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The work is a continuation of research devoted to substantiating the reliability of solutions obtained by the finite 

element method for the analysis of nonlinear deformation, buckling and vibrations of thin elastic shells under the action 
of thermomechanical loads. The method is based on geometrically nonlinear relations of the three-dimensional theory 
of thermoelasticity and the principles of the moment finite element scheme. A thin elastic shell of an inhomogeneous 
structure is modeled by a universal spatial isoparametric finite element. The modal analysis of the shell is implemented 
at each step of the static thermomechanical load. The subspace iteration method is used to determine the spectrum of the 
lowest frequencies of natural vibrations of shells. A shallow spherical panel with a square plan is considered. The effect 
of preheating on the loss of stability and vibrations of an elastic isotropic shell under uniform pressure loading is 
investigated. The behavior of the shell weakened by two pairs of cross-channels is analyzed. The weakening of the 
panel by narrow and wide channels, which can be eccentrically located relative to the middle surface of the shell, is 
considered. The effectiveness and adequacy of the method is confirmed by a comparative analysis of solutions with 
results obtained using modern multifunctional software systems LIRA-SAPR and SCAD. The features of using the 
systems for solving the problems under consideration are given. Analysis of the results made it possible to evaluate the 
possibilities of using these software systems to substantiate the reliability of solutions to certain classes of problems of 
geometrically nonlinear deformation, buckling and vibrations of elastic shells. 

Keywords: elastic shell, thermo mechanical loads, stability, modal analysis, universal 3D finite element, finite 
element moment scheme, comparative analysis. 

 
Introduction. Improvement of existing and development of new methods and algorithms for 

the analysis of shell behavior is important for the effective use of thin-walled structures in 
various fields of engineering. During operation, real shell systems can be under the influence of 
loads of various nature, including mechanical and thermal. According to their functional 
purpose, shells can have different structural inhomogeneities. These include: ribs and overlays, 
reinforced and unreinforced holes, notches, channels, local thickening and thinning, mid-surface 
fractures, and other features. 

Determination of its stability is important when calculating the shell [1-6]. Since the action 
of loads on the structure affects the distribution of movements and forces, therefore, when 
determining dynamic characteristics, such as self-oscillations, it is necessary to take into 
account mechanical and thermal effects [2-3, 7-10]. 

The primary task in the development of any method is to substantiate the reliability of the 
obtained solutions. Due to the insufficient number of test verification tasks, analytical solutions 
in the literature and the poorly researched class of shells for which they are developed, it is 
appropriate to conduct comparative analyzes using certified software (SW), which include 
domestic LIRA-SAPR SW [11,12] and SCAD [13,14]. 

This work is devoted to the further confirmation of the reliability of the solutions obtained by 
the developed method in the problems of stability and natural oscillations of elastic shells with 
various geometric features. The purpose of the work is also to study the possibilities of using 
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modern LIRA-SAPR and SCAD SW to study the processes of nonlinear deformation and 
stability of thin shells, in particular of step-variable thickness, and to conduct a comparative 
analysis of solutions on this basis. 

1. Solving geometrically nonlinear problems of deformation and buckling  
of inhomogeneous shells using the finite element moment scheme  
The method of solving the problems of geometrically nonlinear deformation, stability, 

postcritical behavior, and self-oscillations of inhomogeneous shells under the action of 
thermomechanical loads is based on geometrically nonlinear relations of the three-dimensional 
theory of thermoelasticity [1-3, 15]. This approach is modern and effective [16-18]. 

The used model of a linear elastic continuous medium described by Hooke's law, which in the 
presence of a thermal field takes the form of the generalized Duhamel-Neumann law. The most 
common types of materials are used to describe the thermoelastic properties of the shell material: 
isotropic, transversely isotropic, and orthotropic. The study of the processes of nonlinear 
deformation of shells is based on the general Lagrangian formulation of the variational problem in 
increments. The finite-element relations were obtained by the variational method in curvilinear 
coordinates, taking into account all nonlinear terms, components of strain and stress tensors. A 
combination of the stepwise method of continuing the solution for the perturbation parameter with 
the procedure of the Newton-Kantorovich iterative method at the load step is used to construct the 
equilibrium trajectories of the structure. The created algorithm provides automation of the process 
of obtaining a solution to the problem regardless of the complexity of the "load-deflection" 
diagram and provides an opportunity to investigate the closed behavior of the shell. [1]. The 
algorithm provides, for example, the selection of the type of continuation of the solution parameter 
(loading or moving the characteristic node selected by the algorithm), adjusting the step value of 
the continuation of the solution parameter (decrease or increase), changing the accuracy of the 
solution of the system of nonlinear equations, and other actions for automated debugging 
operation of the algorithm in a mode close to optimal in terms of machine time consumption. 

