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The calculation of cylindrical anisotropic layered composite shells under the action of end torques in a spatial
setting is considered. The considered anisotropy is characterized by one plane of the material's elastic
characteristics. To derive three-dimensional systems of equations of subcritical equilibrium and stability of the
spatial theory of elasticity, a modification of the Hu-Washizu variational principle was used. Solving the problems
of the pre-critical stress-strain state and stability is carried out using the Bubnov-Galyorkin methods, discrete
Fourier transforms and numerical discrete orthogonalization. The problem of stability of an anisotropic cylindrical
thick-walled shell with an increase in the number of cross-reinforced layers is considered, depending on the angle of
rotation of the main directions of elasticity of the material and the direction of torque application.
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Introduction

A small number of works are devoted to solving problems of the stability of shells made of
composite materials, most of which are based on the use of two-dimensional classical or
refined theories [1, 15, 16]. This leads to the fact that for thin shells, the low shear stiffness and
in homogeneity of the material along the thickness are either not taken into account at all, or not
taken into account to the full extent. On the other hand, the geometric parameters of shells made
of modern materials do not always meet the conditions of applicability of both classical and
refined versions of the theory of shells. Therefore, the study of the stability of composite shell
structures in a three-dimensional setting [5, 6] is expedient and relevant.

Analysis of recent research and publications. In the works devoted to the calculation of
the stability of shell structures in a spatial setting [5, 6, 7], attention is focused on isotropic and
orthotropic shells. The use of materials with this degree of anisotropy narrows the class of
application of such composite structures. Note that when forming shell systems from fibrous
composites by winding them on mandrels, a discrepancy arises between the main directions of
elasticity of the orthotropic material and the axes of the curvilinear coordinate system of the
shells (Fig. 1). The material of such a structure in the axes of the shell must be considered as
having one plane of elastic symmetry, which is parallel to the middle surface [1, 3, 4, 10+15].
The lack of works devoted to a comprehensive analysis of the stability of shell structures made
of materials whose elastic properties have one plane symmetry is associated with the difficulties
that arise when compiling their solving models, which is caused by the interconnectedness of
deformations of tension (compression), shear, bending and torsion. However, taking these
features into account makes it possible to design shell systems from modern materials while
ensuring the design bearing capacity.

The aim of the study. The presented paper shows approaches to obtaining three-
dimensional equations of the subcritical stress-strain state and stability of cylindrical
anisotropic layered cylindrical shells in the spatial formulation of the theory of elasticity
based on the modification of the functional of the generalized Hu-Washizu principle. The
solution of the system of equations of the stress-strain state is carried out by combining the
numerical methods of direct and discrete orthogonalization, the system of stability equations is
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solved by the joint application of the
Bubnov-Galyorkin method and
numerical discrete orthogonalization.
Coordination of subcritical stress
components determined by the method
of straight lines with the procedure of
the Bubnov-Galyorkin method when
solving the stability problem occurs
using the method of discrete Fourier
transformations. Using the presented
methods, the stability of cylindrical
thin anisotropic layered shells made of
material with one plane of elastic
symmetry under the action of end shear
loads simulating external torques was
investigated.

Fig. 1. Cylindrical non-thin anisotropic shell under torsion

1. Statement of the problem and method of solution

1.1. The problem of the subcritical stress-strain state

1.1.1. Hu-Washizu variational principle. In accordance with the variational principle of
Hu-Washizu [17], the equilibrium equation, elasticity ratio (equation of state), geometric ratios
and corresponding boundary conditions can be obtained from the condition of functional
stationarity I, , which is defined with integral:

T, ={j ] {W(ey)—T(ui)+®(ui)—Uij [ej —%(u,.; U j;,.)}}dm (] (u;)dS— [ pi ;=) ¢diS. (1)
14 S S,

Here, displacements u;, deformations e;;, stresses o

ij > stresses p, on the surface S,

caused by displacements vary without additional conditions ;. Also in this functional W(el-j) -

potential energy of deformation, T'(x;) — kinetic energy, ®(v;), W(u;) — potentials of
volumetric and surface loads, u; — components of the displacement vector, a semicolon before

the parameters i, j the covariant derivative along the coordinate with the corresponding index i,
Jk=1,2,3.
Potential energy of deformation in the vector-matrix representation is written as follows

Wi(e;) Z%STBS, (2)

where &7 =(&,,800Ey>28,9,26,5,26,9) 1s the vector of deformations, B is the matrix
coefficients of elasticity.
If we enter the stress vector o = (0,5 Ogg> Opprs Trgs Trzs To9) then from the condition of

stationarity 0TI, we get the following equations:

o =B¢g; 3)

e=¢e(u); “)

oyt fi=0 ®)

and also boundary conditions o;n; = Fl on the surface S; and displacement u; =u; and stress

p;=oyn; onthe S, surface.

In ratios for deformations (4) the relationship between deformations and displacements is
presented. Reversed to ratios elasticity (3) dependencies deformations from tensions let's
introduce as



76 ISSN 2410-2547
Onip Matepiaiis i Teopist ciopyy/Strength of Materials and Theory of Structures. 2023. No 111

c=Ao, (6)
where matrix 4=B".

