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The phenomena of elastic aftereffects during loading/unloading of viscoelastic and capillary-
porous bodies, relaxation of their stresses is accompanied by the energy accumulation and
dissipation to be taken into account in the theory of oscillations which also considers the behavior
of materials when the force is applied to them. The elastic aftereffect and stress relaxation forms
ostensibly opposite energy processes. In the first case, under constant load deformation, the work
increases in course of time, and in the second case, under constant load deformation, the work
(energy) decreases. While researching on the energy dissipation in the conditions of oscillations
application, i.e. within the frame of internal friction theories, one can find that some theories are
based on the dependence of friction on the oscillations’ velocity, other ones establish the
dependence of friction on the amplitude. Research papers are based on the hypothesis of M.M.
Davydenkov, according to which the energy when subjected to oscillations depends on the
amplitude and does not depend on the velocity. According to E.S. Sorokin, the theory of internal
friction is poorly consistent with the theories describing the inherited properties of materials
(viscoelastic and capillary-porous ones). A tendency is observed: the better a theory reflects
hereditary properties, the worse this theory is adapted to describe energy losses due to
oscillations.In this paper, an attempt has been made to harmonize both these theories and
numerous experiments on the destruction of materials described in the academic literature. It turns
out that in order to remove contradictions, it is necessary to take into account the dependence of
body deformation changing in the course of time.t is shown that the hierarchy of times
determining shear and bulk relaxation in viscoelastic/capillary-porous medium has a fractal (scale-
invariant) structure. It was observed that the presence of time fractality eases the modeling of
viscoelastic/capillary-porous bodies resulting in the universal relaxation function of a rather simple
kind. In particular, for the scale-invariant distribution of relaxation characteristics medium, the
application of algebraic relaxation law for viscoelastic/capillary-porous materials is possible: this
resulting in rheological models and state equations with the derivatives of fractional order.

Key words: fractality, scale-invariant structure, temporal hierarchies, processes, relaxation,
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1. Introduction

Hereditary properties of materials have long been studied by experts. For
example, faced in 1920s with the fact of elastic aftereffects, the academician
AF. Toffe described the above phenomenon as follows: “... the result of the effect
of this force on the body does not manifest itself entirely at once. For a long time,
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exposed to a constant force, bending, twisting, tensile it continues becoming
gradually weaker. The precision instruments can detect a slow progress even in a
few months. When the force ceases to effect, the body does not immediately take
its previous form. Each effect leaves a trace which can be noticed after a long
period of time as the reasons of its emergence disappear. There is something
similar to the body’s memory experienced in the past” [1] (Fig. 1).
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Fig. 1. The phenomenon of elastic aftereffects in viscoelastic
and capillary-porous bodies: 1 - loaded; 2 - unloaded

Indeed, numerous experiments conducted with different materials show the
deformation lag behind the stress. The deformation occurs in the process of
force increasing and over a period of time after the termination of its increase.
Such a phenomenon is called an elastic aftereffect after loading.

When the sample is unloaded, a similar pattern is observed: the elastic
deformation decreases to zero during a certain period of time. The hereditary
phenomena of the material include the phenomenon of stresses relaxation
which consists in the fact that at constant deformation (and temperature),
stresses decrease. In test machines, the load decrease and keeping the
deformation unchangeable is made automatically with the help of special

electronic equipment. The
S water is used as load in such
tests. This allows a smooth

\ stress decrease [2] (Fig. 2).

— n All  these phenomena

o ¢ occurring in  viscoelastic/

0 ' 5 capillary-porous  bodies are
Fig. 2. The relaxation (on the plane) curve (o, t), o+ — accompan{ed by th? .ener.gy
the boundary to which the stress is directed while “t” accumulation and dissipation
increases which should be taken into

account in the oscillations

theory considering the behavior of the material resulting from the force application.

It can be observed that the elastic aftereffect and stress relaxation produce

opposite energy processes. In the first case, being constantly loaded, the
deformation and work increase in course of time respectively. In the second case,
being constantly exposed to the deformation, the load and work (energy) decrease.
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Turning to researches for energy dissipation under load, i.e. for the theory of
internal friction, it can be found that some theories are based on the dependence
of oscillations friction on their velocity, other theories are based on the
amplitude. Some research papers are based on the M.M. Davydenkov
hypothesis. According to it, the energy in the conditions of oscillations
application depends on the amplitude and does not depend on the velocity [3, 4].