The application of the incremental approach provides an opportunity at each step of static 
thermomechanical loading to determine the modal characteristics of the inhomogeneous shell, 
taking into account the deformed and prestressed states, which significantly affect the spectrum 
of the structure's own vibrations. 

The thin shell is considered as a three-dimensional body. Along the thickness, it is modeled 
by one 3D isoparametric finite element (FE) with polylinear shape functions: 
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k s s ss sign x  – conditional (grid) Lagrangian coordinates of FE nodes (Fig. 1 (b)); 
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s s sx    – local normalized coordinates of FE nodes; 
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s s sx  and 

1 2 3
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values of the Cartesian coordinates of FE nodes and sought (unknown) values of displacements 
of these nodes, respectively; the denotation ":" corresponds to the logical operator "or", which 
means choosing to consider one of the components in curly brackets. 

The developed 3D FE is universal. It is intended for the modeling of regions of the shell 
without constructive geometrical features by thickness (casing) as well as areas with such features. 
Thus, it is unique for a shell of step-variable thickness. Universal FE due to the introduction of 
new variable additional parameters (topological, geometric and physical-mechanical) and 
redefinition of the corresponding basic ones acquires the properties of a modified [1, 19]. 

Transformation of the casing finite element (CFE) (hexahedron ABCDEFGH  (Fig. 1 (а)) 
into FE with changed dimensions and location relative to the middle surface of the casing 
(hexahedron HGFEDCBA ~~~~~~~~ , (Fig. 1 (c), (d))) is performed along the local axis 1x , that is, along 
the thickness of the shell (Fig. 1). For ease of description, the element formed as a result of 
these changes will be called the "modified" finite element (MFE). 
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Fig. 1. Transformation of the CFE to the MFE (MFE   – with an edge, MFE   – with a hem) 
 

Examples of shell regions with “ribs” (an area with a stepwise increasing thickness, 
Fig. 2 (a)), with “channels” (an area with a stepwise decreasing thickness, Fig. 2 (b)) and with 
extrusion (an area with only a shift in thickness, Fig. 2 (c)) schematically demonstrate the 
modeling of a shell of stepwise variable thickness using universal 3D FE [20].  

Features of the stress-strain state (SSS) of a thin inhomogeneous shell are taken into account 
by kinematic and static non-classical hypotheses. According to the static hypothesis, the normal 
compression stresses of the fibers of the layers in the thickness direction are assumed to be 
constant 11 1 0

n
x   . The accepted hypothesis is weaker than the classical one 011  . 

The non-classical static hypothesis does not deprive the stressed state of the inhomogeneous 
shell of three-dimensional properties. The kinematic hypothesis is formulated as a deformable 
straight line hypothesis: a straight line in the direction of the thickness (not necessarily along 
the normal to the middle surface), shortening or lengthening, remains a straight line even after 
the deformation of the shell. The hypothesis provides a natural way to connect spatial elements 
in fractures and in areas of step-variable thickness without violating the compatibility of 
movements and coordinates in the process of deformation (Fig. 3). 

Finite-element formulation was obtained using the finite-element moment scheme (FEMS) 
[1, 21]. The FEM relations are presented in the form of the displacements method: the nodal 
displacements of the FE in the global Cartesian coordinate system are taken as the sought 
unknowns 

1 2 3
i
s s su  . Usually, for thin shells, in order to improve the convergence of the obtained 

solutions, the translations of the nodal points on the mid-surface are taken as the sought 
functions 

2 3
i
s s
  and generalized nodal rotations of FE edges 

2 3
i
s s
  (for which differences in 
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nodal displacements on its bounding surfaces are assumed): 1 2 3 1 2 3
2 3
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(a) 

 
(b) 

 
 (c) 

Fig. 2. Schematic representation of the modeling of the shell area with a rib (a),  
with a cannel (b), with extrusion  - (c) 

 
The replacement of variables introduced in 

such a way is interpreted as a transition from 
an eight-node 3D FE with 3 nodal 
displacements to a four-node "shell" FE with 6 
generalized displacements assigned to the 
nodes on the middle surface of the FE. 

When obtaining the relations for the 
coefficients of reaction matrices, stiffness, 
geometric stiffness and equivalent temperature 
loads of the universal FE, its additional 

 
Fig. 3. Modeling of the sharp bend in a shell 
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variable parameters are taken into account as necessary. When calculating the coefficients of 
these matrices, the output data for CFE or MFE are submitted to the corresponding 
dependences, for which their middle surfaces, which do not coincide with each other, are taken 
as the reference surfaces (Fig. 4). Since all dependencies are obtained for the general variant of 
the 3D FE (Fig. 1b), they are therefore universal. When forming a general system of solving 
equations for a shell finite-element model (SFEM) of step-variable thickness into a single 
ensemble, the MFE matrices are always adjusted with respect to the accepted reference surface 
- the middle surface of the shell (Fig. 4). 