Coefficients matrices A let's mark through a;; , a matrices B — b; (i, j =1 6) Matrices A

l/’

and B — symmetric, since a b; =b; . In the future, the relationship between the matrices

i = 4ji» b
A and B is also established.

1.1.2. Modifiedmixed variationalprinciple. Let us follow the path presented in [13, 14, 16]
to derive the modified Hu-Washizu mixed variational principle and divide vectors ¢ and & on
two parts, in order to

O-IT = (O-rr’ 70> 7:rz); O-ZT = (O-zz’ Cop> 7:29); ng =(8rr’ €r0s grz); ng = (gzz’ €00> 829)' (7)

To shorten ratio entries elasticity (6) will be record in matrix form

&1 Ay Ay || 0
oM , ®
& ] |4y An]| 0,

where for blocks 4, according to the accepted division (7), with matrices 4 in (6) for an

l/ >
anisotropic material whose elastic properties are in one plane, we will get:

a, 0 0 a,, a,, a a. 0 0 a a
Ay = 0" gy Gys |5 Ap {031 0 036} Ay = a1233 0 015 4y - {a}; a1222 alzéé}'(g)
dys dss 0 00 a 0 0 e Gy 6

After simple mathematical transformations the expression for W (e;) will be presented in the

form:

1 _Tp-1 1.7 -
W, =W(oy,&)-0j (gl‘j_gij(u)) =501 Byj0 50 (B, _3123111312)32 +

+(el uy+e] )BLB) o) +£5 (u)(By,~BLB By, ) ;. (10)
In accordance with (1), we write down the potential of surface loads
H‘P(ui)dSl —J p; (u; —u;)dS, = H[(q;ur +qpug +q u,, hy,t)+
s s, 5
+(q:”r +qglg + Gz, .y, t)} ds, - ﬂ pi(u; —u;)dS, - (11)
)
Here u, , u,, u, are displacements coinciding with the axes of the adopted cylindrical coordinate

system (Fig. 1); A, and £, are the thicknesses of the first and n +1 shell layers.
We will also perform the variation of the potential of surface loads (11), after which we will
obtain the variation of the work of external forces

5”\? S, = ”qréu +qy6uy +q.0u, )dsl+ﬂzp,5u 51, )dS, (12)
5211
Whereqr=q?+qr,qa=q(3+qa,qz=qz_+qz,andp,-=0fori=1,3.

Let's write the final form of the functional IT, presented in (1) in the form

1, = [[[7(o1.)-Tu)]av - H‘P dS le . —u,)ds, . (13)
r s
1
The variation of the functional (13), due to the change in the components of the vector of
displacements u and stresses o, takes the form

oIl = J” —lUITBiIUI +(81T(u)+82 (u)BlTlezl)Ul —lGlTBfllTUl —lGl B IITGIT o0 —
v 2 2 2
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1 T
[2 T(Bzz 312311312)52}552 J{gz (“)(Bzz 312311312)52 (1T(M)+€2T(M)/5’1T2/3111 )GI }5’4—

~T(u)SuydV + [ (y@)ou)dS, ~|[ p; (u—1)S pdS, . (14)
Si $
For further derivation, we will use linear geometric relations in the form [9]
i Gu; i 1 i i Gulr i 6149 1 61/{ i 614:, 61/{;
€, = 5 €go = U, €y =5 €9 = _— € =t —
oz r or oz r 00 ° oz or
o 6u9 1 ; 1 6u

= 15
éro or r9r69 (15

Here e,,, ey, e, are relative linear deformations along the directions of the coordinate axes
r, 0,z and ey, e,, e are relative shear deformations tangential to the corresponding

coordinate surface, u., ug, u, are linear displacements in the directions of the indicated axes, i

— the shell layer number.

From the condition of stationarity (14), using expressions for stresses, displacements,
geometric ratios (15), as well as variations in the work of external forces (12) and equating
expressions for independent variations of stresses and displacements in the integral over the
volume V to zero, we obtain system of differential equations in the form

i i i i i i i i i i i i i
00, __cpu+l ; 0t 107, ¢y ;i cipOu;  Cy Ouy  C g  Cyp Oty )
= o, +—5u, +— + +—= +q,;
or r oz r 00 r 0z p- 00 r o0z p~ 00
i i i i 2 i ioA2 0 i i A2
afrz i aO'rr 1 i C12 au a C66 a uz C12 +C66 a uB
=3 T T 11 2 > 5
or oz r r 82 oz r= 00 r 0200
i i i 2 i 2 i i A2
C36 aO'rr _ C26 8u 2616 8 Ci6 a uB _ C26 a uB +q .
r 00 7200 r 300 ozt 00?7
i i i i 2. i A2
0,9 _%3 do,, 2 ¢p ou, Clz +eg Ul Duy ¢y Dup

o - 00 £ 2 a0 r 000 % a2 2 5p2

i i i 2 i i i i 2 i
aO'rr _626 aur —Ci 0 u, _626 8 u, _2C26 0 Ug

i
+c +qy;
36 16 ]
oz r oz &r r? 062 r 0200 ’
oy _ i +L Lo Quz cae Ouz i Oup | chy Oup
=0C330 u, +ci C36 >
or r 0z r 00 0z r 00
aui ou'  ou! ; 6u 1
. 0 i i
ar —assf +a45‘[’,9 aZr N ?20451' +a44Tr0 69 7“0. (16)

