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The paper considers a parametric optimization problem for the bar structures formulated as
nonlinear programming task, where the purpose function and non-linear constraints of the
mathematical model are continuously differentiable functions. The method of the objective
function gradient projection onto the active constraints surface with simultaneous correction of the
constraints violations has been used to solve the parametric optimization problem. A discretization
technique for the design variables that should vary discretely has been proposed. The discretization
of the optimal design solution obtained in the continuous space of the design variables is
performed by the purposefully selecting discrete points around the point of the continuous
optimum. The comparison of the optimization results presented by the paper demonstrates that
improved gradient method together with proposed discretization technique for the discrete design
variables converges to better solutions comparing to meta-heuristic algorithms.
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Introduction. Over the past 50 years, numerical optimization and finite
element method have individually made significant advances and have
together been developed to make possible the emergence of structural
optimization as a potential design tool [4, 6, 21]. In recent years, great efforts
have been also devoted to integrate optimization procedures into the CAD
facilities. With these new developments, lots of computer packages are now
able to solve relatively complicated industrial design problems using different
structural optimization techniques [9, 10].

Applied optimum design problems for the bar structures in some cases are
formulated as parametric optimization problems, namely as searching problems
for unknown structural parameters that provide an extreme value of the specified
purpose function in the feasible region defined by the specified constraints [24].
In this case structural optimization performs by variation of the structural
parameters when the structural topology, cross-section types and node type
connections of the bars, the support conditions of the bar system, as well as
loading patterns and load design values are prescribed and constants.
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Mathematical model of the parametric optimization problem of the structures
includes the set of design variables, the objective function, as well as constraints
reflected in general case non-linear interdependences between them [5, 15].

Although many papers are published on the parametric optimization of the
structures, the development of a general computer program for the design and
optimization of building structures according to specified design codes remains
an actual task. Therefore, the main research goal is the development of
mathematical support and numerical algorithm to solve parametric
optimization problems of the building structures with orientation on software
implementation in a computer-aided design system.

One of the effective methods to solve parametric optimization problems for
building structures is the gradient projection non-linear methods since the
purpose function and non-linear constraints of the presented mathematical
model are continuously differentiable functions, as well as the search space is
smooth. Thus, the method of objective function gradient projection onto the
active constraints surface with simultaneous correction of the constraints
violations has been successfully used for parametric optimization of cross-
sectional dimensions for cold-formed steel structural members [1], steel trusses
[18], as well as lattice portal frames [23].

When applying gradient projection methods, the search for the optimum
point is performed in a continuous space of the design variables only. If a
nonlinear programming problem is solved where some (or all) design variables
vary discretely (for example, according to a defined set of the possible values),
then after obtaining a continuous optimal solution, the question of its
discretization arises. That is why, the following research tasks are states: to
propose a discretization technique for the design variables that vary discretely
allowing using the gradient projection methods to parametric optimization
problems with mixed (discrete and continuous) design variables; to
demonstrate the effectiveness of the proposed discretization technique by
comparing obtained optimization, as well as the results presented by the
literature and widely used for testing.

Parametric optimization problem formulation for bar structures. Let us
consider a parametric optimization problem of a structure consists of the bar
members, which can be formulated as presented below: to find optimum
values for geometrical parameters of the structure, bar’s cross-section sizes and
initial pre-stressing forces introduced into the redundant members of the bar
system, whose provide the extreme value of the determined optimality
criterion and satisfy all load-bearing capacities and stiffness requirements. We
assume, that the structural topology, cross-section types and node type
connections of the bars, the support conditions of the bar system, as well as
loading patterns and load design values are prescribed and constants.