E.S. Sorokin, author of one of these hypotheses [5], carries out a detailed
analysis of research papers on these issues. On the basis of his table containing
the comparative characteristics of various theories, he made an important
remark that the theory of internal friction is poorly consistent with theories
describing the hereditary properties of the materials. Moreover, the following
tendency is observed: the better a theory reflects hereditary properties, the
worse this theory is adapted to describe energy losses due to oscillations.

In this paper, an attempt has been made to harmonize both these theories
and numerous experiments on the destruction of materials described in the
academic literature, for example, in [7]. It turns out that in order to avoid
contradictions, it is necessary to take into account the dependence of body
deformation changing in the course of time specified below.

Modern technological processes control often requires the modeling of
relaxation in reophysically complex media (viscoelastic medium (VEM),
capillary-porous bodies (CPB)). Such media are encountered in the production
of a wide variety of materials (rubbers, plastics, textiles, paints, lubricants,
foods, etc.) [8-12, 15]. They are extremely important in processes related to oil
extraction and transportation [13, 14, 16]. The interest of researchers to these
materials is due to a huge variety of new effects which can occur in relaxing
materials. Their rheology studying contributes to a better understanding and
improvement of technological processes, rational development of new high-
performance techologies and products.

Relaxation phenomena in rheophysically complex media are related to the
slow development of processes regrouping structural units of different scales.
(For example, in the case of polymers, these are flexible molecules, their
individual segments, or bundles formed by these molecules). These processes
result in deformation changes lag behind the stress change (hysteresis, elastic
aftereffect, stress relaxation, etc.) and can be described using the model of
elastic bodies with internal friction and viscous bodies with elasticity [8-12].
Mechanical models of viscoelastic, capillary-porous bodies are helpful for
understanding the qualitative characteristics of relaxation phenomena, but their
application to the quantitative description of real materials requires the
construction of very complex systems consisting of a large number of different
springs and viscous elements (due to the presence of structural units hierarchy
of different scale leading to relaxation hierarchization in a wide range of time).
It is clear that complex models can not prove effective: there are too many
difficulties associated with the definition of numerous relaxation parameters
with respect to experimental data, as well as solving problems of modeling the
media motion in a wide range of relaxation time.
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This research paper shows that the difficulties mentioned hereinabove can
be overcome by specifying the structure of time hierarchies which determine
the relaxation in rheophysically complex media. An analysis of experimental
data shows that the distribution of relaxation time in these media may be scale-
invariant, i.e. may have a fractal structure. It is shown that the time fractality
allows to simplify the description of relaxation processes resulting in universal
relaxation functions of a rather simple form in a wide range of relaxation time
[17, 18]. It is also shown that in some cases, it is possible to use rheological
models with derivatives of fractional order.

2. The stress and deformation in viscoelastic and capillary-porous
bodies with respect to time
It is necessary to add to the known formula o, = E-¢ the component taking

into account the temporal nature of the stress change:
o, =E-g-exp(-—t/1), (1)
or
c=E-e+E-g-exp(-t/t)= E-e{l+exp(-t/1)}, (2)
where 6 — body’s general stress, £ — stress module, € — elongation ratio
(deformation), ¢ —time counted from the moment the load application, T —
relaxation time.
Elongation ratio (deformation) in the conditions of load application:
o
= ) 3
E-{l+exp(-t/t)} ¢
After unloading, the maximum value of elongation ratio is as follows:

c G _ c-[l-exp(~1/7)] _o t
——= ==-th|+—|. 4
E-{l+exp(-t/t)} 2E 2E-[l+exp(-t/t)] 2E 2t

The value of g, allows to determine the current value of its elongation ratio after
unloading in time ¢, i.e. to take into account the unloading aftereffect and thus:

&(t) =g, -exp(—t/t) = % -th[t/27]-exp(-t/1), S)

where ¢ — time running after unloading.

Example 1. The steel wire stretched and rigidly fixed. It is necessary to
determine the stress relaxation. Sample data: elastic module £ = 196 333 MPa,
relaxation time 7 = 168.2 s, elongation ratio ¢ = 0.001. The formula (2) allows
to calculate the stresses occurring in the wire and depending on time, i.e.
relaxation of stresses. The results are shown in Table 1.

80:

Table 1
t,s o, MPa t,s o, MPa t,s o, MPa
0 392,627 200 256,12 1000 196,66
50 341,89 500 206,26 2000 196,13
100 304,60 900 197,08 3000 196,13

Example 2. The steel sample was stretched to have the stress ¢ = 300 MPa,
module of elasticity £ = 196 333 MPa, relaxation time T = 168.2 s, the sample is
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unloaded at the time #, = 1000 s. It is necessary to determine the value of
elongation ratio depending on time. The formula (3) allows to determine the
value of elongation ratio in the conditions of loading, the formula (4) allows to
calculate the unloading moment. Varying in time residual deformation can be
found using the formula (5). The results of calculations are given in the Table 2.