Here r is the radius of the cylinder, which does not depend on the coordinates z and 6 ; o-ir ,

i

T,,, T 9 — stress tensor components (7); u. , uy, u, —movement of the shell in the directions

ofaxes z, 6, r respectively. Steels c,’;, (k, I =1, 2, 3, 6) are characteristics of the material of

the shell layer, which are determined using mechanical constants a;; [8]:

i 1 PP i 2. i_l(ii_ii).
Cll =7 7| 922%6 — 426 > Cl2 =7 7\ @626 ~ %1246 )5
| [z

‘ 22 22

_ 1 I A 1 ( i i).
€ =77 %1% ~ s > clg = a1y — A dig )
42 [45]
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i_l(ii_ii). i 1 P00 2.
€6 =7 7\%2%6 ~91%s )5  Ce6 =7 7| 411922 "4 |»
42| 2]

1 _ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
‘Azz‘ = %6("11"22 —ayp )JF ay (alzam —ay1a )+ a16(a12a26 - azzale)a
i i i i i i i i
C13 =a13€11 T a3€C TA36C6 5 €3 =a13Cp T Ax3Cy) TA36C6 5

€36 = Q13016 +A3Co6 +A36Ce6 5 C33 = d3; —(af3c1’3 +a33053 +aééc§6)' (17

Thus, when using the variational equation (14), a heterogeneous three-dimensional system
(16) is derived from six differential equations of equilibrium of the linear theory of elasticity. It
is written in partial derivatives with respect to six components of the amplitude values of the

vectors o-lT =(0,.,T,9,T,,) and u’ =(u,,ugy,u,) and is used to study the stress-strain state of

anisotropic non-thin composite cylindrical shells. To obtain it, the modified Hu-Washizu
variational principle was used, which allows writing down the boundary conditions
corresponding to the equations.
The generalized Hooke's law based on (3) and (6) and taking into account notations (7) and
(17) can be written as:
T I B I i i
O =C11€;; TC2€gg TC16€z0 —Ci30 5
T I Y I i i
Ogp = Ci2€z T C0€eg TC26€z0 —C230,
Y I B B i i i
720 = C16€zz +C26€00 T C66€20 ~ €360 1 >
T I R B i i i,
€y = C13€; TC3€09 +C36€29 €330, 5

i i AU A A B | i
€, =Au5Tpg t 55T, 5 € =AyyTpg T AysT,, - (1 8)
The solution of system (16), in the case of torsion, must meet the conditions on the lateral

surfaces:

at r=n
U?r (1‘1,2,9)20 5 T?Z(I’I,Z,H)IO ; 199 (11,2,0)=0;
and r=r,
on(ry,2,0)=0; tl(r,2,0)=0; t/(ry,z,0)=0. (19)
Conditions at the ends at z=0, z=L (Fig. 1), for example
T,9=Tg, 7,.=u, =0. (20)

Conditions for rigid contact of layers for stresses and displacements:
o (=0, (r) ;s T ()=72' () Te() =105 (7);
w()=w ) wo)=ul ) u ) =ug () @1
Here i is the number of the shell layer, 7/, the shear stress distributed on its ends

corresponding to the applied twisting moment.

1.1.3. Research methodology. One of the numerical methods that allows reducing the
dimensionality of system (16) is the method of straight lines [2, 4, 11]. Given that in the work we will
consider only cases of axisymmetric deformation, we will reduce the thus obtained two-
dimensional system of partial differential equations based on (16) to a one-dimensional system
of ordinary differential equations by replacing the coordinate derivatives with difference
relations z .

After simple mathematical operations [11], dependencies (16) are transformed into a one-
dimensional system of the order 6n of ordinary differential equations with respect to the
derivative on the coordinate 7, which in abbreviated notation has the form
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;ﬂﬂ(r)y , 22)

1 n-1._n-1,_n-1

—_( 1.1 .1 111, n-1
where accepted y= {O'W,T,Z,T,Q,ur,uz,ug, 301 3Ty 3Ty sUy

n-1, n-1
Uz SUg O-rr ’Trz ’TrO ’ur Uz ’”e}

with boundary conditions (19); 7(r) — matrix of coefficients with unknown stress and
displacement components, n — the number of equidistant straight lines (cross-sections) that
divide the interval of the change of the derivatives by the coordinate along the generating line z.

The solution of the one-dimensional problem obtained in this way about the subcritical
stress-strain state of an anisotropic non-thin layered cylindrical shell during torsion is carried
out using the numerical method of discrete orthogonalization [1, 4].

1.2. The problem of stability

1.2.1. Modified mixed variational principle. To obtain the system of stability equations, we
will use the elastic functional W(e,-j) (10) and use the following expansions in the form [9]:

U] 2 (2)

o, =0} +ao,’ +a‘o,
& =8 +ocgl(1) +a251(2),
& =& +ocg( ) +0628(2) (23)

Here, the parameters of the stress-strain state with zero are subcritical values of strains and
stresses; with indices (1) — disturbed; with indices (2) - also, only in a square; « - an infinitely
small constant that is independent of coordinates.

