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The issue of modeling geometrical imperfections in the dynamics problems of thin-walled shells was little
researched. In cases when the natural modes of shell coincided with its buckling modes, the issue of choosing a
dangerous imperfection model did not arise. When these shell modes did not coincide, it was important to investigate
and compare the effect of different imperfections models on the static and dynamic characteristics of such shells. The
choosing the shape imperfections model of a long flexible cylindrical shell subjected to force couples, the natural and
buckling modes of which did not coincide, was studied using procedures of the finite element analysis software
NASTRAN. The shell wall as a set of plat rectangular elements with six degrees of freedom at the node in the
cylindrical coordinate system was modeled. The action of force couples as the concentrated forces were distributed at
the nodes of the shell edges in accordance to the presentation of A.S. Volmir. The linear buckling problem and the
geometrical nonlinear static analysis of the perfect shell by the Lanzosh method and the Newton-Raphson one were
performed, respectively. The long half-waves buckling mode was taken as the first shell imperfections model. The
modeling of the second shape imperfections as the first natural mode of the perfect shell using the natural vibration
analysis by the Lanzosh method was performed. The different amplitudes of geometrical imperfections in proportion to
the shell thickness using a program adapted to this software were set. The results of the geometrical nonlinear static
analysis of the imperfect shell by the Newton-Raphson method showed that the shape imperfection model in the form of
long half-waves more reduced the values of critical buckling loads. Investigations of natural shell vibrations by the
Lanzosh method revealed the same influence of different imperfections models on the natural frequencies and natural
forms. We think that the shape imperfections model in the form of long half-waves in studies of forced vibrations and
dynamic stability of a long flexible cylindrical shell subjected to force couples will be more effective.

Key words: long flexible cylindrical shell, shape imperfections model, force couple, finite element method,
stability, buckling, natural vibrations.

Introduction. Long flexible cylindrical shells are elements of pipelines, aircraft and other
structures. The question of their stability under pure bending in two directions was studied [1-
4]. For the first time, L. Brazier (1927) considered the geometrically nonlinear dependence of
the shell deformation on the moment of the force couples under the assumption that all shell
cross-sections are deformed in the same way during bending. Taking into account the formation
of local dents, V. Flugge first theoretically investigated the stability of such a shell. In the
future, this model of buckling analysis of the cylindrical shell during bending became the
prevailing one. It was developed by many researchers, the results of whose works in the well-
known monographs of S.P. Tymoshenko (1961), A.S. Volmir and others are detailed [2, 4].

The first researchers of the dynamic stability of elastic systems were V.M. Belyaev (1924),
N.M. Krylov, N.N. Bogolyubov (1935), V.A. Bodner (1938), V.N. Chalomey (1939) and
others. The dynamic stability of cylindrical shells was first investigated by A.N. Markov (1949)
and O.D. Oniashvili (1950). But the problem of dynamic stability of long cylindrical shells
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under pure bending remains insufficiently investigated. The problem lies in its complexity and
the lack of the required number of experimental data.

It is known that the presence of small shape imperfections of thin-walled shells, which arise
in the process of their manufacture, transportation and operation, can significantly reduce the
critical value of static or dynamic buckling load and lead to emergency situations[1-14]. In the
articles [7-10, 11-13], the authors presented a numerical technique that made it possible to
estimate the effect of geometric imperfections of cylindrical shells on their bearing capacity
under static loads. The first bifurcation mode as a model of shell imperfections under the action
of one type of load (surface pressure, axial compression) was taken. When the shell was
subjected to a combined load, two cases were considered: when two loads were orthogonal, the
imperfection model was formed as the combination of buckling modes of the perfect shell
subjected to individual load with the corresponding combination coefficients; when two loads
were non-orthogonal — in the deformation form of the shell under operational loads or in the
limit state, which by geometrical nonlinear static analysis was obtained.