Table 2
t,s €, dimensionless t,s €., dimensionless
0 7,6479-107 1000 7,6070-107
200 1,1713-107 1200 2,3265-10*
500 1,4543-10° 1500 3,9363-107
1000 1,5255-10° 2000 2,0356-10°

Knowing g, one can find the residual deformation &4 = €. using the
ratio (5). If the ratio ¢, /gy =o is specified, the period of time (') can be
found, then the residual deformation will be €. =c-g, (in periods t). The
results for viscoelastic and capillary-porous bodies are presented in Table 3.

Table 3
o £,s o £,s o £,s
0,1 2,303t 0,0001 4210t 107 18,4211
0,01 4,605t 0,00001 11,5137 1070 23,0261
0,001 6,908t | 0,000001 13,8161 107 27,6311

3. The energy dissipation process when oscillations are applied

The equity (2) which explains the phenomena occurring in the material
during its loading-unloading should be used to describe the process in
viscoelastic and capillary-porous bodies. Thus, there is a relation between this
dependence and the theory of internal friction given in [6].

In addition, there is no need to involve velocity dependent on external
forces to explain energy losses, as was done in [6].

4. The effect of time on the results of experiments on the tensile of

viscoelastic-type materials and capillary-porous bodies

It is known that time has a significant effect on the results of experiments on
the materials destruction. Data from a number of scientists who carried out
experiments involving various materials (Bach, Baumann, Volterra, Le
Chatelier, Ludwig) were given in [7].

Curves can be constructed using three points and the equation of these
curves can be described by applying these data (time is expressed in seconds,
stress is expressed in pascals).

The changing of the destructive stress in time is expressed by the following
general formula:

S, =0, +(0y—0,)-exp(~1/1), (6)
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where o, — ultimate breaking stress at the time ¢, where o, — ultimate breaking
stress at the time ¢ = oo, ¢ — load application time, T — relaxation time.

The three points #;, — ©;, £, — 0y, 3 — 03 available from the experiment
allow to derive the equation:

{02 =0, +(01—0,)-exp(— (1, —1)/7); e
63 =0, +(0;—0,)-exp(—(1 —1)/1),
it is resulting in

S -exp{—(t; -1/} ®

* 1-exp{(t; —1,)/1}
The relaxation time 7 can be found by means of the iteration method using
the following formula derived from (7):
6, —(01 —03)-exp{~(t, —4))/1} =03 — (6 —0y)-exp{~(ts —1)/1}.  (9)
The calculations using the formulas (6) - (9) are easy to perform on a PC.
The general view of curves showing the ultimate breaking stress changing in
time is given in Fig. 3. Experimental data processing results for [3] are
presented in Table 4.
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Fig. 3. General view of curves showing the ultimate breaking stress changing in time

The ultimate breaking stress changing in time is characterized by the same
exponential function dependent on time. The ultimate breaking stress
decreases in course of time.

Consequently, the material (viscoelastic/capillary-porous) offering the
property of elastic aftereffect has also the property of stresses relaxation. The
stress in the material depends on elongation ratio decreasing in time and
showing the exponential dependence. If the material is loaded, the main energy
is spent to overcome the forces of elasticity and the additional energy
(accumulated in the material) dissipates within a certain time period. To solve
the problems of energy dissipation when oscillations are applied, it should be
taken into account that the additional energy varies in time according to the
exponential law. The ultimate breaking stress decreases in time according to
the exponential law. The results of experiments on certain materials breaking
dependent on time are consistent with the given formulas.
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Table 4
Experimental data Calculation results
Ultimate Ultimate breaking
Material of Time ¢ breaking lzgl;f stress, MPa if
sample I stress, X — —
b, i, S MPa time t=0 t=o0
G1, 02, O3 oS So Ox
1. Foundry 19 392,66 168.8
steel 150 385,30 212
Experiments 1320 379,03 394,284 379,024
of Bach and
Baumann
2. Steel 17 550,94 284,1
Experiments 150 540,15 459
of Bach and 1560 52220 552,720 | 522,073
Baumann
3. Zinc 60 235,34 330,8
Experiments 3600 112,78 75
of Le 86400 49,875 238,757 | 49,03
Chatelier
4. Copper 0 248,20 1668
Experiments 300 248,11 70,6 248,20 198,09
of Ludwig 37584000 198,09
5. Brass 0 505,04 2395
Experiments 2160000 294,20 187 505,04 150,19
of Volterra 9504000 156,90