Substituting (23) into (10) and performing the appropriate transformations, we obtain the
following expression of the potential energy of deformation

m :—l(alo+a6(l)+a 6(2)) By 1(6 +OCG(1)+O£ 6(2))
2
1(,.0 n, 2.\ - 0 o, 2,2
—5(52 +aet) +a’el )) (Bzz—BszBlllBlz)(.s2 +ael) +a’sl ))+
( ) ) 0, W 2.\ prp-i
+| & +ag +a’ £ ) (82 tag,’ +a’e, ) B, By |x

( +oc0'1(1)+oc20'1(2)) (g +0¢8§1)+0¢ 8(2))T 22—3123“312)(52 +ae§l)+a25§2)).(24)
After substituting (24) into (1) from the condltlon of stationarity of the variation of the
functional (1) caused by the change in the components of the vector of displacements u and
stresses oy, when using expressions for stresses o] =(0,,,7,4,7, ), displacements

u” =(u,, uy, u, ), and geometric ratios in the form [9]

| 0 | ) 0
o_ou o _law 1 a <1>:5“£>; o _Oup  1ou”

= Y 80 7T T or & r o0
1 1
oo o W _Oug 1 Toul
&z Q. T & T o'+
oz or o r r 00

neglecting the dependences for the variation of kinetic energy and the potentials of surface and
volume loads, equating the expressions for independent variations of stresses do,,, 0T,g, OT,.

and displacements du, , ou,, ou, in the integral over the volume V' to zero, we obtain the

i

; (25)

rro

following system of stability equations in the spatial setting of anisotropic thin composite
cylindrical shells :

66,,:_023+16 107, 01 0126uz+c£ Cyp Oug  Cy Ou,  Cys Oty
or r T 00 0z rooz 42T 200 2 00 r Oz
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Ou 1( Oug Oug 1 Ou j o%u L1 62
+——Z 3 —=| —=+u, |cy3—| —+ Cy6—0,.C33 +r—¢
( PRE r(@@ rj 23 (az - 09 )36 It 137+ p 692 €23~
2 2
2 Oug 1 0“u, Oug j 0 0“u, 1 %y ou,.
—E£—=Cy3—=U,Cp3 +2 C36 —2——C3¢ |0, +| =21 3 +— +— ez +
roo P TP Ta00 0 Ta )T a2 0 rlazo oz )P
2 2 2 2
+6u9+l6uz c36+66’rc33j—6ur T?z+_2 6u2613+l 6u9 ou, ey +
oz2  r 0200 1074 1074 0z00 r| 562 69

62“0 1 62 66}’}’ 1 aur 1 0 .
+ + 2 36 + C33 - +—UO TV@ N
0z00 r 90 00 r oo r

0t,, 0o, 100, 1. o u, 2c4 62uz Cp OU,  Cgg 62uz 1o +Ce6 62149
o oz P rae ™ Va2 200 r oz 00> r 0200
Cy¢ OU,. aZu(, Cog 62146 ou, 82u 1 6214
T2 09 9952 2 a2 '\ & —Tr0d45 ~ Ty ds5s T ——— - 202 €3t
2
+2 C36 |0 +| 27 _ouy 61-”9
06o. oz* 0z
SO, N 07,9 or,, j
200 a0 5T ag ’
07,9 _100, 90,, 2 €12 TCe6 52“2 Cy Ou, o Ug 2 o Uy _Co6 Oly
= €3 €36~ Tro 2 C66 =2 2 2
or r 00 Oz r r  0z00 ¢ 00 oz r° 00 r oz
62u2 Ca6 ﬁzuz 2¢y6 aZu(, (1. . 10u, ﬁzug 1 62146 B
62 2 et Trol44 — Tz 045t —— =031 2 €3t
oz=  rt 06 r 0z00 \ r r 00 oz r 06

2 2

2 614,, 1 0u 6“}’ J 0 1 6“6 1 0 u, 6Tr0 aTrz

+= —=UpCy3+2 +2—- + -2 : : -
a0 T e st e o | 2| o o g s

—%JT?Z +(—2
oz

6u,_6uzc +l %Ht + %+l6uz C361+0,,C33
or - oz 13 00 €23 oz 1 00 36 33>

10%u, 0 0, ) 10u | ) 0
' gy 45 L (P
r 00 rop? 00 26 } r o0 r

VO
—
o))
<
S

6u2 ou,. )
& = —EJf TrpQ4s + 7,055 5
Oug 1, _10u

=SUy———L+T gy +T,..Q 26
o 10T g TTro%aa T Tizas (26)

In (26) r — the radius of the cylinder (Fig. 1) is independent of the coordinates z and 0 ; o,,,

T,,, T,y — stress vector components (3); u,, Uy, u, — moving the shell according to the

directions of the corresponding axes z, @, r. Stresses o', 7" and 77 are determined by
solving the problem of the subcritical stress-strain state (22).
Thus, using the modified Hu-Washizu variational principle, a three-dimensional system of

six homogeneous differential equations of stability in partial derivatives with respect to the
components of the vectors o{ =(0,,, 7,9, 7,,) and is obtained u” = (u,, uy, u. ).
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The given system of stability equations (26) must meet the conditions on the side surfaces of
the shell of type (19), conditions at the ends (20) and conditions of rigid contact of layers for
stresses and displacements (21).

