Monitoring of structures with bearing elements in the form of long vertical rods




long rod, position errors, influencing factors, rod stability, tensely-deformed state, monitoring tasks


A building structure is considered, which in the design form consists of two vertical rectilinear interacting elements. One of them is loading, the other is carrying. The bearing element is presented in the form of a long thin rod loaded with an external axial vertical force. Due to the errors of geodetic verification and installation work, the bearing rod will be installed with some inclination and displacement relative to the coordinate axes. The external load on the bearing element is represented by the force vector, which is equivalent to the loading rod. Errors of geodetic verification and installation work will change the design direction of the force line and its design position on the supporting element. An inclined force vector will have a vertical and horizontal force component. Thus, the line of action of the loading force and the longitudinal axis of the supporting rod will be located at an angle to each other, which will cause bending momentsand transverse forces in the sections of the rod. A design "changed" in relation to the project is created. Bending moments and horizontal forces in this design will contribute to premature bending of the rod. An unevenly heated rod also acquires the ability to distort. The influence of the specified factors can be increased, and the stability of the rod significantly weakened due to uneven subsidence, horizontal displacement or tilting of the supporting structure due to dangerous exogenous geological processes. Therefore, errors in the position of elements, changes in temperature, geological processes disrupt the linear form of equilibrium of the bearing rod and its position in space. The change in shape and relative position contributes to the premature emergence of an unstable state under an increasing external load. In the changed design, the bearing rod may suddenly find itself in a critical stress-deformed state. The task of monitoring is to sense and properly record changes and dynamics of the stress-strain state. For this purpose, measuring complexes with a certain configuration are designed, which provide with the necessary specified accuracy the measurement of changes in the physical state of the elements of building structures.

Author Biographies

Oleksandr Isaev, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, associate professor of the department of engineering geodesy

Svitlana Bondar, Kyiv National University of Construction and Architecture

assistant of the department of engineering geodesy

Yurii Medvedskyi, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, associate professor of the department of engineering geodesy

Petro Chulanov, Kyiv National University of Construction and Architecture

senior teacher of the Department of Engineering Geodesy

Olena Tsykolenko, Kyiv National University of Construction and Architecture

assistant of the department of engineering geodesy


Moore J. F. A. Monitoring Building Structures. London: Blackie and Son Ltd, 1992. 155 p.

Monitoring of buildings and structures. Leica geosystems, deformation monitoring. URL:,online_chips:leica+geosystems:zNrV_UYaDGs%3D,online_chips:deformation+monitoring:seatudepJeE%3D&rlz=1C1OKWM_enUA918UA918&sa=X&ved=2ahUKEwi8k5OzxP_-AhX4micCHdMlCK8Q4lYoAXoECAEQKw&biw=1629&bih=918 (data zvernennya: 18.05.2023).

Connolly C. Structural monitoring with fiber optics. Europhotonics.2009. No. 2-3. P. 16–18.

YakovenkoM.S., NestorenkoO.V. Ohlyad vydiv heodezychnoho monitorynhu budivelʹ ta sporud v uskladnykh inzhenerno-heolohichnykh umovakh. (Overview of types of geodetic monitoring of buildings and structures in difficult engineering and geologicalconditions) Suchasni problemy arkhitektury ta mistobuduvannya. Kyiv, 2019. vyp. 55. S. 341-350.

YakovenkoM.S., NestorenkoO.V. Analiz metodiv heodezychnoho monitorynhu deformatsiy inzhenernykh sporud ta zsuvnykh protsesiv gruntovykh masyviv. (Analysis of methods of geodetic monitoring of deformations of engineering structures and landslide processes of soil massifs)Suchasni problemy arkhitektury ta mistobuduvannya. Kyiv, 2020. Vyp. 56. S. 345-363.

Haydaychuk V.V., Kotenko K.YE. Efektyvnistʹ ta problemy monitorynhu velykorozmirnykh budivelʹnykh sporud. (Efficiency and problems of monitoring large-scale building structures) Opir materialiv ta teoriya sporud. Kyiv, 2016. №97. S. 175-185.

Haydaychuk V.V., Byelov I.D., Vabishchevich M.O., Dyedov O.P. Diahnostyka ta monitorynh unikalʹnykh budivelʹnykh ob'yektiv. (Diagnostics and monitoring of unique building objects) Novi tekhnolohiyi u budivnytstvi. Kyiv, 2016. №31. S. 21-29.