5. Relaxation of stresses in viscoelastic and capillary-porous bodies.

Generalized Maxwell model

Considering the generalized Maxwell model representing a set of parallel
connected chains composed of a series of sequentially connected springs and a
viscous element. The rheology of such a body is determined by the known

00
relations: o= 0, , ¢, =&l +&{? , where ¢ — body deformation, ¢ — stress,

n=l1

no°

6,=E, ¢V =n,.D-&? — stress, E,,m, — spring stiffness and viscous
resistance coefficient of element n, gﬁ,'),gﬁlz) — elongation of the spring » and
displacement of viscous element n, D = d/dt — operator of differentiation.
It is given that a body is deformed ¢ = A(¢) at the time ¢ = 0 where A(¢) is
Heaviside function. The stress relaxation is determined by the function:
00
O(t) =D E, -exp(—t/t,), (10)
n=l1
where 1, =1, /E, - relaxation time of the element n. The value E, (n =1,

2, ...) determines the contribution of the element # in the total stress o(z).
Authors of many studies have found that multilevel relaxation processes in
the majority of the most varied systems are characterized by scale-invariant
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(fractal) distributions of characteristic time [18, 19]. Based on this, it is
assumed that the values E, and 1, are determined by the scaling laws having
the following form:

E,=Ey/\' = Ey-exp(-nM); A =In ), (11)
and
T, =To W =To exp(np);p=1Inp,, (12)
or
T, =Tpn". (13)

After taking the logarithm (11), the following formula can be obtained:
InE, =InEy—nh.

Thus, the time-scale invariance should linearly decrease at the same time as
n increases.

It contains logarithms of E, and t, values corresponding to several
hierarchical levels of mono- and polydisperse polystyrene sample. The exact
number of selected levels is not defined, so they have numbers n = m+k where
m is an unknown level number with the smallest (of the given) relaxation time,
0<k<8 k/m<<l.

Table 5
Relaxation characteristics of polystyrene
E —in 107 Pa,  in seconds

K monodisperse polystyrene polydisperse polystyrene

InE, ., Int, InE, ., Int,
1 5,46 5,04 5,22 5,44
2 6,08 4,34 5,55 4,76
3 5,92 3,67 5,95 4,09
4 6,20 3,01 6,19 3,54
5 6,34 2,20 6,39 2,91
6 6,50 1,14 6,68 2,33
7 6,95 0,40 7,03 1,51
8 7,03 -0,30 - -

It is easy to see that InE is really linearly dependent on the level number.
The linear dependence of the relaxation time logarithm on the level number
which may be the scaling law effect (12). However, it should be noted
immediately that using only the given data, any of the above possible
dependencies for relaxation times can not be preferable (laws (12) and (13)).
Indeed, k/m<<1 together with (13) allow to obtain the following formula:
Int,,; =Inty+v-In(m+k) = (Inty+v-Inm)+(v/m)-k which also gives a
linear dependence between the level number and relaxation time logarithm.

By choosing the scaling laws (11) and (12) and turning the sum (10) into an
integral, it is possible to obtain:
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D(1) = Ey - | exp(—xh)-exp(—t - exp(—xp) / Tg)dx .
0

To determine the asymptotic behavior of this integral at large values of
relaxation time, the variable z=exp(-xp) should be replaced:

E, 1 . ..
D(1) = —O-jz}‘/“’l -exp(—t-z/7ty)dz , hence, using Laplace method, it is
0
possible to obtain the following formula:

D) = (Eg /W) T/ ) (/7)Y (14)
where I'(x) — gamma function.
If the relaxation time is given by the law (13), then the following integral

can be obtained: ®(¢) = E; - [ exp(—xA L. x~¥)dx . It has to be noted that the
0 To

function xA—-L.x™V reaches its minimum if: x = x, = (tv/(1o1))" VD . By
To

replacing the variable, it is possible to obtain the following formula:

D(1) = Ey-x [ exp|—A(z + 27 /v)]dz,
0

1/(v+1)
A%
where 4= [”‘—VJ .
To

If #/ty — (4 — o) then asymptotic behavior of this integral is easily

determined using Laplace method that leads to an expanded exponential law
(Kohlrausch law [18, 19]):

D(t) = exp [—(t/ r)l/(V“)], (15)
where = (ro A /v) (4! )1/(v+1) :

Thus, the scale invariance of relaxation processes substantially simplifies
their description and allows to use a rather simple universal relaxation
functions having the form (14) and (15).