1.2.2. Research methodology. We will reduce the dimensionality of the three-dimensional
system of stability equations (26) using the procedure of the Bubnov-Galyorkin method. Let us
decompose the functions describing stresses and strains (26) into double trigonometric series so
that conditions (20) are satisfied along the generator z and take into account the periodicity in
the circular direction 6 :

o (1,2,0)= 3 3 [ 910 pp (1) COSKO + Y g (1) sin kO Jsin 1,2 ;
m=1k=0
T (1,2,0)= D [ ¥20pp (M) COSKO + 3,y (r)sin kO [cos 1,2 ;
m=0 k=0
T,0(r,2,0) = 2 D [ y30pp (F)SINkO + 33,y () cOSKO Jsin 1,2 ;
m=1k=0
U, (r2,0) = Y [ Yaopi (1) COSKO + Yy (r)sin k6 [sin 1,2
m=1k=0
U, (r,2,0) = Y Y[ 505 (r)COSKO + Y5y (r)sin kO Jcos 1,z ;
m=0k=0
ug(r,2,0) = 3. D [ Voo pi (1)SINKO + ¥y (r)cOs kO Jsin 1,z . (27)
m=1k=0

In (27) Yispk» Yigk (i=16) are components of stress components o,., 7., 7,, and

rz

displacements u,, u,, u, decomposed by trigonometric Fourier series, p, m, k are wave

zo
numbers in the series. Parameter /,, = mn/L , where L is the length of the generating cylinder
(Fig. 1).

To take into account the variability of stresses for the length of the envelope, we use the
discrete Fourier transform operation In accordance with it, we present the distribution along the

z axis subcritical values o', 7", andz’, , obtained using the straight line method, in the form of

o Trz
series:
0
O n—1 0 . n—-1 o .
o0 ()= 4> g7 cos—2EL_ - 43 o -SinNziz;
i=l “Zod =l "Zod
0
0 Tz n—1 20 2i n—1 20 . 2i
T,.(2)= +Y a7 -cos—=E—z 4> b7 -sin—=EL— 7
il “Zod =l N-zyy
0
T,
a ro
% (2) =2 +Za’9 cos 2oL z+2b’9 sin—2%L_ (28)
i=l N-z Zod i=l N-z Zod

where the following notations are introduced: i — the number of members of the series

i=1n-1; n=(N+1)/2; N is the number of equidistant points by which the shell is broken

along the generating cylinder when solving the problem of the subcritical stress-strain state;

z,, — the distance between these points along the z coordinate in the cylindrical coordinate

. 0 0 0 0 0 0 0 0 0 .
system (Fig. 1); ag”, ag*, ay’, a’”, a=, a;"”, b’", b7, b — coefficients of the

trigonometric Fourier series into which the corresponding components of the stress state are

0
decomposed ¢ Tpj» T r9 ;o J=I=N.

rr,j
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By separating the variables in equations (26) using dependencies (27), while taking into
account relation (28), we obtain an infinite one-dimensional system of ordinary homogeneous
differential equations of stability of a cylindrical shell in the normal Cauchy form

& _ — —
d—y= (nA)Y, T(r 2)=t,,(r 1), i=lw, j=leo. (29)
r
I (29) 3 ={ M pks Vo phs V3, pk3 4 ok V5. pks Vo pk > Vs Vot Vs Vit s Vs s Vi) the
solving vector function 7T'(r,A) is a matrix with variable coefficients that depends on the

argument » and the load parameter 4.

The system of stability equations (29) under the conditions on the surfaces (19) is solved
using the numerical method of discrete orthogonalization [1, 4].

The presented algorithm is implemented in the form of packages of application programs for
a PC, where the setting of the parameters of the subcritical stress-strain state and the solution of
stability problems of non-thin anisotropic cylindrical shells subjected to torsion are combined in
a single process.

2. Implementation of the proposed method of setting critical loads of a composite
anisotropic cylindrical shell. Let's investigate the effect of changing the number of layers of an
anisotropic shell on the values of its critical loads in the case of torsion. To do this, consider the
stability of a cylindrical shell with a length of L = 1,2 m; radii of the inner »; =0,585m and outer
surfaces r, =0,615m. The shell is formed by reinforcing the composite at angles i to the z

axis. Fiberglass with the following physical and mechanical characteristics was selected as a
composite material: E.=44,5E,, Eq~E,~10,7Ey, G.~G,~4,18E), G,.=8,48E,, v4,=0,26,
v,6=0,0628, E,=1000MPa .

In fig. 2 presents graphs describing the dependence of the critical values of shear loads
(torques) S;, on the angle of rotation W of the main directions of elasticity of the composite
material and the number of cross-reinforced +y layers for the cases of application of the end
torsional moment in positive (Fig. 2, a) and negative (Fig. 2, b) directions.