The formulated parametric optimization problem can be stated as a non-
linear programming task in the following mathematical terms: to find unknown
structural parameters

X={x}',i=LN,, (D
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providing the least value of the determined objective function:

£ =f(X7)= min f(X). @

in feasible region (search space) 3 defined by the following system of
constraints:

tp()?)={¢o,,()?)£0ln=m}, 3)

where X — vector of the design variables (unknown structural parameters);
N, — total number of the design variables; f, ¢, — continuous functions of

the vector argument; X~ — optimum solution (the vector of optimum values of
the structural parameters); f — optimum value of the optimum criterion

(objective function); N,. — number of constraints-inequalities ¢, ()? ), which

define a feasible region in the design space 3.
The vector of the design variables can include as components unknown

ol T
geometrical parameters of the structure X, = {X G’a} ,a=1LN as well as

X,G

. . g2 T
unknown cross-sectional sizes of the structural members X ={X Cs’ﬁ} ,

Jéj =L, Nyt

- - - T
X:{XG,XCS} ,i=LN,, (4)
where N, . is the total number of the unknown cross-sectional sizes of the
structural members, N, ; is the total number of the unknown parameters of

the structural geometry or shape, Ny ; + N, o =N,
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Fig. 1. Unknown parameters of a structure considered as design variables

The specific technical-and-economic index (material weight, material cost,
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construction cost etc.) or another determined indicator can be considered as the
objective function taking into account the ability to formulate analytical
expression of the purpose function depending on the design variables X . In
some cases the material weight of the structure is considered as the objective
function Eq. (2) of the optimization problem:
M*=M()?*)=)?rrii£1 M( X, Xes). )
Load-bearing capacities constraints (strength and stability inequalities) for all
design sections of the structural members subjected to all design load case
combinations at the ultimate limit state as well as displacements constraints
(stiffness inequalities) for the specified nodes of the bar system subjected to all
design load case combinations at the serviceability limit state should be included
into the system of constraints Eq. (3). Additional requirements, whose describe
structural, technological and serviceability particularities of the building
structure under consideration, can be also included into the system Eq. (3).
Design internal forces in the bar structural members used in the strength and
stability inequalities of the system Eq. (3) are considered as state variables

depending on design variables X and can be calculated from the following
linear equations system of the finite element method:

K(A_}G’A_}CS)XEULS,I{=1_5ULS,k(A_;G)’ kzﬁ, (6)
where K()? G,)? CS) is the stiffness matrix of the finite element model of the
bar structure, which should be formed depending on the design variable
X = ()?6, )?CS ) ' of the optimization problem Eqgs. (1)— (3); Py (/\76) is

the column-vector of the node’s external loads for k™ design load case
combination corresponded to the ultimate limit state, which should be formed
depending on unknown (variable) parameters of the geometrical scheme
(shape) X, o of the considered bar structures; Z,,, is the result column-vector
of the node displacements for & ™ design load case combination corresponded
to the ultimate limit state, Z5, = Zps ()? pss )?CS); N& s the total

number of the design ultimate load case combinations. In this way, for each i "
design section of ;™ bar finite element subjected to & ™ ultimate design load

case combination the design internal forces (axial force N, ()? ), bending

-

moments M, ()? ), M., (X )and corresponded  shear  forces

0. i ()? ), O, i ()? )) can be calculated depending on node displacement

column-vector Z, .

Node displacements of the bar structure used in stiffness inequalities of the
system Eq. (3) are also considered as state variables depending on design
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variables X and can be calculated from the following linear equations system
of the finite element method:

K(A_}G’A_}CS)XESLS,I{=13SLS,k(/\_;G)’ k:l’NLSéSC’ (7
where pg, ()? G) is the column-vector of the node’s external loads for & "
design load case combination corresponded to the serviceability limit state,
which should be formed depending on unknown (variable) parameters of the
geometrical scheme (shape) X o of the considered bar structures; Zg;, is the
result column-vector of the node displacements for & ™ serviceability design
load case combination, Zg, = Zppy s ()? o X CS) ; N, is the total number of

the design serviceability load case combinations. For each m™ node of the
finite element model subjected to k™ serviceability design load case

combination the design vertical o, ,, ()? ) and horizontal &, ()? )

displacements can be calculated depending on node displacement column-
vector Zg g, .