Davydenko O.P., Bezus O.O. Bezprovidna systema monitorynhu napruzheno-deformovanoho stanu budivelʹ ta sporud. (Wireless system for monitoringofthetensely-deformedstateof buildings and structures)Visnyk NTU "Kharkivsʹkyy politekhnichnyy instytut". Kharkiv, 2015. №29 (1138). S. 8 - 12.

DSTU 8855:2019. Budivli ta sporudy. Vyznachennya klasu naslidkiv (vidpovidalʹnosti).(Buildings and structures. Determination of the class of consequences (liability)) [Na zaminu DSTU-N B V.1.2-16:2013; chynnyy vid 01.12.2019]. Perehlyad. ofits. Kyiv: DP «UkrNDNTS», 2019. 13 s.

DSTU-N B V.1.2-18:2016. Nastanova shchodo obstezhennya budivelʹ ta sporud dlya vyznachennya ta otsinky yikh tekhnichnoho stanu. (Guidelines for the inspection of buildings and structures to determine and assess their technical condition) [Chynne vid 01.04.2017] Vyd. ofits. Kyiv: DP «UkrNDNTS», 2017. 44 s.

DSTU-N B V.1.2-17:2016. Nastanova shchodo naukovo-tekhnichnoho monitorynhu budivelʹ ta sporud. (Guidelines for scientific and technical monitoring of buildings and structures) [Chynne vid 01.04.2017] Vyd. ofits. Kyiv: DP «UkrNDNTS», 2017. 58 s.

DBN V.1.2-14:2018. Systema zabezpechennya nadiynosti ta bezpeky budivelʹnykh ob'yektiv. Zahalʹni pryntsypy zabezpechennya nadiynosti ta konstruktyvnoyi bezpeky budivelʹ ta sporud. (The system of ensuring the reliability and safety of construction projects. General principles of ensuring the reliability and structural safety of buildings and structures.) [Na zaminu DBN V.1.2-14:2009; chynnyy vid 01.01.2019] Vyd. ofits. Kyiv: DP "Ukrarkhbudinform", 2018. 30 s.

DBN V.2.1-10:2018. Osnovy ta fundamenty budivelʹ ta sporud. Osnovni polozhennya. (Bases and foundations of buildings and structures. Main provisions) [Chynne vid 01.01.2019] Vyd. ofits. Kyiv: Minrehion Ukrayiny, 2018. 35 s.

DBN V.1.1-45:2017. Budivli ta sporudy u skladnykh inzhenerno-heolohichnykh umovakh. Zahalʹni polozhennya.(Buildings and structures in difficult engineering and geological conditions. General provisions) [Na zaminu DBN V.1.1-5-2000; chynnyy vid 01.10.2017] Vyd. ofits. Kyiv: Minrehion Ukrayiny, 2017. 28 s.

Ishchenko Yu.I., Slyusarenko Yu.S., Melashenko Yu.B., Yakovenko M.S., Byenʹ I.V. Heotekhnichnyy monitorynh v umovakh ushchilʹnenoyi misʹkoyi zabudovy. (Geotechnical monitoring in conditions of dense urban development) Nauka ta budivnytstvo. Kyiv, 2020. Tom 25. №3. S. 13-25.

Annenkov A. Monitoring the deformation process of engineering structures using BIM technologies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022 Measurement, Visualization and Processing in BIM for Design and Construction Management II, 7–8 Feb. 2022, Prague, Czech Republic.

Annenkov A.O. Perspektyvy zastosuvannya BIM-tekhnolohiyi pry heodezychnomu zabezpechenni budivnytstva. (Prospects of BIM technology application in geodetic support of construction) Materialy Mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi “Heoforum-2022”, 6–8 kvitnya 2022 roku. 2022. S. 23-26.

Solomakho V., Vovchok A., Solomakho D. Monitorynh budivelʹnykh konstruktsiy yak faktor zabezpechennya bezpechnoyi ekspluatatsiyi budivelʹ ta sporud. (Monitoring of building structures as a factor in ensuring safe operation of buildings and structures) Arkhitektura ta budivnytstvo. Minsʹk, 2010. № 4. S. 110-113.

Shults R., Soltabayeva S., Seitkazina G., Nukarbekova Z., Kucherenko O. (2020) Geospatial Monitoring and Structural Mechanics Models: A Case Study of Sports Structures. 11th International Conference “Environmental Engineering”. 2020. Pp. 1-9. (Scopus).