In fig. 2 (a), (b), plotted in the S, — axes W, the numbering of the curves corresponds to
the number of layers reinforced at angles +y to the resulting cylindrical shell, the curve 1’

(dashed) represents the results of calculating the stability problem of an anisotropic cylinder

according to the orthotropic approach when the mechanical ¢, characteristics ¢y, €34, ays
of the accepted generalized Hooke's law (18) have zero values.
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Zg for one- (1), two- (2), three- (3), four- (4), five- (5), seven- (7), eight-layer

(8) shells and the results are obtained on the basis of the orthotropic approach (1') for the direction of application of the
twisting moment: (a) positive; (b) negative

Fig. 2. Values of critical shear loads §
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From the analysis of the results presented in fig. 2 it is possible to draw the following
conclusions. The critical values of shear loads depend on the angle of rotation of the main
directions of elasticity of the material, the number of cross-reinforced layers, and the direction

of application of the twisting moment. We also note that the critical loads S, determined for

the anisotropic shell according to the orthotropic approach (curves 1) do not depend on the
number of layers with cross reinforcement and remain constant. At the same time, an increase
in the number of layers with cross-reinforcement leads to an approximation of the critical loads

©p determined taking into account all the constants of the generalized Hooke's law of the

considered material to those obtained according to the orthotropic approach. If the maximum
discrepancies between the results for a single-layer anisotropic cylinder (curve 1) and the
critical loads obtained for the orthotropic equivalent shell (curve 1) are 46% and 69%,
respectively, from positive (Fig. 2 (a)) and negative (Fig. 2 (b)) applied loads, then for the two-
layer (curve 2) in comparison with graph 1’ the differences decrease to 25% and 16%,
respectively, according to the signs of the loads. A further increase in the number of layers with
cross-reinforcement leads to the fact that with seven to eight layers, the discrepancy between
the anisotropic and orthotropic approaches to the calculation decreases to a maximum of 5%. At

the same time, we note that the critical loads S;;, obtained for anisotropic cylinders with the
number of layers seven to eight (curves 7, 8) from the twisting moment applied in the positive
direction (Fig. 2 (a)) are slightly greater than those Sy, determined according to the orthotropic

approach (curve 1'), and from the negative, on the contrary, smaller (Fig. 2 (b)).

In general, from the analysis of the results, it can be seen that for the considered anisotropic
cylindrical shells, increasing the layers of the cross-reinforced package to seven to eight or
more leads to the possibility of calculating such shells according to the orthotropic approach,
which confirms the results given in [1].

Conclusions

The paper proposes an approach to obtaining and solving three-dimensional systems of
inhomogeneous equations of the subcritical stress-strain state and homogeneous partial differential
stability equations for anisotropic thin cylindrical shells based on the modification of the Hu-
Washizu variational principle. To reduce the obtained systems to one-dimensional, the methods of
straight lines for the stress-strain state problem and decomposition into double trigonometric series
with approximation of stress components and displacements in the direction of the source using
the procedure of the Bubnov-Galyorkin method and taking into account the periodicity of the
solving functions in the circular direction for the stability problem were used. The solution of the
obtained one-dimensional systems in the direction normal to the middle surface of the shell was
carried out using the numerical method of discrete orthogonalization. The proposed approach
makes it possible to solve problems of stability of cylindrical shells at different angles of
reinforcement of the construction material relative to the structure.

The problem of stability of a non-thin composite anisotropic shell against end torsional loads
is solved, depending on the number of layers and the angles of rotation of their main directions
of elasticity, according to the proposed approach and using the orthotropic model for the
calculation of anisotropic shells. A comparison of the obtained results was carried out and a
conclusion was drawn about the use of the proposed approach.
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Tpau B.M., I[Toosopnuii A.B.
CTIAKICTh HETOHKHX IUJTHAPUYHUX AHI3OTPOITHUX OBOJIOHOK ITIJT IIEF0 KPYYEHHS B
TPUBUMIPHIA TOCTAHOBIII

B crarti y npocTopoBiii MOCTaHOBII HPUBEACHO pPO3PAXYHOK HA CTIMKICTh HETOHKMX LMJIIHIPUYHUX
aHI30TPONHUX MLIAPYBATHX KOMIIO3UTHUX OOOJOHOK MiJl Ji€I0 TOPLEBUX KPYTHUX MOMEHTIB. AHI30TpoOIis
BUKOPHCTOBYBAHOI'0 MaTepialy XapaKTEpU3YEThCs OAHIEIO MIIOIIMHOIO MPYXKHOI cuMeTpii Horo xapakrepuctuk. Le
BUKJIMKAHO HE CIIBIAiHHAM T'OJIOBHUX HAINPSMKIB IPY>KHOCTI BOJIOKHUCTOIO KOMIO3UTHOTO OPTOTPOIHOTO MaTepiary
Ta OCAMH KPUBOJIIHIHHOT IMIIIHAPUYHOT CUCTEMH KOOPJHMHAT.

TpuBuMipHa HEoAHOpiAHA cucTeMa AUQEpeHIialbHUX PIBHAHb Yy YACTHHHHUX MOXIJHUX, 110 OMHCY€E, B MEXax
JHIHHOT Teopii NPYKHOCTI, AOKPUTHYHHUHA HaNpyxkeHO-1epOPMOBAHMN CTAaH BHBEICHAa HPU BUKOPHCTaHHI
BapianiiHoro mnpuHuuny Xy-Bacigdy. 3MeHIIEHHS pO3MIpHOCTI pO3risgyBaHOi 3ajadi 3 TPHUBUMIpHOI 10
OJJTHOBUMIPHOI TPOBOIUTBHCA IPHU YpaxyBaHHI OChOBOI cHMETpii JaedOpMyBaHHS LWIIHAPUYHOI OOOJIOHKM Ta
BUKOPUCTAHHSM, y B3J0BXK TBIpHOI, METOy IPSMUX.