The system of constraints Eq. (3) should cover strength and stability
constraints formulated for all structural members of the bar structure subjected
to all design load case combinations corresponded to the ultimate limit state. In
case of parametric optimization of truss structures as particular sub-case of the
bar structures the following normal stresses verifications should be included in
the system of constraints:

Mjk—()?)_lg(’;vﬁm,wc:@, @®)
Aj (XCS)O-t,ult

M—]ﬁO-Vj:]N Vi = LN o
Aj (X/CS)O-L',ult ’ B stVree >

where N, is the total number of the truss structural members; 4, ()? CS) is the

. . th
cross-section area of ;™ structural member of the truss structure; o, , and

tult

o, ., are the allowable tension and compression normal stresses respectively;

cult
N, x ()? ) and N, , ()? ) are the tension and compression axial force

respectively acting in j ™ structural member of the truss structure subjected to

k ™ ultimate load case combination calculated from the linear equations system
of the finite element method Eq. (6). In case of statically indeterminate truss
structure the value of the axial force should be calculated depending on the

variable geometrical parameters of the structure X . and variable cross-

sectional dimensions of the structural members X, .
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The following flexural and torsional-flexural buckling verifications should
be included in the system of constraints Eq. (3) formulated for all structural
members of the truss structure subjected to all ultimate load case combination,
namely:

Nl T i, o)
Py (XG X )A«f ( cs )G“’“”

] ]avu‘k( )4 ~1<0; Vj=LN,, Vk=1LN% (11)
?.; (XG’XCS )A«f (XCS )O-"’””

VX)L g =T, )

?..; (/\76 > ‘X/CS ) 4; (XCS ) O it
where ¢, ()? o Xes ) and ¢_, ()? s X s ) are column’s stability factors

corresponded to flexural buckling relative to main axes of inertia and
calculated according to the specified design code depending on the design

lengths |/ ly.;, cross-section type and cross-section geometrical

oy,
properties for the ;™ structural member; %j()?w;(cs) is the column’s

stability factor corresponded to torsional-flexural buckling and calculated
according to the specified design code depending on the design lengths

Ly, ()?G), ly.; ()?G), lyr; ()?G), cross-section type and cross-section
geometrical properties for j ™ structural member. The flexural buckling factors

%J()?G’)?CS) and ¢_, ()?G,)?CS), as well as torsional-flexural buckling
factor %j()?w;(cs) should be calculated depending on the variable

geometrical parameters of the structure X . and variable cross-sectional

dimensions of the structural members X, .

In some cases the system of stability constraints Egs. (10) — (12) can be
simplified by considering the flexural Euler’s buckling verifications only. The
following flexural Euler’s buckling verifications can be included in the system
of constraints Eq. (3) formulated for all structural members of the truss
structure subjected to all ultimate load case combinations, namely:

N (¥) _
- ———-1<0; Vj=1L,N,, Vk=1,N/%, (13)
Aj (Xcs )Uz'r,min,j (XG » Xes )

where o

is the minimum Euler’s buckling critical stresses calculated as

cr,min, j

presented below:

- -

O & min, j (XG s X s ) = min {Gz‘r,y,j (/\_}G > /\_}CS )s Oz ()?G > )?cs )} > (14)
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il

-——, (16)
(%)

where E is the modulus of material elasticity; iy’j()a(cs) and iw.()a(cs) are

the radiuses of inertia in the main planes of inertia calculated depending on the
variable cross-sectional dimensions of the structural members X .

In case of equal design lengths in the main planes of inertia
Ly, (/\76 ) =l ()?G ) =l,.; ()?G) , the minimum Euler’s buckling critical
stresses can be determined by the following equation:

2 -2 v
T E- lmin,j (XCS)
— = (17)
(%)

-

Ot min,j (XG > /\_}CS ) = P2

)
where i, ; ()? CS) is the minimum radius of inertia calculated depending on

the variable cross-sectional dimensions of the structural members X . Taking

into account Eq. (17) the Euler’s buckling constraint-inequality Eq. (13) can be
rewritten as follow:

N (X)E (%)
T

TE-A (‘\—}CS)I':MJ ()_(:CS) ~1=0 (18)
or
Nu,jk(X).l;’](XG)_lgo’ "

where « is the factor determined depending on the cross-sectional type.

