni materialy, konstruktsii, budivli ta sporudy: zb. nauk. prats. Rivne, 2010. Vyp. 20. S. 459-465.

Ziatiuk Yu. Yu. Operatsiinist tekhnolohii vykonannia robit pry pidsylenni doslidnykh zalizobetonnykh zrazkiv (materialamy firmy Sika) (Operational efficiency of work execution technology in strengthening experimental reinforced concrete specimens (using materials from Sika company)). // Resursoekonomni materialy, konstruktsii, budivli ta sporudy: zb. nauk. prats. Rivne, 2016. S. 466-475.

Melnyk S. V. Doslidzhennia nesuchoi zdatnosti pokhylykh pereriziv zalizobetonnykh balok, pidsylenykh nakleienymy vuhleplastykovymy materialamy (Research on the load-bearing capacity of inclined sections of concrete beams reinforced with bonded carbon fiber materials). // Haluzeve mashynobuduvannia, budivnytstvo: zb. nauk. prats Poltavskoho natsionalnoho tekhnichnoho universytetu im. Yu. Kondratiuka. Poltava, 2012. Vyp. 2(32). T. 1. S. 151

Homon S., Polishchuk M. Vlashtuvannia kombinovanoho armuvannia balok iz kleienoi derevyny (Installation of combined reinforcement for beams using glued timber). // Visnyk Lvivskoho Natsionalnoho Ahrarnoho Universytetu Arkhitektura i silskohospodarske budivnytstvo № 20 - 2019 r. st. 44-49.

Bashynskyi O. I., Bodnarchuk T.B., Peleshko M.Z. Nesucha zdatnist ta vohnestiikist derevianykh balok armovanykh zovnishnoiu strichkovoiu armaturoiu (Load-bearing capacity and fire resistance of timber beams reinforced with external strip reinforcement). // Visnyk Lvivskoho derzhavnoho universytetu bezpeky zhyttiediialnosti. - 2014. - № 9. - S. 184-189.

Mykhailovskyi D. V., Komar M. A. Analiz doslidzhen zastosuvannia kompozytnykh strichok dlia pidsylennia derevianykh konstruktsii (Analysis of research on the application of composite strips for strengthening timber structures). / Mykhailovskyi D. V., Komar M. A. // Budivelni konstruktsii, teoriia i praktyka №10 KNUBA, 2022. – 165 s. DOI: https://doi.org/10.32347/2522-4182.10.2022.4-10 - S. 4 - 10.

Denys Mykhailovskyi, Oleg Komar, Mykola Komar Engineering method of calculating laminated timber elements reinforced with composite tapes / Opir materialiv i teoriia sporud / Strength of Materials and Theory of Structures: nauk.-tekh. zbirn. – K.: KNUBA, 2022. – Vyp. 109. – S. 239-262.

EN1995-1-1:2008: Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings, European Committee for Standardization CEN, Bruxelles, Belgium, 2008. 121 p.

DBN V.2.6-161:2017 «Dereviani konstruktsii. Osnovni polozhennia.» («Wooden structures. Basic principles.») / kerivnyk rozrobky: Fursov V.V., vidpovidalnyi vykonavets: Mykhailovskyi D.V., Naichuk A.Ia. ta inshi // - Kyiv, "Ukrarkhbudinform" 2017. – 125 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206040010000001 Sikadur® -30. Klei, 2-kh komponentnyi epoksydnyi klei dlia nakleiuvannia armuvannia (Adhesive, two-component epoxy adhesive for bonding reinforcement.). Liutyi 2022, Versiia 04.01, 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206040010000004 Sikadur® -330. Tyksotropnyi epoksydnyi klei dlia imprehnatsii konstruktyvnykh poloten SikaWrap® (Thixotropic epoxy adhesive for impregnating structural fabrics like SikaWrap®). Berezen 2022, Versiia 04.01. 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206010010000040 Sika® CarbDur ® S Strichky z vuhletsevykh volokon dlia pidsylennia konstruktsii - skladova chastyna systemy Sika® CarboDur® System (Carbon fiber strips for structural reinforcement - a component of the Sika® CarboDur® System). Berezen 2018, Versiia 05.01. 4 s.

Tekhnichna karta materialu. Identyfikatsiinyi nomer №: 020206020010000025 SikaWrap ® -230 C/45. Tkanyna z odnonapriamlenykh vuhletsevykh volokon dlia pidsylennia budivelnykh Konstruktsii, chastyna systemy pidsylennia SIKA® (Unidirectional carbon fiber fabric for reinforcing building structures, part of the SIKA® reinforcement system)., Liutyi 2018, Versiia 02.01. 4 s.

DSTU EN 408:2007 «Lisomaterialy konstruktsiini. Konstruktsiina ta kleiena sharuvata derevyna. Vyznachennia deiakykh fizychnykh ta mekhanichnykh vlastyvostei» («Structural timber materials. Structural and laminated timber. Determination of certain physical and mechanical properties») (EN 408:2003, IDT).

Downloads

Published

2024-04-17

Issue

Section

Статті