 

 
 

Fig. 4. An example of combining different FEs into a single ensemble (schematic presentation)  
 

Due to the complexity of the formulation of the research problem, which is related both to 
the existing geometric features of thin elastic shells and to the processes under study, it is 
important to confirm the reliability of the obtained solutions. As a means of comparison, it is 
advisable to use the results of calculations that can be obtained with the help of SWs that have 
proven themselves well: SW LIRA-SAPR and SCAD. 

2. Solution of geometrically nonlinear buckling problems using SW LIRA and SCAD 
Nowadays specialized automated design systems (CAD) that implement FEM are widely used 

in the design and calculations of buildings and structures as the main tools of computer modeling 
and analysis. By purpose, CADs are divided into industrial and scientific. Industrial CADs often 
take the form of multifunctional SWs, which combine various modules for creating, calculating 
and analyzing a computer model of a structure. Industrial complexes are mainly focused on 
solving applied problems, the ultimate goal of which is to obtain the necessary data for checking 
its strength characteristics for further design of the structure. In turn, scientific complexes are 
mainly used for the study of complex phenomena and effects in the behavior of structures, in 
particular shell structures. These SWs use various specialized FEs from a developed library of 
elements. This makes it possible to obtain more accurate results in contrast to industrial SWs, but 
at the same time neglecting the project orientation. A large number of FEs in industrial SWs 
makes it difficult to choose the necessary element option and build a calculation scheme. 

In addition, in most industrial SWs, algorithms for studying nonlinear deformation and 
stability of shell structures are not sufficiently developed. The study of this class of problems, 
due to their complexity and the possible ambiguity of the resulting solutions, is difficult to 
implement as a standard computational procedure. 

In order to use SW LIRA and SCAD as means of solving stability problems, it is necessary 
to clarify the possibilities of their application: to study the underlying algorithms, to choose the 
most effective of them, to find out methods of modeling shells of smooth and step-variable 
thickness, to establish possible types of thermomechanical loads and their limitations. The 
assessment of the capabilities of the complexes was analyzed both for SW LIRA [4, 5] and for 
SW SCAD [6, 7]. Currently, there are later versions [22, 23] of these complexes, but the main 
approaches have been preserved. 

2.1. Algorithms for solving a geometrically nonlinear problem used in SW LIRA and 
SCAD. Three algorithms for solving problems of geometrically nonlinear deformation and 
stability are implemented in both SWs. All of them use step-by-step procedure. The calculation 
is carried out according to the load parameter. In physical terms, this process is a gradual (step-
by-step) increase in load from 0 to a given load value P. 
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The algorithms used in the SW LIRA-SAPR are based on [12, 22]: 
1. Method of sequential loading (SL). The "Simple step" algorithm is implemented, which is 

a simple modification of the method of sequential loading. The solution is found as a broken 
line, since a linear problem is solved at each step. For this algorithm, it is necessary to manually 
set the number of steps and their size. 

2. Method of sequential loading with automatic step selection (SLA). Unlike the previous 
algorithm, the number of steps and its size are automatically selected by the algorithm. 

3. The Newton-Raphson (N-R) method is step-by-step procedure with the search for new 
forms of equilibrium, It implements the method of compensating loads. When implementing the 
algorithm, the loss of stability moment is fixed and a transition to a new stable branch of 
equilibrium is performed (as research has shown) with a significant error. The number of steps 
and its size are automatically selected by the algorithm. 

According to all methods, the calculation is performed until the moment of degeneration of 
the stiffness matrix of the system. It is this moment that is interpreted as the loss of stability 
one. A branch point and a critical point are indistinguishable. The associated uncertainty does 
not allow qualitatively distinguishing the critical point from the bifurcation point. In this way, 
solving the problem of nonlinear deformation is realized either up to the branching point ( *q ) 

or to the point of the upper critical load ( up
crq ).  

The SW SCAD uses such algorithms [14, 23]: 
1. Method of sequential loading (SL). It uses the "Simple step" algorithm. A linearized 

problem is solved at each step. Transition to the next step of the nonlinear calculation is 
performed if solution of the linearized problem at the step is sufficiently accurate.  

2. The stepwise Newton-Kantorovich method (N-K) with refinement of the approximation. At the 
current load step, the iterative refinement of the nonlinear solution is implemented based on the 
analysis of the imbalance of the equilibrium equations. Iterations are performed with unchanged 
coefficients of the linearized stiffness matrix calculated at the beginning of the current step. It is 
necessary to specify the number of load steps, the size of each step, and the number of iterations. 