Gordiuk M., Semynoh M., Holodnov O., Tkachuk I., Ivanov B. Determination of remaining resource of constructions of buildings after different influences. Technology Audit and Production Reserves. 2019. Vol. 5. № 1(49). P. 4–9.

Gordiuk M., Semynoh M., Holodnov O., Tkachuk I. Determination of the technical state of buildings and constructions after force and temperature influences. Technology Audit and Production Reserves. 2019. Vol. 4. № 1(48). P. 4–10.

NarizhnyyV.V. Analiz ta perspektyvy rozvytku avtomatyzovanykh system diahnostyky ta monitorynhu tekhnichnoho stanu budivelʹ ta sporud.(Analysis and prospects for the development of automated systems for diagnosing and monitoring the technical condition of buildings and structures)Budivelʹne vyrobnytstvo. Kyiv, 2020. № 70. S. 66-71.

KuzʹmychL.V. Metody ta zasoby vymiryuvannya napruzhenʹ ta deformatsiy skladnykh konstruktsiy pryladovoyu systemoyu: (Methods and means of measuring stresses and deformations of complex structures with an instrument system)avtoref. dys. … d-ratekhn. nauk: 05.11.01 / Kyyivsʹkyypolitekhnichnyyin-tim. IhoryaSikorsʹkoho. Kyiv, 2019. 48 s.

L. Kuzmych. Current state of tools and methods of control of deformations and mechanical stresses of complex technical systems [Text] / L. Kuzmych; O. Kobylianskyi; M. Duk. // Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Vol.10808, 2018, 108085J; doi:10.1117/12.2501661 (Scopus).

Isaev O., Annenkov A., Demianenko R., Chulanov P. Monitoring of the elements stability of building constructions by means of example of vertical elastic rod of high flexibility. Opir materialiv ta teoriya sporud. 2022. № 109. S. 416-425.

Isayev O.P., KulikovsʹkaO.YE., KatushkovV.O. Vplyv pomylok polozhennya na stiykistʹ nesuchoho vertykalʹnoho stryzhnya velykoyi hnuchkosti. (Influence of position errors on the stability of a load-bearing vertical rod of great flexibility)Mistobuduvannya ta terytorialʹne planuvannya. Kyiv, 2022. Vyp. 80. S. 203-209.

Isayev A.P., HulyayevYU.F., ChulanovP.A. Kompleksnyimonitorynhinzhenernykhsporud. (Integrated monitoring of engineering structures) Mistobuduvannya ta terytorialʹne planuvannya. Kyiv2020. Vip. 74. S. 162-171.

Isayev A.P., Hulyayev Yu.F., Chulanov P.A. Osoblyvosti heodezychnoho monitorynhu riznykh budivelʹnykh konstruktsiy (Features of geodetic monitoring of different construction structures) Mistobuduvannya ta terytorialʹne planuvannya. Kyiv2019. Vip. 70. S. 230-240.

Isayev A.P., Hulyaye Yu.F., Striletsʹ V.S., Chulanov P.A. Otsinka monitorynhu protsesu deformatsiyi ta osidannya pryamoliniynoho vertykalʹnoho stryzhnya (Evaluation of monitoring the process of deformation and settlement of a rectilinear vertical rod)Inzhenerna heodeziya. 2019. Vip. 67. S. 15-21.

Isayev A.P., Shulʹts R.V., Hulyayev Yu.F., Striletsʹ V.S. Pryntsypy vymiryuvannya osadu statychno nevyznachenykh konstruktsiy (na prykladi pryamoliniynoho vertykalʹnoho stryzhnya) (Principles of measuring the settlement of statically indeterminate structures (on the example of a rectilinear vertical rod)) Inzhenerna heodeziya. Kyiv, 2017. Vip. 64. S. 55-66.

Snezhkov D.Yu. Avtomatyzyrovannyi monitorinh elementov nesushcheho karkasa vysotnoho zdaniya: uchet temperaturnoho faktora (Automated monitoring of bearing frame elements of a high-rise building: temperature factor consideration) Stroitelnye konstruktsyy, zdaniya i sooruzheniya. 2018. № 4/37. S. 63 – 73.

Honcharenko Y.A., Riabtsev V.N. Datchyky kontrolia sostoianiya inzhenernykh i stroitelnykh konstruktsyi na osnove optycheskykh volnovodnykh struktur (Sensors of the state control of engineering and building structures on the basis of optical waveguide structures) Vestnyk komandno-ynzhenernoho instytuta MChS Respublyky Belarus. 2013. № 2(18). S. 118 – 132.