It should be noted that the relaxation function (14) with an exponent equal
to (-1/2) can be obtained using Gauss and Bueche molecular theory of
viscoelasticity [12]. However, this theory can explain neither the exponent
value deviation (which is often observed in practice) nor the origin of the
relaxation functions (15).

The scale invariance of the relaxation parameters distribution can serve to
explain the principle of temperature-time superposition [12] which can be
expressed using the following dependence:

O[(T)] = Ky (T) - 0. (16)
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where T, — some characteristic temperature, ®(¢) and ®,(t) — relaxation
functions at temperatures 7 and Ty, k, ki — coefficients depending on
temperature {k(Ty) =k (Ty) =1} .

Indeed, if it is assumed that the scaling parameters A, p are not dependent on
temperature then using (14), it is possible to obtain:

(Do(t) — EO(TO) q){ TO(T) t}

Ey(T) 70(To)
whence it follows (16) with &k = (@) sk = Eo(To) .
7o(To) Ey(T)

As an example, consider the stress relaxation curve in a monodisperse
polystyrene sample given in [12] (see Table 6 in which the value of depending
on time dimensionless values are specified).

Table 6
Stress relaxation curve in a monodisperse polystyrene sample
1, 10°s o 1,10°s o
0,000 1,00 1,015 0,24
0,062 0,78 1,169 0,22
0,092 0,63 1,415 0,20
0,215 0,53 1,600 0,18
0,277 0,45 1,785 0,16
0,400 0,40 2,092 0,15
0,492 0,36 2,800 0,12
0,646 0,31 3,569 0,09
0,800 0,28
The Fig.4 ©

presents

approximation

results of this curve

by means of

functions

c=exp(-t/1) and

& =exp[ (/7] 0 07 14 21 28 35 42

parameters of which Fig. 4. Relaxation curve approximation: ,

T and were . _— .
B 1 — relaxation function G = exp[(—¢/ T)B] , 2 — function

determined  using
methods  of  the
sensitivity theory [20, 21]. Apparently, the stress relaxation curve is quite well
described by the law of Kohlrausch. For this curve, the parameter B is equal to
0.5.

o =exp(—t/ 1)
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6. Rheological models of viscoelastic and capillary-porous bodies in

fractional derivatives

A viscoelastic/capillary-porous body which can be given using a set of
sequentially connected Voigt bodies (chains which consist of parallel
connected springs and a viscous element) should be considered now. The
stress 6 =0 -A(¢) applied to a body at the time ¢ = 0. Then the deformation

rate is determined using the expression:
O < 1
De(t)=—+0( > —-exp(-t/1,) .
n n=l nn

By determining the relaxation function W¥(r) as W={De—o,/n}/c,, the

following result is obtained W(¢)= i (L)-exp(—t/ 1,). The deformation
n=1\My
velocity with the arbitrary stress changing is determined using this function [8,

10]:
De(t) = ?+ [W(1-8)do(&). 17)
0

As it was shown above, it is assumed that there is the scale invariant
distribution of relaxation parameters.

Then (see (14)):
Y(@)=L-t ™, (18)
and (17) can be rearranged in the following form:
De(t) =(1/n)-o(t) + o.- D *Do(t), (19)

where y=1-y; =2/ a=LT(); L=F(x1)-rox‘/(no-u);

D7Xf(t) = L. f (t—&*  f(€)dE — fractional derivative of order (—y).
') o

Accepting that E, = E,-exp(—An), the following formula is obtained:

1, =(Mg / Eg)-exp[(X'+1)n] whence it follows that 0 <y; <1,0<y <1.

Thus, the time-scale invariance leads to the need to use rheological models
in fractional derivatives. It should be noted that such models are entered (on
other grounds) in [10, 11, 21].

The obtained result is also related to the research paper [22] establishing
that relaxation processes in dielectrics with fractal distribution of clusters are
described by means of fractional derivative equations. It is necessary to
emphasize that the rheological law with fractional derivatives is obtained here
as model including only different springs and viscous elements (unlike in the
research paper [11]) where the existence of an independent type of
deformation is postulated which can not be reduced to the sum of elasticity and
viscous friction.
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7. Relaxation processes in viscoelastic and capillary-porous bodies in