The issue of modeling the shape imperfections of thin-walled shells in dynamics problems
was little studied. In cases when the natural modes of the perfect shells coincided with the
bifurcation modes, the question of choosing a of shape imperfection model did not arise. When
these shapes do not coincide, it was important to investigate their effect on the dynamic
characteristics and the critical dynamic load values. For example, in the article [12], the authors
performed a modal and nonlinear dynamic analysis of the stability of the tank shell with
variable thickness under surface pressure. The shape imperfections model in the lower
bifurcation buckling mode was presented. The study of natural vibrations of the tank shell
showed that an increase in the imperfection amplitude led to a slight decrease in the natural
frequencies and amplitudes of the natural forms, the number of circumferential full waves in the
corresponding modes did not change. Such an imperfections model in studies of the dynamic
stability of the tank shell was effective. A significant influence of the shape imperfection
amplitude on the critical values of the dynamic load and the corresponding stress-strain state of
the shell was observed. In the article [13], the dynamic stability of the hemispherical shell under
external pressure was investigated. The first bifurcation buckling form of static stability was
taken as the imperfection model. A significant influence of imperfection on the critical values
of the dynamic load and the deformation shape of the hemispherical shell had been also shown.

The issue of effective modeling of shape imperfections in problems of statics and dynamics of
long flexible cylindrical shells during pure bending remains open. In the article, a comparative
analysis of two models of shape imperfections of a long flexible cylindrical shell under force
couples in the buckling form of long half-waves and the first natural mode was performed.

Finite-element modeling of a long flexible cylindrical shell with shape imperfections.
Considered a long flexible thin-walled cylindrical shell with a radius R =1 m, length L =8 m
and thickness 4 = 0,002 m, made of steel with mechanical characteristics: E = 2,06-10"! Pa, G=
0,792:10"' Pa, u= 0.3. The finite element model of the perfect shell using the software

NASTRAN [15] was constructed. The shell wall was modeled by a set of flat rectangular finite
elements with six degrees of freedom at the node in the cylindrical coordinate system. The
nodes of the two shell ends were subject to restrictions on movement along the radius and
tangent and on rotations around the origin. The action of force couples characterizing by the
moments of couples were modeled in the form of concentrated forces, which were distributed in
the nodes of the shell ends according to the cosine law with constant value Fj(N) similarly to

the presentation of A.S. Volmir [2].

To determine the effective model of geometric imperfections of a long flexible cylindrical shell
during pure bending, the problems of static stability and natural vibrations of a perfect shell were
solved. First, the problem of stability of the shell under force couples in a linear formulation was
solved by the Lanzosh method and the geometrical nonlinear static analysis using the Newton-
Raphson method was solved [15]. The first bifurcation buckling mode (Fig. 3 (a)) and the long
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half-waves buckling mode (Fig. 3 (b)) were obtained. The authors adopted the long half-waves
buckling mode as the first shape imperfection model of the shell. Fig.3 (c) showed the
dependence of the maximum nodal total displacement of the shell on the load step change. This
dependence was non-linear and after the loss of shell stability, the unloading curve coincided with
the loading curve. The loss of shell stability occurred under the load, which corresponded to the
critical normal stress 2,4201-10° Pa in compressed zone of the shell.
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Fig. 1. The first bifurcation buckling mode (a), the long half-waves
buckling mode (b), load curve (c) of the perfect shell

The construction of the shape imperfections model as the first natural mode of the shell was
considered. For this purpose, the natural vibrations of a perfect shell were calculated using the
Lanzosh method [15]. Fig. 2 presented the first five natural modes of the perfect shell and their
corresponding natural frequencies. Natural modes had a different number of waves in the
circular direction and one half-wave in the longitudinal one.
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Fig. 2. The first five natural modes and natural frequencies (Hz) of the long perfect cylindrical shell

Thus, the first natural mode of the shell, which has seven waves in the radial direction and one
half-wave in the longitudinal one, was taken as the second shape imperfections model of the shell.