3. The stepwise Newton-Raphson method (N-R) with iterativte refinement. An iterative 
refinement of the solution is performed at each step with the use of the redefinition of the 
coefficients of the linearized stiffness matrix at each iteration. It is necessary to specify the 
number of load steps, the size of each step, and the number of iterations. 

The possible appearance of a branch point is not analyzed in SW SCAD. 
Due to insufficiently complete description of nonlinear algorithms presented in SW LIRA-

SAPR and SCAD instructions, there occurs a need to solve problems using the above 
mentioned SWs in order to evaluate them and choose the most suitable algorithm for 
performing comparisons. 

It should be noted that, from the point of view of engineering calculations performed by SW, 
it is more important to determine the deflections when the load is fixed in the process of 
nonlinear deformation of the structure, and not the moment of loss of stability, which 
corresponds to the upper critical load. The action of the load, which can cause the beginning of 
non-linear deformation and even more so the loss of stability, is usually not allowed. The post-
critical behavior of the structure is considered in extremely rare cases. Therefore, the vast 
majority of modern SWs solve problems of nonlinear deformation of shells, limiting themselves 
to determining the value of the upper critical load. This is due to the use of a step algorithm for 
solving systems of nonlinear equations. Such stepwise or stepwise iterative algorithms traverse 
the load-deflection curve step by step. Without changing the step parameter from load to 
deflection, the passage of the curve from the upper critical load to the post-critical region along 
the descending branch is impossible. 

2.2. Finite elements used in the SW LIRA-SAPR and SCAD. A number of special FEs are 
used in the SW LIRA and SCAD to calculate the stability of the shells taking into account its 
nonlinear deformation. In general, the type of FE, on the one hand, is determined by the element 
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belonging to one or another section of the structure, and on the other hand, it depends on the 
geometric characteristics of the shell, in particular, whether its thickness is constant, linearly 
variable or step-variable. 

2.2.1. Smooth shells and panels. Two types of geometrically nonlinear finite elements are 
used in SW LIRA-SAPR and SCAD to solve the problems of determining the SSS and stability of 
thin shallow geometrically nonlinear shells and plates. These are the triangular three-node FE shell 
No. 342 and the quadrangular four-node No. 344 (Fig. 5 (a), (b)). With the help of these elements, 
you can calculate thin-walled structures such as: shells – Karman equations are used; membranes 
– displacements are constant along thickness; shells with strong bending – the relations of the 
theory of thin shells are used. For the range of problems considered in this article, the last 
calculation option is used – a shell with a strong bending. Using these elements, it is possible to 
study the stability of thin elastic shells under geometrically nonlinear deformation.  

Governing equations for FE are constructed in a physically linear formulation. The main 
feature is that the FE, which models a three-dimensional body, is a flat element with a constant 
thickness. The plane of the element models the mid-surface of the shell or plate. The nodes are 
located on the plane and have three displacements and three angles of rotation relative to the 
local axes (Figs. 5, 6). 

     
                                               (a)                                                                                         (b) 

Fig. 5 
 

Finite elements used in SW LIRA-SAPR and SCAD have somewhat limited applications due 
to the peculiarities of modeling thin shells. Since FEs are 2D elements of constant thickness, the 
approximation of the shell as a three-dimensional body is not accurate enough. These flat FEs 
cannot simulate mid-surface sharp bending without gaps and volume overlap (Fig. 6 (a)), unlike 
the spatial FE developed using the FEMS methodology (Fig. 6 (b)). 

Due to the constant thickness of the FE the shell model of a linearly variable thickness in the 
SW LIRA-SAPR and SCAD is replaced by a step-variable model. At the same time, to obtain 
reliable results, it is necessary to use a sufficiently thick grid. In addition, all the nodes of one 
quadrilateral FE are located in the same plane and cannot form a hypar. Because of this, 
strongly uneven curvilinear surfaces must be modeled with triangular FEs. Such restrictions do 
not apply to the 3D universal isoparametric eight-node FE of MFES (Fig. 6 (b)). 

2.2.2. Shells with ribs and channels. Shells and panels of symmetrical step-variable 
thickness (for example, with bilateral ribs or channels symmetrically located relative to the 
middle surface) are modeled by triangular three-node FE No. 342 or quadrilateral four-node FE 
No. 344 of the appropriate thickness. 

Special elements are used in SW LIRA-SAPR and SCAD to model the geometric features of 
shells of variable thickness in the form of eccentrically located ribs, overlays, channels and 
recesses. In SW LIRA-SAPR, these are the so-called "absolutely rigid inserts" and "absolutely 
rigid bodies" [11, 12, 22]. In SW SCAD it is "absolutely rigid (solid) bodies" [13, 14, 23]. In 
both cases, these are artificial techniques that are used to approximate the gradual change in its 
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thickness in the calculated FE model taking into account the eccentricity. The purpose of 
introducing these special elements is to specify the kinematic connection for the corresponding 
nodal displacements.  

