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The work is a continuation of research devoted to substantiating the reliability of solutions obtained by the finite
element method for the analysis of nonlinear deformation, buckling and vibrations of thin elastic shells under the action
of thermomechanical loads. The method is based on geometrically nonlinear relations of the three-dimensional theory
of thermoelasticity and the principles of the moment finite element scheme. A thin elastic shell of an inhomogeneous
structure is modeled by a universal spatial isoparametric finite element. The modal analysis of the shell is implemented
at each step of the static thermomechanical load. The subspace iteration method is used to determine the spectrum of the
lowest frequencies of natural vibrations of shells. A shallow spherical panel with a square plan is considered. The effect
of preheating on the loss of stability and vibrations of an elastic isotropic shell under uniform pressure loading is
investigated. The behavior of the shell weakened by two pairs of cross-channels is analyzed. The weakening of the
panel by narrow and wide channels, which can be eccentrically located relative to the middle surface of the shell, is
considered. The effectiveness and adequacy of the method is confirmed by a comparative analysis of solutions with
results obtained using modern multifunctional software systems LIRA-SAPR and SCAD. The features of using the
systems for solving the problems under consideration are given. Analysis of the results made it possible to evaluate the
possibilities of using these software systems to substantiate the reliability of solutions to certain classes of problems of
geometrically nonlinear deformation, buckling and vibrations of elastic shells.

Keywords: elastic shell, thermo mechanical loads, stability, modal analysis, universal 3D finite element, finite
element moment scheme, comparative analysis.

Introduction. Improvement of existing and development of new methods and algorithms for
the analysis of shell behavior is important for the effective use of thin-walled structures in
various fields of engineering. During operation, real shell systems can be under the influence of
loads of various nature, including mechanical and thermal. According to their functional
purpose, shells can have different structural inhomogeneities. These include: ribs and overlays,
reinforced and unreinforced holes, notches, channels, local thickening and thinning, mid-surface
fractures, and other features.

Determination of its stability is important when calculating the shell [1-6]. Since the action
of loads on the structure affects the distribution of movements and forces, therefore, when
determining dynamic characteristics, such as self-oscillations, it is necessary to take into
account mechanical and thermal effects [2-3, 7-10].

The primary task in the development of any method is to substantiate the reliability of the
obtained solutions. Due to the insufficient number of test verification tasks, analytical solutions
in the literature and the poorly researched class of shells for which they are developed, it is
appropriate to conduct comparative analyzes using certified software (SW), which include
domestic LIRA-SAPR SW [11,12] and SCAD [13,14].

This work is devoted to the further confirmation of the reliability of the solutions obtained by
the developed method in the problems of stability and natural oscillations of elastic shells with
various geometric features. The purpose of the work is also to study the possibilities of using
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modern LIRA-SAPR and SCAD SW to study the processes of nonlinear deformation and
stability of thin shells, in particular of step-variable thickness, and to conduct a comparative
analysis of solutions on this basis.

1. Solving geometrically nonlinear problems of deformation and buckling

of inhomogeneous shells using the finite element moment scheme

The method of solving the problems of geometrically nonlinear deformation, stability,
postcritical behavior, and self-oscillations of inhomogeneous shells under the action of
thermomechanical loads is based on geometrically nonlinear relations of the three-dimensional
theory of thermoelasticity [1-3, 15]. This approach is modern and effective [16-18].

The used model of a linear elastic continuous medium described by Hooke's law, which in the
presence of a thermal field takes the form of the generalized Duhamel-Neumann law. The most
common types of materials are used to describe the thermoelastic properties of the shell material:
isotropic, transversely isotropic, and orthotropic. The study of the processes of nonlinear
deformation of shells is based on the general Lagrangian formulation of the variational problem in
increments. The finite-element relations were obtained by the variational method in curvilinear
coordinates, taking into account all nonlinear terms, components of strain and stress tensors. A
combination of the stepwise method of continuing the solution for the perturbation parameter with
the procedure of the Newton-Kantorovich iterative method at the load step is used to construct the
equilibrium trajectories of the structure. The created algorithm provides automation of the process
of obtaining a solution to the problem regardless of the complexity of the "load-deflection"
diagram and provides an opportunity to investigate the closed behavior of the shell. [1]. The
algorithm provides, for example, the selection of the type of continuation of the solution parameter
(loading or moving the characteristic node selected by the algorithm), adjusting the step value of
the continuation of the solution parameter (decrease or increase), changing the accuracy of the
solution of the system of nonlinear equations, and other actions for automated debugging
operation of the algorithm in a mode close to optimal in terms of machine time consumption.

The application of the incremental approach provides an opportunity at each step of static
thermomechanical loading to determine the modal characteristics of the inhomogeneous shell,
taking into account the deformed and prestressed states, which significantly affect the spectrum
of the structure's own vibrations.