The influence of the shape imperfections modeles on the shell static stability. The
geometrical nonlinear analysis by Newton-Raphson method [15] was performed for half of the
cylindrical shell. The half-shell wall using planar rectangular elements with six degrees of
freedom at the node was modeled. The nodes of one shell end were subject to restrictions on
movement along the radius and tangent and on rotations around the origin. At the nodes, which
lay on the symmetry plane of the shell, restrictions were imposed on movements along the
generator and on turns around the radius and tangent. The amplitude of the shell imperfections

was equal to § = [0, 5;1,0;1,5;2, O]h , h=0,002 m — shell thickness. The action of force couples
was modeled for all settings in the form of concentrated forces, which were distributed in the
shell end nodes according to the cosine law with Fy= 25300 N. In the tab. 1 the critical
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load/stress values (N/Pa) for the shell with different models and amplitudes of shape
imperfections were showed. The long half-waves buckling mode of the shell influenced on the
critical load/stress greater than the second imperfections model.
Table 1
Critical values of load/stress on the shell with different models and amplitudes of shape
imperfections (N/10° Pa)

. . Amplitudes of shape imperfections (4=0,002 m)

Shape imperfections model 5-0.5) 5= 515k 577

. 20240 18976 16445 15180

The long half-waves buckling mode 2.063 1.934 —1’ 676 —1’ 547
23193 22939 22086 21244

The first natural mode 2.364 2.338 —2’251 _2,165

As an example, fig. 3 showed the results of the geometrical nonlinear static analysis of the
shell with an amplitude d=h and =2/ of the imperfections, which were modeled in the form of
the long half-waves buckling mode (Fig. 1 (a)). The pre-critical behavior of the shell in both
cases was similar and nonlinear. Minor nodal deformations in the compressed zone of the shell
near its attachment were observed. The maximum deformations had the form of densely located
shallow dents in the compression zone of the shell middle. The maximum displacements were
12,5 mm and 10,8 mm for the shell with imperfections amplitude 6=k and 6=24, respectively.
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Fig. 3. The shell with imperfections in the form of the long half-waves buckling mode with 6=A (1) and 0=2h (2):
buckling mode (a), load curve (b)
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The results showed that with an increase in imperfections amplitude the critical load
decreased maximum on 36,2% compared to the critical load for a perfect shell, the maximum
displacement values also decreased.

Fig. 4 showed the results of the geometrical nonlinear analysis of the shell with an
imperfections in the form of the first natural mode (Fig. 2), the amplitude of which was equal to
0=h and 6=2h.
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Fig. 4. The shell with imperfections in the form of the first natural mode with 6=A (1) and 6=24 (2):
buckling mode (a), load curve (b)

It can be seen that the pre-critical behavior of the shell was much more nonlinear than in the
case of the shell with the first imperfections model (Fig. 3). The increase in imperfections
amplitude also affected the increase in nonlinear behavior of the shell (Fig. 4 (1b), (2b)). Minor
deformations in the compressed zone of the shell near its attachment and maximum
deformations in the compressed zone of the shell middle in the form of a long half-wave dent
were observed. When the shell had lost of stability, the maximum displacements of the shell
with imperfections amplitude d=h and =2k were 21,6 mm and 33,4 mm, respectively. An
increase in the imperfections amplitude reduced the critical load maximum on 10,5% compared
to the critical load for a perfect shell, the maximum nodal displacement values increased.