Absolutely rigid insert" (ARI) in 
SW LIRA is used to connect FE 
nodes in areas of step-variable 
thickness to the main nodes of the 
structure, located on its middle 
surface. The displacement 
(eccentricity) of the "elastic part" 
of the FE (the middle surface of a 
rib or a section with a notch) is 
modeled with the help of ARI. The 
"elastic part" of the insert is 
understood as a shell FE of the 
appropriate thickness, displaced 
relative to the middle surface of the 
structure. "Insertion nodes" are tied 
to the middle surface of the original 
shell using kinematic relations. 

"Absolutely rigid body" (ARB) 
in SW LIRA and SW SCAD is a 
conditional FE of great rigidity. 
ARB is additionally introduced into 
the calculation model for the 
connection of nodes of the middle 

surfaces of the cladding and the eccentric element. In general, ARB can only conditionally be 
attributed to the concept of a finite element, since it, in fact, does not have the classical attributes 
of a FE (basis functions, domain of a finite element, etc.) [11]. However, from the point of view of 
the implementation of ARB, it fits perfectly into the finite element procedure. When modeling FE 
shifts, the ARB is a rigid connection between nodes of eccentrically located elements. This FE 
does not have a number in SW LIRA-SAPR. In SW SCAD it is numbered #100. 

2.3 Modeling of thermomechanical load. In LIRA-SAPR and SCAD software complexes, 
it is possible to set the following types of load: 

- mechanical action: concentrated force and moment, uniformly-distributed load and 
moment, trapezoidal distributed load, uniform or trapezoidal load between two nodes of the 
plate, weight of the mass of the plate; 

- temperature action: uniform and uneven heating (cooling) of the shell or plate through the 
thickness, a linear-variable law of temperature distribution over the thickness is allowed. 

In SW LIRA-SAPR and SW SCAD there are some limitations when modeling the 
temperature load: in the plane of the element only a constant value of the temperature load can 
be set. Therefore, it is impossible to model the inhomogeneous temperature load of the middle 
surface of the shell within the framework of one FE. Setting a common thermomechanical load 
is also impossible. However, it is possible to adapt the algorithm to specify preheating of the 
shell followed by additional mechanical loading. 

3. Analysis of the effectiveness of the different approaches in the problems of shell 
nonlinear deformation and buckling. 
The main goal of the research is to compare the results to confirm the solutions obtained 

according to the FEMS and evaluate the capabilities of SW LIRA-SAPR and SCAD in solving 
complex problems of nonlinear deformation and buckling of thin inhomogeneous shells under 
the action of thermomechanical loads. 

 
(a) 

(b) 
Fig. 6. Elements conection:  

(a) – SW LIRA-SAPR and SCAD; (b) –FEMS 
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3.1. A square in plan (in the plane '' xx 32 ) smooth spherical panel, hingedly supported along 
the contour and loaded with a uniform normal pressure of intensity q , is investigated. The 

research results are presented using dimensionless parameters )( 44 Ehqaq  , huu '' 11  . The 

curvature of the panel is determined by the parameter 22 ( ) 32K a R h  . Accepted: ha 60  

is a panel size in plan, hR 225  is radius, 1h  cm is thickness, 61012  .E kg/cm 2 , 
30. . The SFEM with a grid of 30 30 FE is adopted for calculation. As research has shown, 

such a grid ensures the convergence of solutions. 
3.1.1. The SW LIRA an almost complete coincidence of the "load-deflection" curves 

(“ q - 'u1 ”) has provided by all three approaches in the center of the panel to the upper critical 
point (Fig. 7 (a)). Both variants of the method of successive loads (1. SL and 2. SL) 
demonstrate the coincidence of the results in the pre-critical region and a slight difference 
between them in terms of the value of the upper critical load up

crq  (Table 1). At this point (in the 
figure, the point is marked '*') the solution of the problem ends. The Newton-Raphson method 
(3. N-R) allows you to switch to the closed stable branch of the solution, but with a significant 
error (Fig. 7 (c)). 