The thin shell is considered as a three-dimensional body. Along the thickness, it is modeled
by one 3D isoparametric finite element (FE) with polylinear shape functions:
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values of the Cartesian coordinates of FE nodes and sought (unknown) values of displacements
of these nodes, respectively; the denotation ":" corresponds to the logical operator "or", which
means choosing to consider one of the components in curly brackets.

The developed 3D FE is universal. It is intended for the modeling of regions of the shell
without constructive geometrical features by thickness (casing) as well as areas with such features.
Thus, it is unique for a shell of step-variable thickness. Universal FE due to the introduction of
new variable additional parameters (topological, geometric and physical-mechanical) and
redefinition of the corresponding basic ones acquires the properties of a modified [1, 19].

Transformation of the casing finite element (CFE) (hexahedron ABCDEFGH (Fig. 1 (a))
into FE with changed dimensions and location relative to the middle surface of the casing

the thickness of the shell (Fig. 1). For ease of description, the element formed as a result of
these changes will be called the "modified" finite element (MFE).
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Fig. 1. Transformation of the CFE to the MFE (MFE * _ withan edge, MFE =~ — with a hem)

Examples of shell regions with “ribs” (an area with a stepwise increasing thickness,
Fig. 2 (a)), with “channels” (an area with a stepwise decreasing thickness, Fig. 2 (b)) and with
extrusion (an area with only a shift in thickness, Fig. 2 (c)) schematically demonstrate the
modeling of a shell of stepwise variable thickness using universal 3D FE [20].

Features of the stress-strain state (SSS) of a thin inhomogeneous shell are taken into account
by kinematic and static non-classical hypotheses. According to the static hypothesis, the normal
compression stresses of the fibers of the layers in the thickness direction are assumed to be

constant 9c'! / ox' =0. The accepted hypothesis is weaker than the classical one c'' =0.
n

The non-classical static hypothesis does not deprive the stressed state of the inhomogeneous
shell of three-dimensional properties. The kinematic hypothesis is formulated as a deformable
straight line hypothesis: a straight line in the direction of the thickness (not necessarily along
the normal to the middle surface), shortening or lengthening, remains a straight line even after
the deformation of the shell. The hypothesis provides a natural way to connect spatial elements
in fractures and in areas of step-variable thickness without violating the compatibility of
movements and coordinates in the process of deformation (Fig. 3).

Finite-element formulation was obtained using the finite-element moment scheme (FEMS)
[1, 21]. The FEM relations are presented in the form of the displacements method: the nodal
displacements of the FE in the global Cartesian coordinate system are taken as the sought
unknowns ”2;5253 . Usually, for thin shells, in order to improve the convergence of the obtained
solutions, the translations of the nodal points on the mid-surface are taken as the sought

functions 02253 and generalized nodal rotations of FE edges vim (for which differences in
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Fig. 2. Schematic representation of the modeling of the shell area with a rib (a),
with a cannel (b), with extrusion - (c)

The replacement of variables introduced in
such a way is interpreted as a transition from
an eight-node 3D FE with 3 nodal
displacements to a four-node "shell" FE with 6
generalized displacements assigned to the
nodes on the middle surface of the FE.

When obtaining the relations for the
coefficients of reaction matrices, stiffness,
geometric stiffness and equivalent temperature
Fig. 3. Modeling of the sharp bend in a shell loads of the universal FE, its additional
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variable parameters are taken into account as necessary. When calculating the coefficients of
these matrices, the output data for CFE or MFE are submitted to the corresponding
dependences, for which their middle surfaces, which do not coincide with each other, are taken
as the reference surfaces (Fig. 4). Since all dependencies are obtained for the general variant of
the 3D FE (Fig. 1b), they are therefore universal. When forming a general system of solving
equations for a shell finite-element model (SFEM) of step-variable thickness into a single
ensemble, the MFE matrices are always adjusted with respect to the accepted reference surface
- the middle surface of the shell (Fig. 4).

cFE—..| cFE CFE CFE |MFE™| CFE CFE

—+*— mid-surface of CFE —++— mid-surface of MFE

Fig. 4. An example of combining different FEs into a single ensemble (schematic presentation)

Due to the complexity of the formulation of the research problem, which is related both to
the existing geometric features of thin elastic shells and to the processes under study, it is
important to confirm the reliability of the obtained solutions. As a means of comparison, it is
advisable to use the results of calculations that can be obtained with the help of SWs that have
proven themselves well: SW LIRA-SAPR and SCAD.

2. Solution of geometrically nonlinear buckling problems using SW LIRA and SCAD

Nowadays specialized automated design systems (CAD) that implement FEM are widely used
in the design and calculations of buildings and structures as the main tools of computer modeling
and analysis. By purpose, CADs are divided into industrial and scientific. Industrial CADs often
take the form of multifunctional SWs, which combine various modules for creating, calculating
and analyzing a computer model of a structure. Industrial complexes are mainly focused on
solving applied problems, the ultimate goal of which is to obtain the necessary data for checking
its strength characteristics for further design of the structure. In turn, scientific complexes are
mainly used for the study of complex phenomena and effects in the behavior of structures, in
particular shell structures. These SWs use various specialized FEs from a developed library of
elements. This makes it possible to obtain more accurate results in contrast to industrial SWs, but
at the same time neglecting the project orientation. A large number of FEs in industrial SWs
makes it difficult to choose the necessary element option and build a calculation scheme.