Modal analysis of a long flexible cylindrical shell with different shape imperfections
models. The natural vibrations of a flexible cylindrical shell without imperfects were studied by
the Lanzosh method [15]. In the tab. 2 the first five natural frequencies of the shell with
different models and amplitudes of the shape imperfections were presented.
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Table 2
Natural frequencies (Hz) of the shell with different models and amplitudes of shape
imperfections
E g Fist model — long half-waves buckling mode Second model — the first natural mode
§ ?-; Imperfections amplitude Imperfections amplitude
& 0=0,5h o=h 0=1,5h 0=2h 0=0,5h o=h 0=1,5h 0=2h
1 10,50254 | 10.49721 | 10,48988 | 10.48171 | 10,50380 | 10.50077 | 10,49573 | 10.48867
10,50358 | 10,49941 | 10,49319 | 10,48576 | 10,50503 | 10,50490 | 10,50467 | 10,50436
2 12,73322 | 12,75346 | 12,78790 | 12.83655 | 12.72606 | 12.72422 | 12,72113 | 12,71677
12,73436 | 12,75771 | 12,79716 | 12,85274 | 12,72614 | 12,72538 | 12,72122 | 12,71686
3 13.59332 | 13.56788 | 13.52743 | 13.47379 | 13.60042 | 13.59689 | 13.59103 | 13.58288
13,59683 | 13,58134 | 13,55674 | 13,52393 | 13,60135 | 13,59782 | 13,59195 | 13,58380
4 17.54469 | 17.58733 | 17,65830 | 17.75620 | 17,52856 | 17.52263 | 17,51252 | 17.49805
17,54516 | 17,58903 | 17,66178 | 17,76269 | 17,52864 | 17,52314 | 17,51423 | 17,50207
5 23.78734 | 23.84533 | 23,94081 | 24,07174 | 23.76858 | 23,77089 | 23.77501 | 23.78061
23,79157 | 23,86247 | 23,97943 | 24,13963 | 23,76863 | 23,77103 | 23,77504 | 23,78064

We can see that in the case of modeling the shape imperfections of the shell in the form of a
long half-waves buckling mode, with an increase in the imperfections amplitude, there was a
decrease in the values of the first three natural frequencies and an increase in the fourth and
fifth. In the case of modeling the shape imperfection of the shell in the form of the first natural
form, with an increase in the imperfections amplitude, there was a decrease in the values of the
first four natural frequencies and an increase in the fifth. The maximum decrease and increase
in values of natural frequencies did not exceed 1%.

As an example, in fig. 5 presented the first five natural modes of the imperfect shell. The
results showed that they had the same type and the same number of waves in the circular
direction for different models and amplitudes of shape imperfections. In all productions one
half-wave in the longitudinal direction of the shell was observed.

Natural mode 1 Natural mode 2 Natural mode 3

//I.y’ ;
10,48867 12,71677 13,58288
10,50436 12,71686 13,58380

Natural mode 4 Natural mode 5

},_/,-'/-‘ ¢ Fig. 5. The first five natural modes
of a flexible shell with different
i imperfections models and amplitude
= 5=2h
>
17.,49805 23,78061

17,50207 23,78064
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Comparing the natural modes of the shell without (Fig. 2) and with shape imperfections
(Fig. 5), we saw that they did not match. Thus, the first natural modes of the perfect shell,
which had seven waves in the radial direction (Fig. 2), coincided with the fifth natural mode of
the shell with imperfections (Fig. 5).

Conclusion. The choice of shape imperfections model in the problems of forced vibrations
and dynamic stability of a long flexible cylindrical shell subjected to force couples is important
and necessary. In this article the first step to solving these problems was a comparative
assessment of the influence of the different models and the amplitude of the shape
imperfections on the static stability and natural vibrations of such a shell. The long half-waves
buckling mode and the first natural mode of the perfect shell were taken as the shell
imperfections models. The results of the study of the shell with different models and amplitudes
of shape imperfections showed that the imperfections model in the form of a long half-waves
buckling mode was more effective. In studies of shell natural vibrations, two imperfections
models equally affected the natural frequencies and natural modes. We think that the long half-
waves buckling mode or a combination of two different imperfections models can be applied to
the dynamics problems solving of such a shell.
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Jlyk anuenxo O.0., I'epawenko O.B., Kocmina O.B., [laniti O.M.
BUBIP MOJIEJI HETOCKOHAJIOCTEN ®OPMH B 3ATAYAX IMHAMIKHA HABAHTAYKEHOI
IMAPAMM CHJI JOBI'Oi THYYKOI HAJITHAPUYHOI OBOJTOHKH