The system of constraints Eq. (3) should also cover the displacements
constraints (stiffness inequalities) for the specified nodes of the truss structure
subjected to all design load case combinations at the serviceability limit state.
The following horizontal and vertical displacements constraints should be
included into the system of constraints Eq. (3) formulated for nodes of the
truss structure subjected to all serviceability load case combination, namely:

(- (X) B ) val _ SLS 20
———-1<0; Vm=LN, ; Vk=1N, (20)
0. (X)_ ) _ . _ SLS 21
————=-1<0; Vm=LN, ; Vk=1L,N,, 21

uz,m
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where 6

x,mk

()? ) and &, ()? ) are the horizontal and vertical displacements

respectively for m ™ node of the truss structure subjected to k™ serviceability
load case combination calculated from the linear equations system of the finite
element method Eq. (7); 6,., and J_ are the allowable horizontal and vertical

displacements for m " structural node; N, is the total node number in structure.

Additional  requirements  describing  structural, technological and
serviceability particularities of the considered structure can be also included into
the system Eq. (3). In particular these requirements can be presented in the form
of constraints on lower and upper bound values for the design variables, namely:

X
=503 Vi=LN,, (22)

l

X _
X—Z/—ISO;V1=1,NX, (23)

1

where X" and X" are the lower and upper bounds for the : ™ design variable
X

Parametric optimization algorithm based on the gradient projection
method. The parametric optimization problem stated as non-linear
programming task by Eq. (4), Eq. (5), Eq. (8), Eq. (9), Egs. (10)—(12) or
Eq. (19), Egs. (20) — (23) can be successfully solved using gradient projection
non-linear methods since the purpose function and non-linear constraints of the
presented mathematical model are continuously differentiable functions, as
well as the search space is smooth. The method of objective function gradient
projection onto the active constraints surface with simultaneous correction of
the constraints violations ensures effective searching for solution of the non-
linear programming tasks [19]. The gradient projection method operates with
the first derivatives or gradients only of both the objective function Eq. (5) and
constraints Eq. (8), Eq. (9), Egs. (10) — (12) or Eq. (19), Egs. (20) — (23). The
method is based on the iterative construction of such sequence Eq. (24) of the

approximations of the design variables X ={XZ}T, 1=1N, , that provides
the convergence to the optimum solution (optimum values of the structural
parameters) [22]:

X, =X +AX,, (24)

where )?t ={XZ}T, 1=1,N, is the current approximation to the optimum

solution X" that satisfies constraints-inequalities Eq. (8), Eq. (9), Egs. (10) —
(12) or Eq. (19), Egs. (20) — (23) with the extreme value of the objective

function Eq. (5); AX, ={AX }T, t=1,N, , is the increment vector for the

current values of the design variables X, ; ¢ is the iteration’s index.
Let present the following numerical algorithm to solve the parametric
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optimization problem for truss structures formulated above.
Step 1. Describing an initial design (a set of design variables) and initial
data for structural optimization.

- — - T
The design variable vector X, = (X 6» Xcs )k has been specified, where k

is the iteration index, k =0. The structural topology, cross-section types and
node type connections of the bars, the support conditions of the bar system, as
well as loading patterns, load case combinations and load design values are
prescribed and constants.

Initial data for optimization of the considered steel structure are design
strength for steel member (allowable stresses taken into account safety
factors), factors to define flexural design lengths / [, . for all column

of.z,]
structural members; allowable values for horizontal and vertical displacements
0,., and 6, , of the specified nodes of the considered steel structure; lower

ef.y.j?

X" and upper XY bounds for the design variables; as well as specified

objective function (X )
Step 2. Calculation of the geometrical and design lengths for all structural
members.

The geometrical lengths /; of all structural members are calculated based on
the node coordinates of the considered steel structure. The latter depend on the
unknown (variable) geometrical parameters of the structure X - The design
lengths / /

calculated geometrical lengths /; and initial data relating to the design length

of all column structural members are calculated using

o.y.j> Tefz.j

factors. The latter are constant during the iteration process presented below.
Variation of the geometrical lengths /, and corresponded design lengths /

l

ef.y.j°

..., on the further iterations has been performed based on the current values of

the variable (unknown) parameters X . of the geometrical scheme.

Step 3. Calculation of the cross-section dimensions and geometrical
properties for all design cross-sections.

Geometrical properties of the design cross-sections (areas, moments of
inertia, elastic section moments, radiuses of inertia, etc.) have been calculated
depending on the current values of the unknown (variable) cross-section

dimensions X .