Crnmpatounch Ha MoaudikoBaHuid Bapiauiiauid npuHuun Xy-Bacinsdy, BHMBEIEHO TPUBHUMIPHY CHUCTEMY
OJJHOPIIHUX AU (EepeHIiaIbHUX PIBHAHD CTIHKOCTI y YACTUHHUX MOXIHUX B paMKax MPOCTOPOBOI TEOPIi MPYKHOCTI.
IIpuBeneHHs TPUBUMIPHOI CUCTEMH /10 OAHOBUMIPHOT 3[ilICHIOETHCS Y B3JJOBXK TBIPHOT Ta 32 KOJIOBUM HAIPIMKOM -
LUIIXOM PO3KJIaJI€HHSI KOMITIOHEHTIB HANpPYKEHb 1 MEepeMillleHb y TOJIBIiiHI TPUTOHOMETPUYHI PSJIU NP 3aCTOCYBaHHI
npouenypu Mmerony byoHoBa-I"asibopkiHa, a TAKOX 3 ypaxyBaHHSAM HNEPIOANYHOCTI PO3B’A3YIOUUX DYHKIIIH.

Po3po0iieHo anroput™, KUl peanizoBaHuil y BUNII/I MakeTiB npukiagHux nporpam s [1K. B HpoMy B equHOMY
00YMCIIOBAJIEHOMY IPOLECI, 3a BHUKOPUCTAHHS YHUCEIBHOrO METOLY IMCKPETHOI OpTOroHamizauii y HampsmKy
HOPMaJbHOMY [I0 CEpPEAMHHOI MOBEPXHi OOONOHKH, MOEAHYIOTBCS BCTAHOBJIEHHS I1apaMeETpPiB JTOKPUTHYHOTO
Hanpy>KeHO-1e()OPMOBAHOTO CTaHy Ta pO3B’A3Ky Ha LIl OCHOBI 3aJay CTIHKOCTI HETOHKHMX aHI30TPOIHHUX
LWIHAPUYHUX 00OJIOHOK, 1110 3HAXOATHCS ML 1i€I0 KPYUEHHSI.

PosrisiHyTa 3ajjaya npo BIUIMB Ha CTIMKICTh aHI30TPOIHOI IMJIHAPUYHOI HETOHKOI OOOJOHKHM 301JIbIICHHS
KUIBKOCTI TEepeXpecHO-apMOBaHMX MIAPiB B 3aJIEKHOCTI BiJ KyTa [OBOPOTY TOJIOBHUX HANPSAMIB HPYKHOCTI
MaTtepialy Ta HampsAMKY NPHKIAJaHHS KPyTHOro MoMeHTy. IIpoBeneHe CIiBCTaBJIeHHS OTPUMAHHUX PE3yJIbTaTiB
pO3paxyHKIiB Ha CTiHKIiCTh 3TiJIHO 3alpOINOHOBAHOrO MiAXOAY i3 KPUTHYHUMM HABAHTAKEHHSAMHU KPYUEHHS, IO
BHUpaxyBaHi MpPU BUKOPUCTAHHI OPTOTPOIHOI MOJENI PO3PaxyHKY aHi3oTpomHUX o0osioHOK. ITokaszaHo, o ans
OJTHOLIAPOBUX LMJIIHAPUYHUX O00JIOHOK PO3XOKEHHS MiX MOPIBHIOBAHMMH pe3yJsibTaTaMu csarae 69%. 30inb1eHHs
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KUIBKOCTI HEepeXpecHO-apMOBaHUX MLIapiB Bexe 10 3MEHIICHHS Iiel po30DKHOCTI Ta NPH CEMU-BOCBMH IIapax
Pi3HHIM MK KPUTHYHMMH HABAaHTAKCHHAMM OTPUMAHHUMHU 3a OMHCAHHM MiJXOJZOM Ta OPTOTPOMHOI MOJEILIIO
3HAX0AUThCcd B Mexax 5%. Takuii pe3ynbTaT LIJIKOM Y3TOMXKYIOTHCS 3 THMH, 10 OTPUMAaHi IPH BUKOPUCTAHHI
KJIACHYHUX YU YTOUYHEHUX TEOPil PO3PaxyHKiB K TOHKUX, TAK 1| HETOHKMX aHI30TPONHUX LHJIIHIPUYHUX 00O0JIOHOK.
KarouoBi ci1oBa: aHi30TponHa HUIIIHAPUYHA 000JOHKA, TPUBUMIPHA IIOCTAHOBKA, CTIHKICTh NPH KPYYECHHI.

Trach V.M., Podvornyi A.V.
STABILITY OF CYLINDRICAL ANISOTROPIC COMPOSITE SHELLS UNDER TORSION IN A THREE-
DIMENSIONAL FORMULATION

The article presents a calculation of the stability of non-thin cylindrical anisotropic layered shells under the action of
end torsional moments in a spatial formulation. The anisotropy of the used material is characterized by one plane of
elastic symmetry of characteristics. This is caused by the mismatch between the main elastic directions of the composite
fibrous orthotropic material and the axes of the curvilinear cylindrical coordinate system.