 

          
 

(a)                                                                             (b) 
 

          
 

(c)                                                                             (d) 
Fig. 7 
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All three algorithms of SW SCAD implement the transition to a new stable equilibrium 
branch (Fig. 7 (b), (c)). The calculation by the method of successive loads (1. SL) makes a 
transition to a closed stable branch with a large error in the value of the upper critical load up

crq . 
According to the algorithms based on the application of the Newton-Kantorovich (2. N-K) and 
Newton-Raphson (3. N-R) methods, the problem of transition to a closed stable branch is solved 
quite precisely, the value of the upper critical load up

crq  is the same (Table 1). 
Table 1 

SW Algorithm up
crq  , % 1'up

cru  , % 

FEMS Newton-Kantorovich method (FEMS) 193.7 0 0.9125 0 

1. Sequential loading method (SL) 194.1 0.20 0.8796 -3.60 
2. Sequential loading method with automatic 
step selection (SLA) 202.8 4.70 0.8580 -5.97 LIRA 

3. Newton-Raphson method (N–R) 196.4 1.40 0.9013 -1.23 

1. Sequential loading method (SL) - - - - 

2. Newton-Kantorovich method (N–K) 190.2 -1.80 0.7729 -15.30 SCAD 

3. Newton-Raphson method (N–R) 190.2 -1.80 0.7730 -15.29 
 

In the pre-critical region for both SWs, we have an almost complete coincidence of the 
curves with the diagram obtained on the basis of the use of FEMS. The equilibrium shapes of 
the deformed panels in the subcritical and supercritical regions have a simple appearance and 
match well. (Fig. 7 (d)) shows the modes of deformation of the middle surface of the shells in 
the area of the critical load and at the point of transition to a stable closed branch. Deformation 
of the panel is characterized by a deflection in its central area. 

In further research, when performing calculations, we will use method 2. Successive loads 
with automatic step selection (SLA) for SW LIRA-SOFT, and method 2. Newton-Kantorovich 
(N-K) for SW SCAD, as the most accurate and efficient. 

3.1.2 The influence of the combined effect of preliminary uniform heating with subsequent 
pressure loading on the loss of panel stability is considered (Fig. 8). Heating (cooling) is 
performed on С20Т . 

A uniform temperature increase of 20 degrees 
leads to an almost identical corresponding 
increase in the upper critical load up

crq =175,0; 
193,7; 212,2 and a uniform decrease of the lower 
one lw

crq =32,82; 29,78; 26,53 (Fig. 8). 
A comparison of the results obtained by the 

FEMS with the calculations made by SW LIRA 
showed a fairly good match between them. The 
corresponding diagrams almost completely 
coincide in the pre-critical region. We have a 
slight run-up in terms of values up

crq  та 1 up
cru   at 

the upper critical point (Table 2). 
 
 

 

 

Fig. 8 
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Table 2 

Calculation method  
FEMS SW LIRA Loading 

(preheating) up
crq  1'up

cru  up
crq   , % 1'up

cru   , % 

C20T  175,0 -0,9613 185,9 6,23 -1,0000 4,03 

C0T  193,7 -0,9125 202,8 4,70 -0,8580 -5,97 

C20T  212,2 -0,7984 228,4 7,63 -0,7509 -5,95 
 

3.1.3. Modal analysis of the shell shows the following. The first four forms of natural 
oscillations of the panel, obtained by the method based on the use of MFES and by SW LIRA-
SAPR, are given for the initial unloaded state 0iq  (Fig. 9). The difference in frequencies is 
within 1%. The forms of natural oscillations are identical. When calculating according to the 
FEMS ( C0T ) it was obtained that at all loads the first frequencies are multiples, 21  . 
 

FEMS 

 
              785330

1 ,i                           785330
2 ,i                             405470

3 ,i                      246910
4 ,i    

 
SW LIRA-SAPR 

 
              529,290

1  i                         529,290
2  i                           545,250

3  i                    682,010
4  i  

Fig. 9. Natural modes ( 0i
k , Hz) of the unloaded shell, 0iq  

 
The conducted modal analysis makes it possible to 

investigate the influence of the prestressed state of 
the shell on the frequencies and forms of natural 
oscillations of the deforming structure (Fig. 10). In 
the figure, the resulting dependence is presented as a 
"load-lower frequency" 1 ” (“ q ”) diagram. 
Modal analysis is performed until the zero (negative) 
value of the fundamental tone appears. This approach 
corresponds to the dynamic criterion of the loss of 
shell stability [24] and allows determining the 
stability of the panel simultaneously according to 
static and dynamic criteria. There are no branching 
points of the solutions in the pre-critical region on the 
“ q - u ” curves. Therefore, according to both criteria, 

 

Fig. 10 
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almost the same corresponding values of critical loads were obtained. 
In the existing versions of SW LIRA-SAPR and SCAD, it is not possible to analyze the 

natural vibrations of shells taking into account the prestressed state. 
3.2 The stability analysis of shells with stepwise variable thickness is illustrated using the 

example of the panel discussed above. The panel is weakened by four criss-crossed channels 
placed on the surface of the shell in three ways. The channels are located eccentrically on the 
inner (Fig. 11 (a)) or outer (Fig. 11 (c)) surfaces of the shell and symmetrically on its inner and 
outer surfaces (Fig. 11 (b)). 