conditions of bulk deformation

During some experiments [13, 23] performance, it was observed that if the
cavity was filled with a structured liquid (for example, with oil containing
asphalt-resinous admixtures) and if a pressure excess was created in it and it was
sealed hermetically then the pressure in the cavity gradually and slowly
decreases to some stationary value. Relaxation processes of this kind are
associated with the rearrangement of macromolecules and clusters formed by
them. If a rapid compression is applied then such a system is influenced by
instantaneous elastic deformation whose value is determined using the bulk
elasticity coefficient of the medium being in the initial state. Then a slow
structural units rearrangement of varying complexity which (due to the sealing of
the medium) leads to decrease of its volume and, consequently, to the pressure
decrease. Considering structural units as viscoelastic elements, the mechanical
model given in Fig. 5 is proposed to describe the bulk relaxation processes. For
this model, the value B, characterizes the instantaneous volume compressibility
of the medium and the values E,,n,(n=1,2,..) describe elasticity of

structural units and viscosity forces that counteract their movement.

// /:,/ y / // ’/’/ pd 4 /'// / p : ,r'/ ,/"/' /’/ /|

E1 E: P

4 d WA AW

/ YA ] i < 16p
peee—— 1,
r ni n2 V4

,//'/ 7 7 //,,////'

Fig. 5. Mechanical model of volume relaxing body

Similar to the previous cases, it is easy to obtain:
t
=SV (1) Vo =Bg -dp(0) + [V, (1 —&)DSp(E)dE, (20)
0
where 6V — decrease of medium volume when the pressure is increased by

value 8p, V, — initial volume, W, () =p"- D, EL [I-exp(~t/1,)] — relaxation
n=l “~n

function, t, =m,/E,, B’ — quantity determining the volume changing due to

the displacement of the structural elements. Having differentiated (20) with

respect to time, the equation the viscoelastic medium (capillary-porous body)
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t
state is obtained: LDp =By -Dp+[¥(t-E)Dp(E)dE , where p — medium
Po 0
density. (LDp -1 ps Vj, YY) =B 0201 (L)exp(—t/ T,) -
Po Yo n=1\My

Again, taking the scaling laws (11), (12) and retaining previous notations, it
can be obtained in the same way as (19):

—-Dp(0) =By (Dp+fy-DDp). 1)
0
where By =B'-T'()- 10" /(1-Bo M) -

Thus, the equation for viscoelastic/capillary-porous bodies (media) state
may have fractional derivatives (it has to be noted that powers of derivatives in
(19) and (21) may differ, although the same notations is still held for them).

It is supposed that the pressure relaxation in a particular container is
described by the equation (21). The operation method [24, 25] is used to
identify this model. It is considered that during the process of pressure
relaxation, the density of the structured liquid in the container does not change,

i.e. Op(t) =pg-Bg-Op(0)-h(z) . By taking Sp(¢) =3p(0)-[Int—1]+3p,(¢) and
applying Laplace conversion (21), the following formula is obtained:

%U =1+, 5%, (22)
where  dp(f) — pressure measured during the experiment,

U :8;(0). I et -0p; (t)dteie. After converting (22), the following result is
P o

obtained: In (%U—l) =Inp, —yxInS.
Thus, if the bulk relaxation is in fact described by the model (21) then the
pressure curve should be straightened in coordinates Y(S) = In {%U —1}, InS.

The inclination of line can be found with respect to y .

8. Equation for relaxing liquid motion
If the motion of a relaxing medium in a pipe (capillary) of radius R is
considered then the rheological equation of the medium is presented as follows:
_5_V=£+a.D*X.5_G’ (23)
or n ot
where v(r, t) — component of velocity along the pipe axis, c — shear stress, 1

— viscosity of medium. By averaging (23) over the section of the pipe, the
following motion equation can be obtained within the frame of the quasi-
stationary approximation [26]:

2
po-{a—w+2aw}:—{a—p+a-Dx-a—p}, (24)
ot ox Ooxot
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where w — average cross-sectional velocity, 2a = 8n/ (pORz), Op/0x — pressure
gradient along the axis of the pipe.

It is possible to write down the continuity equation aa—p: ) aa—w with
t X

respect to (21) in the following form:

ap o (61?) 2 (aw)
Lyp -Dr L= o . C2.[), 25
p B py Po-Co {5, (25)

V2 _ “instantaneous” acoustic velocity in a medium.

where Cj = (Bopg)~

Excluding the velocity from (24) and (25), the equation for the relaxing liquid
motion can be obtained in the following:

2
(D+2a)(Dp+B,-D*Dp)=CE -(1+0-D"D) -[Z—fj. (26)
X

As far as is known, the filtration equation can be obtained by throwing away
the inertia term in (24) and taking 1/2a = k /n where now w — filtration rate, k

— permeability of the porous (capillary-porous) medium instead of (26); then it
is easy to obtain [27]:

2
Dp+B;-D X Dp=x(D*-D+1)- [a—fj, @7)
ox

where k =k /n™ B, - thermal conduction coefficient, m — porosity.