In addition, in most industrial SWs, algorithms for studying nonlinear deformation and
stability of shell structures are not sufficiently developed. The study of this class of problems,
due to their complexity and the possible ambiguity of the resulting solutions, is difficult to
implement as a standard computational procedure.

In order to use SW LIRA and SCAD as means of solving stability problems, it is necessary
to clarify the possibilities of their application: to study the underlying algorithms, to choose the
most effective of them, to find out methods of modeling shells of smooth and step-variable
thickness, to establish possible types of thermomechanical loads and their limitations. The
assessment of the capabilities of the complexes was analyzed both for SW LIRA [4, 5] and for
SW SCAD [6, 7]. Currently, there are later versions [22, 23] of these complexes, but the main
approaches have been preserved.

2.1. Algorithms for solving a geometrically nonlinear problem used in SW LIRA and
SCAD. Three algorithms for solving problems of geometrically nonlinear deformation and
stability are implemented in both SWs. All of them use step-by-step procedure. The calculation
is carried out according to the load parameter. In physical terms, this process is a gradual (step-
by-step) increase in load from 0 to a given load value P.
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The algorithms used in the SW LIRA-SAPR are based on [12, 22]:

1. Method of sequential loading (SL). The "Simple step" algorithm is implemented, which is
a simple modification of the method of sequential loading. The solution is found as a broken
line, since a linear problem is solved at each step. For this algorithm, it is necessary to manually
set the number of steps and their size.

2. Method of sequential loading with automatic step selection (SLA). Unlike the previous
algorithm, the number of steps and its size are automatically selected by the algorithm.

3. The Newton-Raphson (N-R) method is step-by-step procedure with the search for new
forms of equilibrium, It implements the method of compensating loads. When implementing the
algorithm, the loss of stability moment is fixed and a transition to a new stable branch of
equilibrium is performed (as research has shown) with a significant error. The number of steps
and its size are automatically selected by the algorithm.

According to all methods, the calculation is performed until the moment of degeneration of
the stiffness matrix of the system. It is this moment that is interpreted as the loss of stability
one. A branch point and a critical point are indistinguishable. The associated uncertainty does
not allow qualitatively distinguishing the critical point from the bifurcation point. In this way,
solving the problem of nonlinear deformation is realized either up to the branching point (g *)

or to the point of the upper critical load (g3" ).

The SW SCAD uses such algorithms [14, 23]:

1. Method of sequential loading (SL). It uses the "Simple step" algorithm. A linearized
problem is solved at each step. Transition to the next step of the nonlinear calculation is
performed if solution of the linearized problem at the step is sufficiently accurate.

2. The stepwise Newton-Kantorovich method (N-K) with refinement of the approximation. At the
current load step, the iterative refinement of the nonlinear solution is implemented based on the
analysis of the imbalance of the equilibrium equations. Iterations are performed with unchanged
coefficients of the linearized stiffness matrix calculated at the beginning of the current step. It is
necessary to specify the number of load steps, the size of each step, and the number of iterations.

3. The stepwise Newton-Raphson method (N-R) with iterativte refinement. An iterative
refinement of the solution is performed at each step with the use of the redefinition of the
coefficients of the linearized stiffness matrix at each iteration. It is necessary to specify the
number of load steps, the size of each step, and the number of iterations.

The possible appearance of a branch point is not analyzed in SW SCAD.

Due to insufficiently complete description of nonlinear algorithms presented in SW LIRA-
SAPR and SCAD instructions, there occurs a need to solve problems using the above
mentioned SWs in order to evaluate them and choose the most suitable algorithm for
performing comparisons.

It should be noted that, from the point of view of engineering calculations performed by SW,
it is more important to determine the deflections when the load is fixed in the process of
nonlinear deformation of the structure, and not the moment of loss of stability, which
corresponds to the upper critical load. The action of the load, which can cause the beginning of
non-linear deformation and even more so the loss of stability, is usually not allowed. The post-
critical behavior of the structure is considered in extremely rare cases. Therefore, the vast
majority of modern SWs solve problems of nonlinear deformation of shells, limiting themselves
to determining the value of the upper critical load. This is due to the use of a step algorithm for
solving systems of nonlinear equations. Such stepwise or stepwise iterative algorithms traverse
the load-deflection curve step by step. Without changing the step parameter from load to
deflection, the passage of the curve from the upper critical load to the post-critical region along
the descending branch is impossible.

2.2. Finite elements used in the SW LIRA-SAPR and SCAD. A number of special FEs are
used in the SW LIRA and SCAD to calculate the stability of the shells taking into account its
nonlinear deformation. In general, the type of FE, on the one hand, is determined by the element
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belonging to one or another section of the structure, and on the other hand, it depends on the
geometric characteristics of the shell, in particular, whether its thickness is constant, linearly
variable or step-variable.