Step 4. Linear structural analysis of the considered truss structure.
For each m™ node of the finite element model subjected to k™
serviceability load case combination the displacements and rotations, as well

as the design horizontal & ()? ) and vertical &_, ()? ) displacements can be

x,mk

calculated using the linear equations system of the finite element method
presented by Eq. (7).
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For each i™ design section of ;™ structural member subjected to k™

ultimate load case combination the design internal forces can be calculated using
the linear equations system of the finite element method presented by Eq. (6).

Step 5. Calculation of the state variables (normal stresses, buckling factors
or buckling stresses etc.).

The value of the normal o, ()? ) stresses at the specified cross-section

point has been calculated depending on the axial force acting in i ™ design
section of ;™ structural member subjected to k™ ultimate load case
combination as presented by the design code.

The flexural buckling factors %’j(yw;{m)’ ®.; ()?G,)?CS) have been

calculated depending on the corresponded design lengths, cross-section type
and cross-section geometrical properties for the structural members according
to the considered design code.

Step 6. Verifications of the constraints and construction the set of active
constraints numbers A .

Verification the constraints Eq. (8), Eq. (9), Egs. (10) — (12) or Eq. (19) has
been performed for all ultimate load case combinations and all design cross-
sections of all structural members. Verification the constraints Egs. (20) — (21)
have been also conducted for all serviceability load case combinations and all
design structural nodes. Additional requirements Eqgs. (22) — (23) on the lower
and upper bounds for the design variables have been also verified.

Step 7. Calculation the increment vector for the current design variables and
determination the improved approximation to the optimum solution. The

increment vector AX, for the current design variables values X, has been
calculated according to resolving equations of the method of objective function
gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations described by the paper [17]. The
improved approximation X ., to the optimum solution has been determined
according to Eq. (24).

Step 8. Stop criteria verification of iterative searching for the optimum
solution. If all constraints are satisfied with appropriate accuracy, as well as
one of the stop criteria described by the paper [17] is also satisfied, then
transition to the step 9 has been performed. In contrary case return to the step 1
has been conducted with k < k+1.

Step 9. Discretization the optimum solution X , obtained in the continuum
space of the design variables.

Step 10. Optimum parameters of the truss structure is X . with the optimum
value of the objective function (X )

Discretization technique for the design variables that vary discretely.
When moving along the direction of searching for the optimum point, hitting
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to the nodes of a discrete grid is associated with significant complications of
the optimization algorithm and may lead to deterioration of the optimization
process convergence. Therefore, when applying gradient methods, the search
for the optimum point is performed in a continuous space of the design
variables only. If a nonlinear programming problem is solved where some (or
all) design variables vary discretely (for example, according to a defined set of
the possible values), then after obtaining a continuous optimal solution, the
question of its discretization arises. The discretization of the optimal design
solution obtained in the continuous space of the design variables can be
performed by purposefully selecting discrete points around the point of the
continuous optimum.

Step 1. Let X" is the optimum structural design obtained in the continuous
space of the design variables, moreover the design variable set covers as

C’l}r, x =1,N,., (for example, variable

continuous design variables X, .= {X

parameters of the geometrical scheme of the truss structure), as well as design

*

variables which should vary discretely X = {X .5 }T, 0= m (for example,
variable size of the cross-section sizes of the structural members):
X ={)? X D}, where N,. is the total number of the continuous design
variables; N, is the total number of the design variables which should vary
discretely.

Step 2. For each design variable X, X, € X, , two neighbor values can be

specified from the predefined set of the possible discrete values: X, <X,

and X, > X, where X/} is the neighbor value on the left (lower) and X,
is the neighbor value on the right (upper).

*

Step 3. Among all design variables )?D ={XD’5}T, 6=1N,,, which

should vary discretely, the one X p , X ; eX ~, with the largest length of the
purpose function gradient is selected:

o TN
Ly, =max{aX* }, Vé=LN,,; (25)

D.,s
and further discretized at the level of neighbor lower discrete value:
X, < X, . The design variables vector should be truncated accordingly:

X «X —{X p} Total number N,, of the design variables which should
vary discretely is decreased respectively: N,, <— N, —1.