9. Conclusions

1. Thus, the distribution of relaxation time in viscoelastic and capillary-
porous media may have a scale-invariant (fractal) structure. To confirm this,
the spectra of relaxation parameters obtained during experiments carrying out
the stretching of polystyrene samples are given in the present paper. It is
shown that the indirect confirmation of the scale invariance of relaxation time
hierarchy can be the principle of temperature-time superposition according to
which the experimental relaxation functions obtained for different
temperatures can be combined with each other using the appropriate
coordinate axes stretching.

2. Taking into account the scale invariance of relaxation parameters
distribution substantially eases the modeling of multilevel relaxation processes
and allows to use a rather simple universal relaxation functions having the
form (14) and (15).

The present paper shows that in some cases, time fractality can lead to an
algebraic relaxation law and, thus, to the need to use rheological models and state
equations having fractional derivatives. It is precisely fractional derivatives that
can be used for modeling, in particular, bulk relaxation processes.

3. The derived equations of motion of relaxation media in tubes, capillaries,
porous media which take into account the time scale invariance of shear and
bulk deformation processes are given.
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Yoeniok FO.B., Yepeoniuenxo I1.11., Mockeimina A.C., Lluwuna M.O.
®PAKTAJBHA MACHITABHO-IHBAPIAHTHA CTPYKTYPA YACOBHUX IEPAPXIM
Y MPOLIECAX PEJAKCAIIIi TA PO3CIFOBAHHS EHEPIIi B’SI3KO-IIPYKHUX/
KANIVISIPHO-ITIOPUCTUX CEPEJJOBUIIL

SIBumia OpyxHOI Mmichasmii NpH HaBaHTAKCHHAX/ PO3BAHTAKCHHSAX B SA3KO-TPYXHHX Ta
KanULIPHO-TIOPUCTHX Tij, pelakcaliss HANpYKeHb Yy HHUX CYHNPOBOMKYETHCS HAKONMUYCHHAM i
PO3CiFOBaHHSM EHEprii, IO CIiJi BPaxOBYBaTH y TeOpii KOJIMBaHb, J€ TAKOK PO3IIISAAETHCS
HOBE/iHKa MarepiayiB mig aiero cuin. TIpyxHa micismis i penakcaliisi HarpyXeHb YTBOPIOKOThH
HEMOBOM MPOTHJICKHI CEHEPreTHYHi MpouecH. Y MepIioMy BHIAAKy, [PH MOCTiiiHOMY
HaBaHTaXEHHI fgedopmariis i poboTa 3 INIMHOM dYacy 30UIBIIYIOTBCS, @ y APYroMy — IpH
HocTiifHii fAedopManii HaBaHTAXKEHHs, a Pa3oM 3 Hew it poborta (eHepris) 3MeHIIyoThCs. 1pn
JIOCJIJDKCHHSIX [IOJ0 PO3CIFOBaHHS EHeprii IiJ dYac KOJMBaHb, TOOTO Yy Mexax Teopii
BHYTPILIHBOrO TEPTS MOXKHA BHSABHMTH, 110 OJHI TeOpii 3aCHOBaHI Ha 3aJCKHOCTI TEPTA BiX
IIBUAKOCTI KOJIMBAaHb, 1HIII — Bil aMIUTiTYAl. B ocHOBY GaraTbox po0iT mokiazaeHa rimore3a M.M.
JlaBuieHKOBa, 3rigHO 3 SIKOI0 CHEPrisl MPH KOJIMBAHHSX 3aJIOKUTh Bil aMIUIITYIM 1 HE 3aJIeKUTDH
Bix wmBuakocti. 3rimHo 3 aymkoro €.C. CopokiHa, TeOpis BHYTPILIHBOIO TEPTS IOraHO
Y3TOIDKYETBCSL 3 TEOPIsIMH, KOTP1 OMUCYIOTH CHAAKOBI BIACTHBOCTI MaTepiasiB (B’sS3KO-HPYKHHX
Ta KanuLIpHO-TOPUCTHX). lloMiueHa TEHIEHLIs: YUM Kpalie Teopis BigoOpaxkae CHaIKoBi
BJIACTHBOCTI, TUM Tiplie BOHA IPUJIAIITOBAHA U1 OIUCY CHEPreTUYHUX BTPAT IPU KOJIUBAHHAK. Y
JaHid poboTi 3pobiieHa crnpoda y3roJUKEHHs K 0e3MOoCepeHbO LMX TEOpid, TaK 1 YMCICHHHUX
JOCTIAIB 1O pyHHYBAaHHIO MaTepialiB, sKi ONHMCYIOThCSA Y JiTepaTypi. BusBisieTscs, mo s
YCYHEHHS TIPOTUPIY CJIiJ| BpaXOBYBaTH HABEACHY Yy AaHii poOOTi 3ayiekHiCTh 3MiHU aedopmarii
Tina 3 wmHOM 4Yacy. Iloka3aHo, 1o iepapxis 4aciB, KOTpi BH3HAYalOTh 3CYBHY H 00’eMHY
penakcauio y B’S3KO-IIPYXKHUX/ KalUIAPHO-TIOPHCTHX  CEPEIOBHINAX, Mae (paKTaibHy
(MacmTabHO-iHBapiaHTHY) CTPYKTYypy. IloMideHO, M0 HAasBHICTh YacoBOi (hpaKTalbHOCTI
HOJIETIIyE€  MOJCIIOBAHHS B SI3KO-IIPY)KHUX/  KaNUIIPHO-TIOPHCTUX T, HPUBOAIYH 10
yHIBEpCAJIbHUX pelakcauifHuX (YHKIIH JOCHTH MPOCTOro BHIY. 30KpeMa, y CEpeJOoBHINAX 3
MaclITaOHO-IHBapiaHTHUM  PO3MOJIIOM  PENaKCalliffHUX XapaKTepPUCTHK MOXJIMBUH IMPOSB
anreOpalyHOro 3aKOHY peJsiakcaril Uil B S3KO-IPYXHHUX/ KaNiIIPHO-TOPUCTUX MatepialiB, IO
HPU3BOAUTH [0 PEOIOTTIHUX MOJEJIeil Ta PIBHSHB CTaHY, SIKi MAIOTh MOXiAHI IPOOOBOro MOPSIIKY.