The SFEM with a sufficiently dense mesh of 30 30 FE was adopted as the calculation 
model, which ensures the convergence of solutions. To approximate channels, the SW LIRA-
SAPR uses ‘absolutely rigid insertions’, and the SW SCAD uses ‘absolutely rigid bodies’. 

 

 

 

 

 

 

 
(а) (b) (c) 

Fig. 11 
 

3.2.1. We consider a shell with “narrow” channels having the same parameters: length а , 
width hbc 2  and total depth hhc 30. . For all algorithms there is a good agreement between 
the ‘ q - u ’ curves in the subcritical region (Fig. 12). The calculation performed using the SW 
LIRA-SAPR stops at the upper critical point. In the pictures this point is marked '*'. The 
solution for a panel with a symmetrical arrangement of channels obtained using the SW SCAD 
accurately implements the transition to a supercritical stable branch (Fig. 12 (b)). For this 
symmetrical weakening, the ‘ q - u ’ curves are compared at three characteristic points. 

 

 
                                  (a)                                                             (b)                                                         (c) 

Fig. 12 
 

A comparison of solutions at the upper critical point obtained using the MFES, the SW 
LIRA-SAPR and SCAD shows that for all types of weakening, the difference in load up

crq  and 

deflection 1'up
cru  in the center of the panel does not exceed 4% (Table 3). 

For narrow channels, their location has little effect on the value of the critical load up
crq . The 

greatest reduction in load (compared to a smooth panel) caused weakening on the outer side of 
the shell, 0e  . The critical load of this shell is reduced by 18.7%. 
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Table 3 

up
crq  1'up

cru  (in the center) Panel 
type 

FEMS SW LIRA  
 , % 

SW SCAD 
 , % FEMS SW LIRA 

 , % 
SW SCAD 

 , % 
0e  
 

178,8 178,98 
0,10% -“- -0,889 -0,923 

3,8% 
-“- 

0e  
 177,3 184,3 

3,95% 
176,21 
-0,61% -0,842 

-0,819 
-2,7% 

-0,839 
0,36% 

0e  
 

157,4 162,40 
2,82% -“- -0,781 -0,805 

3,1% 
-“- 

Гладка 
 

193,7 202,8 
4,7% 

190,2 
-1,8% -0,9125 

-0,8580 
-5,97% 

-0,7729 
-15,30% 

 
3.2.2. The effect of weakening in the form of “wide” channels on shell buckling is 

considered. The channels are located symmetrically relative to the shell mid-surface and has 
such parameters: hbc 6 , hhc 70. . 

The ‘ q - 'u1 ’ curves obtained using the FEMS, the SW LIRA-SAPR and SCAD have been 
plotted for deflections at different points of the shell (Fig. 13 (a)). The resulting curves completely 
coincide with each other in the subcritical region and near the upper critical load up

crq . 
 

 
                                                 (a)                                                                                       (b) 

Fig. 13 
 

Table 4 

Calculation 
method 

up
cr
1'up
cr

q
u

 
%
%

,
,

u

q


  



1'u
q  

%
%

,
,








u

q
 

FEMS 
28760
9472

,
,


 

0
0  

24100
3463

,
,


 

0
0  

SW LIRA –“– –“– 
24510
7964

,
,


 

701
892
,
,  

SW SCAD 
32890
7174

,
,


 

8112
432
,
,  –“– –“– 
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In contrast to the solution for a panel with ‘narrow’ channels, the SW LIRA stopped 
calculations at the branching point at load 7964,*q  , taking the branching point as the upper 
critical load (Fig. 13 (a)). This point is marked '*' in the figure. The branch point has been also 
discovered in calculations using the MFES. The MFES algorithm allows us to more accurately 
determine the load value at the branch point *q  (Table 4). By introducing a small ( 010, ) 
asymmetrical perturbation into the initial shell shape, a specially developed technique allows us to 

turn the branch point '*' into a critical one 
( 3463,*q  ) and reach a new branch of 
the solution (dash-dotted curve). The 
resulting load *q  is 13.16% less than the 

critical load up
crq . 

The weakening of the shell by wide 
channels led to a significant decrease in 
the value of the upper critical load (by 
62.34%) compared to that corresponding 
to a smooth panel. 

The shell deformation shapes 
obtained using different algorithms 
coincide well with each other (Fig. 13, 
b). The deflection in the center of the 
panel at the moment of buckling is less 
than in the weakening zone (Fig. 14). 