B 3ajavax IuHaMIKM TOHKOCTIHHMX OOOJIOHOK IMTaHHS MOJICJIIOBaHHS HEIOCKOHAIOCTEH iX ¢opMm € Maio
JIOCJIDKEHUM. Y BHUINAJKaX, KoM (OpMHU BJIACHUX KOJIMBaHb OOOJIOHOK 30irarorbcs 3 (opMamu iX BTPAaTH CTIHKOCTI,
NMUTaHHA BUOOpy HeOe3neyHoi Mozeni HelocKOHalocTi 000J0HOK He BuHMKae. Komm 1i ¢opmu He 30irarorsbes,
BaXJIMBO JOCHIANTH 1 TOPIBHATH BIUIMB HEJOCKOHAJOCTEH HA CTATWYHI 1 JMHAMIi4HI XapaKTepUCTHKU 000JI0HOK. B
CTATTi PO3IJISHYTO NHUTaHHS BUOOPY e(pEeKTHBHOI MOJEIN HEJOCKOHAJIOCTEH (OPMH JOBroi HYYKOi LMIIHAPUYHOL
000JIOHKK TIpu Ail map cuii, (GOpMH BTpaTH CTIMKOCTI I BJIACHUX KOJIMBaHb SKOi HE CIIBNAJaloTh. JlociimkeHHs
BHUKOHAHO 13 3aCTOCYBaHHSM OOYMCIIIOBAJIBHHUX IPOLEAYP KOMIUIEKCY CKiHYeHHoenemMeHTHoro ananisy NASTRAN.
CriHka 00OJIOHKH 3MOJIeJIbOBaHA CYKYITHICTIO IUIOCKMX NMPSAMOKYTHMX CKIHYEHHHMX €JIEMEHTIB 3 IICTbMA CTENCHSAMHU
BUIBHOCTI y BY3Jli B IIWJIIHAPUYHIN cucTemi KoopauHart. Jlis map CHil Npe/CTaBieHa y BUTIIAA]L 30CEePe/PDKEHUX CHIL, sKi
PO3MOAiNIEHI y By3Jlax TOPLIB OOOJOHKM 3a 3aKOHOM KOCHHYca 3rifHo npenctaBieHHio A.C. BonbMmipa. Po3s’s3ana
3aj1aua CTIHKOCTi OOOJIOHKHM B JiHiHHIH mocTaHOBII MeTomoM JlaHIoma i HemiHilHA 3amaya CTaTHKH 3a JIOIIOMOTOIO
merony Hseiorona-Pagcona. Otpumano mnepma OidypkaniiHa ¢opma Brpatd crilikocTi 000nOHKM 1 (opma
nedopmyBaHHs OOOJOHKM B TPaHMYHOMY CTaHi y BUIVIAAI JOBIHX MIBXBWJIb B CTHCHYTOI 30HHM CTiHKM. 3a mepury
MOJI€Jb HEJIOCKOHAJIOCTI MpHiHSATa (JOpMa BTpATH CTIHKOCTI MO JOBTMM HiBXBHJIAM. MOJIENIIOBaHHS HEIOCKOHAIOCTEH
y BUrsial nepuoi (popMH BJIACHUX KOJHMBaHb OOOJOHKM BMKOHAHO 3a JIONOMOIOI0 PO3B’s3aHHs 3a7adi Ha BIACHI
KOJMBaHHA MeTojoM JlaHioma. AMIUIITY1a pi3HUX MOfeseil HeOCKOHAIOCTe! 3a1aBalach MPOMOPLIHHO 10 TOBLIMHU
00OJIOHKH 3a JONOMOrOK aJanTOBaHOi A0 KOMIUIEKCY Nporpamu. Pe3ysnbTaTd IOCHIKEHHS CTATM4HOI CTIHKOCTI
000JIOHKH B HENiHiIHHIA mocranoBLi MeTogoM HploToHa-PadcoHa mokaszanu, 10 MOJeNb HEJOCKOHAJIOCTI y BUIVIAAL
(opMu BTpaTH CTIMKOCTI 1O JOBI'MM MIiBXBMJIAM € Oinbll e()eKTUBHOIO. J[OCHIKEHHS BJIACHUX KOJHMBaHb OOOJIOHKU
MerozoM JlaHioma BUSBWIIM OJHAKOBUH BIUIMB PI3HMX MOJIENIed HEIOCKOHAJOCTEH Ha 4acTOTH 1 (OpMH BIACHHUX
KOJMBaHb. BBaxaeMo, 110 MOJenb y BUIJIAALI 3TMHY OOOJOHKH IO JOBTMM MIiBXBMIISIM B JOCHIDKEHHSX BUMYIIEHHX
KOJIMBaHb a00 AMHAMIYHOI CTIHKOCTI IOBr Ol FHY4YKOI IIMIIHAPUYHOI OOOJIOHKH MpU Ii1 rap cuil € Oibl e)eKTHBHOIO.