2.2.1. Smooth shells and panels. Two types of geometrically nonlinear finite elements are
used in SW LIRA-SAPR and SCAD to solve the problems of determining the SSS and stability of
thin shallow geometrically nonlinear shells and plates. These are the triangular three-node FE shell
No. 342 and the quadrangular four-node No. 344 (Fig. 5 (a), (b)). With the help of these elements,
you can calculate thin-walled structures such as: shells — Karman equations are used; membranes
— displacements are constant along thickness; shells with strong bending — the relations of the
theory of thin shells are used. For the range of problems considered in this article, the last
calculation option is used — a shell with a strong bending. Using these elements, it is possible to
study the stability of thin elastic shells under geometrically nonlinear deformation.

Governing equations for FE are constructed in a physically linear formulation. The main
feature is that the FE, which models a three-dimensional body, is a flat element with a constant
thickness. The plane of the element models the mid-surface of the shell or plate. The nodes are
located on the plane and have three displacements and three angles of rotation relative to the
local axes (Figs. 5, 6).

mid-surface of FE

mid-surface of FE

[’ = . = S8 xl1
3 Ly g:
3 x FE node
i’ Uy, Uy
o Oy s O

(2) (b)
Fig. 5

Finite elements used in SW LIRA-SAPR and SCAD have somewhat limited applications due
to the peculiarities of modeling thin shells. Since FEs are 2D elements of constant thickness, the
approximation of the shell as a three-dimensional body is not accurate enough. These flat FEs
cannot simulate mid-surface sharp bending without gaps and volume overlap (Fig. 6 (a)), unlike
the spatial FE developed using the FEMS methodology (Fig. 6 (b)).

Due to the constant thickness of the FE the shell model of a linearly variable thickness in the
SW LIRA-SAPR and SCAD is replaced by a step-variable model. At the same time, to obtain
reliable results, it is necessary to use a sufficiently thick grid. In addition, all the nodes of one
quadrilateral FE are located in the same plane and cannot form a hypar. Because of this,
strongly uneven curvilinear surfaces must be modeled with triangular FEs. Such restrictions do
not apply to the 3D universal isoparametric eight-node FE of MFES (Fig. 6 (b)).

2.2.2. Shells with ribs and channels. Shells and panels of symmetrical step-variable
thickness (for example, with bilateral ribs or channels symmetrically located relative to the
middle surface) are modeled by triangular three-node FE No. 342 or quadrilateral four-node FE
No. 344 of the appropriate thickness.

Special elements are used in SW LIRA-SAPR and SCAD to model the geometric features of
shells of variable thickness in the form of eccentrically located ribs, overlays, channels and
recesses. In SW LIRA-SAPR, these are the so-called "absolutely rigid inserts" and "absolutely
rigid bodies" [11, 12, 22]. In SW SCAD it is "absolutely rigid (solid) bodies" [13, 14, 23]. In
both cases, these are artificial techniques that are used to approximate the gradual change in its
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thickness in the calculated FE model taking into account the eccentricity. The purpose of

introducing these special elements is to specify the kinematic connection for the corresponding
nodal displacements.

Absolutely rigid insert" (ARI) in

FE node discontinuity W LIRA is used to connect FE

EEunc:Jde G - Xs nodes in areas of step-variable
OOl — 4 4 Xz thickness to the main nodes of the

¥ . structure, located on its middle
= SAad P surface. The displacement
] 5 : (eccentricity) of the "elastic part"
of the FE (the middle surface of a
rib or a section with a notch) is
modeled with the help of ARI. The
"elastic part" of the insert is

X3 Xz
Xy

FE node understood as a shell FE of the
Ugp: U Uy appropriate thickness, displaced

relative to the middle surface of the
FE node structure. "Insertion nodes" are tied
PTRTRTAN § to the middle surface of the original

shell using kinematic relations.
"Absolutely rigid body" (ARB)
in SW LIRA and SW SCAD is a

x' X2
x

(b) conditional FE of great rigidity.
Fig. 6. Elements conection: ARB is additionally introduced into
(a) — SW LIRA-SAPR and SCAD; (b) —-FEMS the calculation model for the

connection of nodes of the middle
surfaces of the cladding and the eccentric element. In general, ARB can only conditionally be
attributed to the concept of a finite element, since it, in fact, does not have the classical attributes
of a FE (basis functions, domain of a finite element, etc.) [11]. However, from the point of view of
the implementation of ARB, it fits perfectly into the finite element procedure. When modeling FE
shifts, the ARB is a rigid connection between nodes of eccentrically located elements. This FE
does not have a number in SW LIRA-SAPR. In SW SCAD it is numbered #100.