 
Conclusions 
The effectiveness of the finite element method for studying geometrically nonlinear 

deformation, buckling, post-buckling behavior and vibrations of thin elastic shells under the static 
action of thermomechanical loads is analyzed and the reliability of the obtained solutions is 
confirmed. The research method is based on the three-dimensional approach of thermoelasticity 
theory and the use of a finite element moment scheme. Comparisons are carried out with the 
results of calculations performed using domestic software LIRA-SAPR and SCAD. 

The possibilities of using these programs to study the processes under consideration have 
been investigated and identified. The approaches used in them to finite element modeling of 
shells, in particular of step-variable thickness, are described. 

On this basis, a comparative analysis of solutions obtained using three software packages for 
nonlinear deformation, stability and vibration of shallow panels under the action of 
thermomechanical loads is carried out. Good agreement between solutions is obtained. 

The research makes it possible to conclude that the LIRA-SAPR and SCAD can be used, 
within certain limits, as a means of confirming the reliability of the results obtained when it is 
studying the geometrically nonlinear behavior of thin flexible elastic shells. 
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Кривенко О.П., Лізунов П.П., Ворона Ю.В., Калашніков О.Б.  
ПОРІВНЯЛЬНИЙ АНАЛІЗ СТІЙКОСТІ І ВЛАСНИХ КОЛИВАНЬ ПОЛОГИХ ПАНЕЛЕЙ ПРИ ДІЇ 
ТЕРМОСИЛОВИХ НАВАНТАЖЕНЬ 

Робота є продовженням низки досліджень, присвячених обґрунтуванню достовірності розв’язків, що 
отримуються за скінченно-елементною методикою дослідження нелінійного деформування, стійкості та 
коливань тонких пружних оболонок при дії термосилових навантажень. Методика базується на геометрично 
нелінійних співвідношеннях тривимірної теорії термопружності та положеннях моментної схеми скінченних 
елементів. Тонка пружна оболонка неоднорідної структури моделюється універсальним просторовим 
ізопараметричним скінченним елементом. Модальний аналіз оболонки реалізується на кожному кроці 
статичного термосилового навантаження. Для визначення спектру нижчих частот власних коливань оболонок 
застосовується метод ітерації підпростору. Розглядається квадратна за планом полога сферична панель. 
Досліджується вплив попереднього нагріву на стійкість і коливання пружної ізотропної оболонки при 
навантаженні рівномірним тиском. Аналізується поведінка оболонки, що послаблена двома парами 
перехресних каналів. Розглядається послаблення панелі вузькими і широкими каналами, які можуть бути 
ексцентрично розташованими відносно серединної поверхні оболонки. Ефективність та адекватність методу 
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підтверджується порівняльним аналізом розв’язків з результатами, що отримані з використанням сучасних 
багатофункціональних програмних комплексів ЛІРА-САПР та SCAD. Наведено особливості застосування 
комплексів до розв’язання розглядуваних задач. Аналіз результатів розрахунків дозволив оцінити межі та 
можливості використання цих програмних комплексів для обґрунтування достовірності розв’язків певних 
класів задач геометрично нелінійного деформування, втрати стійкості та коливань пружних оболонок. 

Ключові слова: пружна оболонка, термосилове навантаження, стійкість, модальний аналіз, універсальний 
просторовий скінченний елемент, моментна схема скінченних елементів, порівняльний аналіз. 
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Кривенко О.П., Лізунов П.П., Ворона Ю.В., Калашніков О.Б. Порівняльний аналіз стійкості і власних 
коливань пологих панелей при дії термосилових навантажень // Опір матеріалів і теорія споруд: наук.-тех. 
збірн. – Київ: КНУБА, 2023. – Вип. 111. – С. 49-64. 
Проведено порівняльний аналіз розв’язків щодо нелінійного деформування, стійкості та коливань тонких 
пружних оболонок при дії термосилових навантажень, що отримані за моментною схемою скінченних 
елементів та з використанням програмних комплексів ЛІРА-САПР та SCAD. Наведено особливості 
застосування комплексів до розв’язання розглядуваних задач.  
Табл. 3. Іл. 14. Бібліогр. 24 назв. 
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Krivenko O.P., Lizunov P.P., Vorona Yu.V., Kalashnikov O.B. Comparative analysis of the stability and natural 
vibrations of shallow panels under the action of thermomechanical loads // Strength of Materials and Theory of 
Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2023. – Issue 111. – P. 49-64. 
A comparative analysis of solutions for nonlinear deformation, buckling and vibrations of thin elastic shells under the 
action of thermomechenical loads, obtained using the finite element moment scheme and using the LIRA-SAPR and 
SCAD software packages, has been carried out. The features of using complexes for solving the problems under 
consideration are given.  
Tabl. 3. Fig. 14. Ref. 24. 
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