KarouoBi ci1oBa: j0Bra rHydka LMIIHIPUYHA OOOJOHKA, HEJOCKOHAIICTh (opMHU, Mapa Cuil, METOJ CKIHYEHHHX
€JIEMEHTIB, CTilKicTb, OiypKallis, BJIACHI KOJIUBAHHS.
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AUHAMIKH HABAHTA’KeHOI MapaMM CWJ J0OBroi rHy4ykoi muJIiHApU4YHOI o6osioHkn// Omnip MatepianiB i Teopis
crniopya: Hayk.-tex. 30ipH. — K.: KHYBA, 2023. — Bun. 111. - C. 65-73.

Hocnioxceno enaue pisnux mooeneii i amnaimyo HeOOCKOHAROCmell (opmu HA CMAMuyHy CMIUKicme i 61acHi
KOUBAHHSA 006201 2HYUKOI YUNTHOPUYHOT 0OONOHKU 3 YPAXy8aHHAM Oii nap cun. 3a mooeni HeOOCKOHANOCmell NPUIHAMO
Gopma empamu cmiiikocmi 06010HKU Y 6UIA0I 006201 NiGX6UNI ma nepuia Popma GIACHUX KOIUBAHL OOCKOHANOT
000710HKU. 3a0a4a 61ACHUX KOAUBAHb MA 2e0OMeMPUYHA HeNIHIIHA 3a0aya cCMamuku 00010HKU 00CTIOHCEHO Memooamu
Jlanyowa ma Hvelomona-Paghcona 6ionogiono. 3a moodenb HeOOCKOHANOCMel 8 3a0auax 6UMYWeHUX KOIUBAHb |
QuHamiuHoi cmitikocmi 0anoi 000IOHKU MOdHce OYmu NPUIHAMA MOOeNb Y 8ueiadi 006201 niexeuni abo KomoiHayis 060x
Pi3HUX MOOenell HeOOCKOHAOCMell.

Tabu. 2. In. 5. bibaiorp. 15 Ha3s.
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Lukianchenko O.0., Geraschenko O.V, Kostina O.V., Paliy O.M. Choice of the shape imperfections model in
dynamics problems of a long flexible cylindrical shell subjected to force couples // Strength of Materials and Theory
of Structures: Scientific-and-technical collected articles. — Kyiv: KNUBA, 2023. —Issue 111. — P. 65-73.

Influence of the different models and the amplitudes of the shape imperfections of a long flexible cylindrical shell
subjected to force couples on the static stability and natural vibrations was investigated. The long half-waves buckling
mode and the first natural mode of the perfect shell were taken as the shape imperfections models. The problem of
natural vibrations and the geometrical nonlinear static analysis of the shell were performed by the Lanzosh method and
the Newton-Raphson one, respectively. The long half-waves buckling mode or a combination of two different
imperfections models can be applied to the solving of forced vibrations and dynamic stability of such a shell.

Tab. 2. Fig. 5. Ref. 15.
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