2.3 Modeling of thermomechanical load. In LIRA-SAPR and SCAD software complexes,
it is possible to set the following types of load:

- mechanical action: concentrated force and moment, uniformly-distributed load and
moment, trapezoidal distributed load, uniform or trapezoidal load between two nodes of the
plate, weight of the mass of the plate;

- temperature action: uniform and uneven heating (cooling) of the shell or plate through the
thickness, a linear-variable law of temperature distribution over the thickness is allowed.

In SW LIRA-SAPR and SW SCAD there are some limitations when modeling the
temperature load: in the plane of the element only a constant value of the temperature load can
be set. Therefore, it is impossible to model the inhomogeneous temperature load of the middle
surface of the shell within the framework of one FE. Setting a common thermomechanical load
is also impossible. However, it is possible to adapt the algorithm to specify preheating of the
shell followed by additional mechanical loading.

3. Analysis of the effectiveness of the different approaches in the problems of shell

nonlinear deformation and buckling.

The main goal of the research is to compare the results to confirm the solutions obtained
according to the FEMS and evaluate the capabilities of SW LIRA-SAPR and SCAD in solving
complex problems of nonlinear deformation and buckling of thin inhomogeneous shells under
the action of thermomechanical loads.
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3.1. A square in plan (in the plane x2'x3") smooth spherical panel, hingedly supported along
the contour and loaded with a uniform normal pressure of intensity ¢, is investigated. The

research results are presented using dimensionless parameters g = a4q/ (Eny, " =u" / h . The
curvature of the panel is determined by the parameter K = 2a2/ (Rh)=32. Accepted: a=60h

is a panel size in plan, R =225k is radius, A=1 cm is thickness, E=2.1- 10© kg/cmz,
v =0.3. The SFEM with a grid of 30x 30 FE is adopted for calculation. As research has shown,
such a grid ensures the convergence of solutions.

3.1.1. The SW LIRA an almost complete coincidence of the "load-deflection" curves
(“g -u" ) has provided by all three approaches in the center of the panel to the upper critical
point (Fig. 7 (a)). Both variants of the method of successive loads (1.SL and 2. SL)
demonstrate the coincidence of the results in the pre-critical region and a slight difference
between them in terms of the value of the upper critical load g (Table 1). At this point (in the
figure, the point is marked '*') the solution of the problem ends. The Newton-Raphson method
(3. N-R) allows you to switch to the closed stable branch of the solution, but with a significant
error (Fig. 7 (c)).
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All three algorithms of SW SCAD implement the transition to a new stable equilibrium
branch (Fig. 7 (b), (¢)). The calculation by the method of successive loads (1. SL) makes a

transition to a closed stable branch with a large error in the value of the upper critical load g, .

According to the algorithms based on the application of the Newton-Kantorovich (2. N-K) and
Newton-Raphson (3. N-R) methods, the problem of transition to a closed stable branch is solved

quite precisely, the value of the upper critical load g is the same (Table 1).

Table 1
SW Algorithm > | A% | ud | A%
FEMS | Newton-Kantorovich method (FEMS) 193.7 0 109125 0
1. Sequential loading method (SL) 194.1| 0.20 |0.8796 | -3.60

2. Sequential loading method with automatic

LIRA step selection (SLA) 202.8| 4.70 |0.8580 | -5.97
3. Newton-Raphson method (N-R) 196.4| 1.40 |0.9013 | -1.23
1. Sequential loading method (SL) - - - -

SCAD | 2. Newton-Kantorovich method (N-K) 190.2 | -1.80 |0.7729 |-15.30

3. Newton-Raphson method (N-R) 190.2 | -1.80 |0.7730 |-15.29

In the pre-critical region for both SWs, we have an almost complete coincidence of the
curves with the diagram obtained on the basis of the use of FEMS. The equilibrium shapes of
the deformed panels in the subcritical and supercritical regions have a simple appearance and
match well. (Fig. 7 (d)) shows the modes of deformation of the middle surface of the shells in
the area of the critical load and at the point of transition to a stable closed branch. Deformation
of the panel is characterized by a deflection in its central area.

In further research, when performing calculations, we will use method 2. Successive loads
with automatic step selection (SLA) for SW LIRA-SOFT, and method 2. Newton-Kantorovich
(N-K) for SW SCAD, as the most accurate and efficient.

3.1.2 The influence of the combined effect of preliminary uniform heating with subsequent
pressure loading on the loss of panel stability is considered (Fig. 8). Heating (cooling) is

performed on 7' =+420°C.