A three-dimensional inhomogeneous system of partial differential equations describing the subcritical stress-strain
state within the linear theory of elasticity is derived using the Hu-Washizu variational principle. Reducing the
dimension of the problem under consideration from three-dimensional to one-dimensional is carried out by taking into
account the axial symmetry of the deformation of the cylindrical shell and using the method of straight lines along the
generatrix.

Based on the modified Hu-Washizu variational principle, a three-dimensional system of homogeneous partial
differential stability equations is derived within the framework of the spatial theory of elasticity. The reduction of a
three-dimensional system to a one-dimensional one is carried out along the generatrix and in the circular direction - by
expanding the components of stresses and displacements into double trigonometric series when applying the procedure
of the Bubnov-Galorkin method, as well as taking into account the periodicity of the resolving functions.

An algorithm has been developed, implemented in the form of application software packages for PCs. In it, in a
single computational process using the numerical method of discrete orthogonalization in the direction normal to the
middle surface of the shell, the establishment of the parameters of the subcritical stress-strain state and the solution on
this basis of stability problems for non-thin anisotropic cylindrical shells under the influence of torsion are combined.

The problem of the influence on the stability of an anisotropic cylindrical non-thin shell of an increase in the number
of cross-reinforced layers depending on the angle of rotation of the main directions of elasticity of the material and the
direction of application of torque is considered. The obtained results of stability calculations according to the proposed
approach were compared with critical torsion loads calculated using an orthotropic model for calculating anisotropic
shells. It is shown that for single-layer cylindrical shells the difference between the compared results reaches 69%. An
increase in the number of cross-reinforced layers leads to a decrease in this discrepancy, and with seven to eight layers,
the difference between the critical loads obtained using the described approach and the orthotropic model is within 5%.
This result is consistent with those obtained using classical or refined theories of calculations of both thin and non-thin
anisotropic cylindrical shells.

Key words: anisotropic cylindrical shell, three-dimensional setting, torsional stability.

VK 624.074.04

Tpau B.M., IToosopnuii A.B. CTiiKicTh HETOHKMX IMJIIHAPHYHHX AHI30TPONMHUX 000JIOHOK I/ i€}0 KPYYEeHHS B
TpUBUMIpHiii mocranoBui // Onip marepianis i Teopist copya: Hayk.-tex. 30ipH. — K.: KHYBA, 2023. — Bumn. 111. —
C. 74-86.

Posenadaemuvca po3paxyHok HemMOHKUX YUNIHOPUUHUX AHI30MPONHUX WAPYEAmMux 00010HOK nid 0i€l0 mopyesux
CKpYUyIlouux MOMeHmié y npocmopogii nocmanosyi. Posensdyeana anizomponia Xapaxmepusyemvcs O0OHI€I0
NIOWUHOIO NPYIICHUX XAPAKMePUCmuK mamepiany. /Ina ompumanua mpueuUMIpHux cucmem piGHAHbL OO KPUMUYHOT
pisHogazu ma cmilkocmi npocmopoeoi meopii npys#cHoOCmI, UKOPUCMAHO MOOUQIKayilo eapiayitiHoco NPUHYUNY
Xy-Baciozy. Hucenvhuii po3eé’a3ok nocmaeneHoi 3adaui npoeooumecs npu eukopucmanui memooie bybHosea-
Tanvopkina, ouckpemuux nepemeoperv ®yp’e ma ouckpemuoi opmozonanizayii. Pozenanyma 3aoauwa cmivikocmi
AHI30MPONHOT YUNIHOPUYUHOT HemOHKOI 000IOHKU Npu 30iNbUeHHI KilbKOCMI nepexpecHo-apMo8aHux wapie 6
3anejcHocmi 6i0 Kyma nOGOpomy 20JI06HUX HANPAMIE RPYICHOCMI Mamepiany ma HANPAMKY NPUKIAOaHHS
CKPYUYI0U020 MOMEHNTY.

Tabmn. -. In. 2. Bibniorp. 17 Ha3B.

UDC 539.3

Trach V.M., Podvornyi A.V. Stability of cylindrical anisotropic composite shells under torsion in a three-
dimensional formulation // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles.
—Kyiv: KNUBA, 2023. — Issue 111. - P. 74-86.

The calculation of cylindrical anisotropic layered composite shells under the action of end torques in a spatial
setting is considered. The considered anisotropy is characterized by one plane of the material's elastic
characteristics. To derive three-dimensional systems of equations of subcritical equilibrium and stability of the
spatial theory of elasticity, a modification of the Hu-Washizu variational principle was used. Solving the problems
of the pre-critical stress-strain state and stability is carried out using the Bubnov-Galyorkin methods, discrete
Fourier transforms and numerical discrete orthogonalization. The problem of stability of an anisotropic cylindrical
thick-walled shell with an increase in the number of cross-reinforced layers is considered, depending on the angle
of rotation of the main directions of elasticity of the material and the direction of torque application.

Tabl. -. Fig. 2. Ref. 17
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