KirouoBi ciioBa: (pakTanbHICTh, MacuITaOHO-IHBapiaHTHAa CTPYKTypa, 4YacoBi iepapxii,
IPOLIECH, peNlaKkcalis, MCsais, PO3CiIOBAaHHS eHeprii, BHYTPILIHE TepTs, B’SI3KONPYXKHICTb,
KanuLIPHO-TIOPUCTI CEPEIOBHILA.

YK 539.3

Yoeniok F0.B., Yepeoniuenxo I1.11., Mockeimina A.C., Lluwuna M.A. ®pakTajbHa MacIITAOHO-
iHBapiaHTHa CTPyKTypa 4acoBHUX iepapxiii y npouecax pesakcauii Ta po3ciloBaHHs eHepril
B’SI3KO-TIPYKHUX/KANUISIPHO-NIOPUCTUX CepeloBHIN. AHAJi3 PpH3MKIiB npu 3abe3nevyeHHi
indopmaniiinoi 6e3nexu // Onip matepiaiiB i Teopist copyx: Hayk.-Tex. 30ipH. — K.: KHVBA,
2022. —Bumn. 110. - C. 277 —293. — Anri.

3pobnena cnpoba yszeodxcenns sk 6esnocepednvo meopiii MMM. Jasuodenkosa i €.C. Copokina,
maxk i qucieHHux 00Caioi6 No PYUHYEAHHIO MaAmepianis, 5Ki ORNUCYIOMbCs Y aimepamypi.
Busensiecmocs, wo 0as ycymenus npomupiy Cai0 6paxogyeamu  Hageoeny y Oauiu pobomi
3anexcHicme 3sMinu depopmayii mina 3 RAUHOM Yacy.

Tabu. 6. . 5. bi6miorp. 27 Ha3s.

UDC 539.3

Chovniuk Y.V., Cherednichenko P.P., Moskvitina A.S., Shyshyna M.O. The fractal scale-invariant
structure of a temporal hierarchy in the relaxation and energy dissipation processes in a visco-
elastic/capillary-porous medium// Strength of Materials and Theory of Structures: Scientific-and-
technical collected articles.— K.: KNUBA. 2022. — Issue 110. — P. 277 —293.

The article coordinates the theories of M.M. Davydenkov, E.S. Sorokin and numerous experiments
on the destruction of materials described in the scientific literature. It turns out that in order to
remove contradictions, it is necessary to take into account the dependence of the change in the
deformation of the body with time.

Table 6. Fig. 5. Ref. 27
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