A uniform temperature increase of 20 degrees
To+30°C leads to an almost identical corresponding

g -

increase in the upper critical load g3 =175,0;

200 |

193,7; 212,2 and a uniform decrease of the lower

150 [ one ﬁclfv =32,82; 29,78; 26,53 (Fig. 8).
A comparison of the results obtained by the
100 b FEMS with the calculations made by SW LIRA
showed a fairly good match between them. The
so b I corresponding  diagrams almost completely
coincide in the pre-critical region. We have a
. slight run-up in terms of values g.* Ta i’ at

the upper critical point (Table 2).
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Table 2
Calculation method
Loading FEMS SW LIRA
(preheating) aw LTCI rup aw A% LTCI rup A%

T=-20"C 175,0 -0,9613 185,9 6,23 -1,0000 4,03

T= 0°C 193,7 -0,9125 202,8 4,70 -0,8580 -5,97

T=+20"C 212,2 -0,7984 228,4 7,63 -0,7509 -5,95

3.1.3. Modal analysis of the shell shows the following. The first four forms of natural
oscillations of the panel, obtained by the method based on the use of MFES and by SW LIRA-

SAPR, are given for the initial unloaded state g~ (Fig. 9). The difference in frequencies is
within 1%. The forms of natural oscillations are identical. When calculating according to the
FEMS (T =0° C) it was obtained that at all loads the first frequencies are multiples, ®, = ®,.

FEMS

0= =53378 o0 =53378

SW LIRA-SAPR

®/% =529,29 ®i0 =529,29

i=0
o3

050 =547,40 o0 = 691,24

i

=545,25 00 =682,01

Fig. 9. Natural modes ( ™" , Hz) of the unloaded shell, g'=°

The conducted modal analysis makes it possible to
investigate the influence of the prestressed state of
the shell on the frequencies and forms of natural
oscillations of the deforming structure (Fig. 10). In
the figure, the resulting dependence is presented as a
"load-lower frequency” ®,” (“g—-»”) diagram.
Modal analysis is performed until the zero (negative)
value of the fundamental tone appears. This approach
corresponds to the dynamic criterion of the loss of
shell stability [24] and allows determining the
stability of the panel simultaneously according to
static and dynamic criteria. There are no branching
points of the solutions in the pre-critical region on the
“q -u > curves. Therefore, according to both criteria,

500

400

300

200

100

e

0 50 100 150

Fig. 10

00 §

-0.h
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almost the same corresponding values of critical loads were obtained.

In the existing versions of SW LIRA-SAPR and SCAD, it is not possible to analyze the
natural vibrations of shells taking into account the prestressed state.

3.2 The stability analysis of shells with stepwise variable thickness is illustrated using the
example of the panel discussed above. The panel is weakened by four criss-crossed channels
placed on the surface of the shell in three ways. The channels are located eccentrically on the
inner (Fig. 11 (a)) or outer (Fig. 11 (c)) surfaces of the shell and symmetrically on its inner and
outer surfaces (Fig. 11 (b)).

The SFEM with a sufficiently dense mesh of 30x 30 FE was adopted as the calculation
model, which ensures the convergence of solutions. To approximate channels, the SW LIRA-
SAPR uses ‘absolutely rigid insertions’, and the SW SCAD uses ‘absolutely rigid bodies’.

3.2.1. We consider a shell with “narrow” channels having the same parameters: length a,
width b, =2k and total depth 4. =0.3k. For all algorithms there is a good agreement between
the ‘¢ -u ’ curves in the subcritical region (Fig. 12). The calculation performed using the SW
LIRA-SAPR stops at the upper critical point. In the pictures this point is marked '*'. The
solution for a panel with a symmetrical arrangement of channels obtained using the SW SCAD
accurately implements the transition to a supercritical stable branch (Fig. 12 (b)). For this
symmetrical weakening, the ‘g -u ’ curves are compared at three characteristic points.

q

i iwm e iscao il G fmm
200 200 I 200
150 + 150 | {if 150
be=2h ! be=2h
100 | hz=0.3h 100 HIf 100 h§=n.3h\“
ar3 ar3
50 [ as]| L] 4 - ar]| ][]
—— FEMS ]| %0 —— FEMS B3
—— LIRA ] —— LIRA CI1C1C
0 : : : - 0 s . : N e 2 . o
0 -05 -1 -15 a o - 2 -3 -4 o 0 0.5 1 15 @
(a) (b) ©

Fig. 12

A comparison of solutions at the upper critical point obtained using the MFES, the SW
LIRA-SAPR and SCAD shows that for all types of weakening, the difference in load g.° and

cr

deflection LTclr“p in the center of the panel does not exceed 4% (Table 3).

For narrow channels, their location has little effect on the value of the critical load g, . The

greatest reduction in load (compared to a smooth panel) caused weakening on the outer side of
the shell, e< (0 mm_ The critical load of this shell is reduced by 18.7%.
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Table 3
Panel der u#1" (in the center)
or [ | SO [ SIS | g [ SRR | i
Tl | S e ew | |
P I I e I
e:.o 157,4 5,6;2’22) 0,781 gﬁf}f
Dm_ﬂm 193,7 zﬁi 119%02 20,9125 '_2’,8957%) 1057375;)

3.2.2. The effect of weakening in the form of “wide” channels on shell buckling is
considered. The channels are located symmetrically relative to the shell mid-surface and has

such parameters: b, =6h, h, =0.7h.
The ‘g -u"" curves obtained using the FEMS, the SW LIRA-SAPR and SCAD have been
plotted for deflections at different points of the shell (Fig. 13 (a)). The resulting curves completely

coincide with each other in the suberitical region and near the upper critical load g,y .

0

q 1t =
X f T
N et : SoEmmmTommmmeT LU “. . | o |
: 22 ~.
80 | ViV AY as b TR N, §=0
Q\ =0 ‘ X
b A=0.01 B . N\
SO b= 6h T ﬁlc','.) OO%O N
h.=07h oo
= 15 (A \\
207 == a3l ][] | TP — rems :
- Eﬁah,ls lj eI + LIRA be= 8h N
--- SCAD T m ’7 o SCAD hc= 0.7h
0 . ; ' — -2 : ' : . ,
0 -02 -04 -0.6 i 0 5 10 15 20 25 XZ%sm
(a) (b)
Fig. 13
Table 4
Calculation der AT, % q AT %
method T A, % ' A%
FEMS _7294 0 _ 6334 0
-0,2876 0 -0,2410 0
SW LIRA e _« _647 289
-0,2451 1,70
SW SCAD _747 243 e e
-0,3289 12,81
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In contrast to the solution for a panel with ‘narrow’ channels, the SW LIRA stopped
calculations at the branching point at load g* = 64,79, taking the branching point as the upper
critical load (Fig. 13 (a)). This point is marked '*' in the figure. The branch point has been also
discovered in calculations using the MFES. The MFES algorithm allows us to more accurately
determine the load value at the branch point g * (Table 4). By introducing a small (A =0,01)
asymmetrical perturbation into the initial shell shape, a specially developed technique allows us to

turn the branch point '*' into a critical one

. (g*=6334) and reach a new branch of

. q=0 the solution (dash-dotted curve). The
g resulting load ¢ * is 13.16% less than the

xTm g

e

-0.005
critical load gy .

The weakening of the shell by wide
channels led to a significant decrease in
the value of the upper critical load (by
62.34%) compared to that corresponding
to a smooth panel.

The shell deformation shapes

. obtained wusing different algorithms
xZ,m  coincide well with each other (Fig. 13,
0.4 b). The deflection in the center of the

panel at the moment of buckling is less
Fig. 14 than in the weakening zone (Fig. 14).

-0.01

-0.015

Conclusions

The effectiveness of the finite element method for studying geometrically nonlinear
deformation, buckling, post-buckling behavior and vibrations of thin elastic shells under the static
action of thermomechanical loads is analyzed and the reliability of the obtained solutions is
confirmed. The research method is based on the three-dimensional approach of thermoelasticity
theory and the use of a finite element moment scheme. Comparisons are carried out with the
results of calculations performed using domestic software LIRA-SAPR and SCAD.

The possibilities of using these programs to study the processes under consideration have
been investigated and identified. The approaches used in them to finite element modeling of
shells, in particular of step-variable thickness, are described.

On this basis, a comparative analysis of solutions obtained using three software packages for
nonlinear deformation, stability and vibration of shallow panels under the action of
thermomechanical loads is carried out. Good agreement between solutions is obtained.

The research makes it possible to conclude that the LIRA-SAPR and SCAD can be used,
within certain limits, as a means of confirming the reliability of the results obtained when it is
studying the geometrically nonlinear behavior of thin flexible elastic shells.
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Kpusenxo O.I1., Jlisynos I1.11., Bopona FO.B., Kanawmnixoe O.b.
MOPIBHSVIBHUM AHAJII3 CTIMKOCTI I BJIACHUX KOJIMBAHB INOJIOTUX IMTAHEJIEN ITPU J11
TEPMOCHJIOBUX HABAHTAKEHb

Po6oTa € NpoJOBXKEHHAM HHU3KU JIOCHIKEHb, NPUCBAYEHUX OOIPYHTYBAHHIO JIOCTOBIPHOCTI PpO3B’S3KiB, 10
OTPUMYIOTBCSL 32 CKIHYEHHO-EJIEMEHTHOI METOJMKOI JOCII/DKEHHS HeliHiiiHoro nedopMyBaHHS, CTIHKOCTI Ta
KOJIMBaHb TOHKHMX HPYXKHHX OOOJOHOK NpH Aii TEePMOCHIIOBUX HaBaHTa)KeHb. MeToANKa 6a3yeThCs HA FEOMETPUYHO
HEJiHIHHMX CHIBBIJHOIIEHHSAX TPUBUMIPHOI TEOpii TEPMONPYKHOCTI Ta MOJOKEHHAX MOMEHTHOI CXEMH CKIHYEHHHX
eneMeHTiB. ToHKa mpyxkHa OOOJIOHKA HEOAHOPIAHOI CTPYKTYPH MOJEIIOETHCA YHIBEPCAIbHUM HPOCTOPOBUM
i30MmapaMeTpUYHUM CKIHUEHHUM €JIeMEHTOM. MopjaibHUK aHaii3 OOOJIOHKM peai3yeTbCs Ha KOXHOMY KpOLli
CTaTHYHOTO TEPMOCHIIOBOTO HABaHTa)KCHHs. J{/si BU3HAUCHHS CIEKTPY HMIKYMX YacCTOT BIACHHX KOJIMBaHb 0OOJIOHOK
3aCTOCOBYETbCS METOA iTepauii migmpocTtopy. Po3rismaeTbcs KBajpaTHa 3a IUIAHOM Iojiora cdepuyHa maHesb.
JlocnipKkyeTbCsl BIUIMB IONEPEHBOTO HArpiBy Ha CTIHKICT 1 KOJMBAHHSA TNPYKHOI i30TPONHOI OOOJIOHKHM HpPU
HaBaHTAXXCHHI PIBHOMIPHMM THCKOM. AHali3yeTbcs IIOBEJiHKAa OOOJOHKM, IO MocnadieHa [BOMa Mapamu
NepexpecHuX KaHaiiB. Posrisigaerbcs mocnabieHHs HaHeNnl By3bKMMM 1 IIMPOKMMH KaHallaMH, SIKi MOXYTb OyTH
EKCLIEHTPUYHO PO3TAIIOBAaHUMH BIJHOCHO CEPEMHHOI MOBEPXHi 00010HKH. EdexTuBHICTH Ta aaeKBaTHICTH METOLY



64 ISSN 2410-2547
Onip Matepiaiis i Teopist ciopyy/Strength of Materials and Theory of Structures. 2023. No 111

MATBEP/DKY€ETHCS TOPIBHAJIBHUM aHA30M PO3B’SA3KIB 3 pe3ylbTaTaMM, 110 OTPUMAaHi 3 BUKOPUCTAHHIM CYYacHUX
OararopyHkuioHaneHux mnporpamHux komruiekciB JIIPA-CAITP ta SCAD. HaBeneHo 0coOJIMBOCTI 3aCTOCYBaHHS
KOMIUIEKCIB JI0 PO3B’SI3aHHS PO3IUIAYBAHUX 3aady. AHai3 pe3yJbTaTiB PO3PAaXyHKIB J[03BOJMB OLIHUTH MEXi Ta
MOXJIMBOCTI BUKOPHCTAaHHS IMX NPOTPAMHUX KOMIUIEKCIB AJsi OOIPYHTYBAaHHS JOCTOBIPHOCTI PO3B’S3KIB INMEBHUX
KJIaCiB 3aj1a4 reOMETPUYHO HEeNiHIHOro 1e)OpMyBaHHS, BTPATH CTIMKOCTI Ta KOJIMBaHb NPYKHUX 000JIOHOK.

KuarouoBi cioBa: npyxHa 000JI0HKa, TEPMOCHIIOBE HAaBAaHTaKEHHs, CTIHKICTh, MOIAJIbHUN aHai3, YHiBEpCalbHUH
MPOCTOPOBUI CKIHYCHHHH €JIEMEHT, MOMEHTHA CXeMa CKIHYEHHHX €JIEMEHTIB, MOPIBHAIBHUN aHaII3.

VK 539.3

Kpusenxo O.I1., Jlisynoe IIII1., Bopona FO.B., Kanawnixoé O.5. IlopiBHAIbHMI aHadi3 criiikocTi i BiacHuX
KOJIMBAaHb MOJIOTUX NMaHeJeil npu Aii TepMOCHJIOBHX HaBaHTaxkeHb // Omip MaTepiaiiB i TeOpis CHOPY: HAYK.-TeX.
36ipH. — Kni: KHYBA, 2023. — Bum. 111. — C. 49-64.

Ilposedeno nopisHanbHUll aHANI3 PO36 A3KIE WOO0O0 HENIHIUH020 0eOPMY6AHHS, CMIUKOCMI Ma KOMUAHb MOHKUX
NPYXHCHUX 06ONOHOK npu Oii MEPMOCUNOBUX HABAHMANCEHD, WO OMPUMAHI 30 MOMEHMHOIO CXeMOI0 CKIHYEHHUX
enemenmie ma 3 euxopucmauuam npocpamuux komnnexcie JIIPA-CAIIP ma SCAD. Hasedeno ocobausocmi
3aCcmocy8aHHa KOMNIEKCI8 00 PO36 S3aHHA PO32NA0YEAHUX 3A0aY.

Tabu. 3. In. 14. Bi6uniorp. 24 Ha3s.

UDC 539.3

Krivenko O.P., Lizunov P.P., Vorona Yu.V., Kalashnikov O.B. Comparative analysis of the stability and natural
vibrations of shallow panels under the action of thermomechanical loads // Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles. — Kyiv: KNUBA, 2023. —Issue 111. —P. 49-64.

A comparative analysis of solutions for nonlinear deformation, buckling and vibrations of thin elastic shells under the
action of thermomechenical loads, obtained using the finite element moment scheme and using the LIRA-SAPR and
SCAD software packages, has been carried out. The features of using complexes for solving the problems under
consideration are given.
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