Step 4. Searching for the optimum point with truncated design variable
vector X" is performed. If at the same time (when X , < X') the optimum
solution does not exist, then the discretization of such variable should be
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performed at the level of neighbor upper discrete value (X, < X", ) with the

further searching for the optimum point.
Third and fourth steps are carried out until the design variables which

will be fully discretized,

should vary discretely X ={X;’5}T, 5§=1LN

XD >

namely while N, >0.

Geometry and cross-sectional optimization of a 18-bar cantilever truss.
A parametric optimization methodology presented above has been realized in
software OptCAD [18, 23]. This software provides solutions to a wide range of
problems, namely: (i) linear static analysis of bar structures; (ii) verification of
the load-bearing capacity of the structural members according to the specified
design code; (iii) searching for values of the structural parameters when
structure complies with design code requirements and designer’s criterions;
(iv) parametric optimization of the steel bar structures by the determined
criterion.

In order to estimate an efficiency of the new methods, techniques or
algorithms, a comparison with alternative methods or algorithms presented by
other authors using different optimization techniques should be performed.
Criteria to implement such comparison are described, e.g. by Haug & Arora
[13] and Crowder et al. [3]. Many of these criteria, such as robustness, amount
of functions calculations, requirements to the computer memory, numbers of
iterations etc. cannot be used due to lack of corresponded information in the
technical literature. Therefore, an efficiency estimation of the proposed
methodology for solving parametric optimization problems presented above
will be based on the comparison of the optimization results obtained using the
proposed numerical algorithm, as well as of the results presented by the
literature and widely used for testing. The initial data and mathematical models
of the parametric optimization problems considered below were assumed as
the same as described in the literature.

Figure 2 shows a 18-bar cantilever truss designed for the vertical loads
P =20 kips = 88.9644 kN (only one design load case combination). Initial data
for truss optimum design are: material density
p=0.11Ib/inch’® =27.8014 ton/m’, coefficient of elasticity
E = 10" ksi = 6894.76 kN/cm®. The allowable displacements in the horizontal
and  vertical direction for all  nodes are  limited by
Oux = 0, = £10 inch = £254 mm. The absolute value of the allowable normal
stresses in tension and compression are oy, = 0., = 20 ksi = 137.895 N/mm?.

The geometry and cross-sectional optimization problem for 18-bar
cantilever truss has been formulated as searching for optimum values of the
coordinates for all nodes of the truss lower chord, as well as for optimum
values of the cross sectional areas for all truss members. Variable unknown

-

cross-sectional areas X ., = {4, A2, A3, A4}, as well as unknown horizontal

and vertical coordinates for all truss lower chord nodes X ¢ = 1%, 73, Xs, 25, X7,
z7, X9, Zo}, were considered as design variables Eq. (4). Table 1 presents the
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lower and upper bounds for the design variable and member grouping for the
variable cross-section areas.

oow to. o

635 cm

%@D © @ ® )

\, 635 cm L 635 cm L 635 cm \, 635 cm L 635 cm |,
L of + + of A

Fig. 2. Design scheme of the 18-bar cantilever truss (with specified numbers of nodes
and numbers of bars)

Table 1
The lower and upper bounds for the design variable and member grouping for
the variable cross-section areas of the 18-bar cantilever truss problem

. Truss .
Design Unit Lower Upper member’s Type of design

variable bound bound variable
number

discrete with

2
A, | cm 12.9032 | 140.3223 1,4,8,12,16 step 1.6129 cm’

discrete with

2
A; | cm 12.9032 | 140.3223 | 2,6,10,14,18 step 1.6129 cm’

A<l

cs 2 discrete with
Az | cm 12.9032 | 140.3223 3,7,11,15 step 1.6129 om?

discrete with

2
Ay | cm 12.9032 | 140.3223 5,9,13,17 step 1.6129 cm’

X3 cm 1968.5 3111.5 - continuous

Z3 cm -571.5 622.3 — continuous

X5 cm 1333.5 2476.5 - continuous

¥ Zs cm -571.5 622.3 — continuous
Gl xq cm 698.5 1841.5 - continuous
z7 cm 571.5 622.3 — continuous

X9 cm 63.5 1206.5 - continuous

Zg cm 571.5 622.3 — continuous

The optimum values of the design variables are presented by Table 2 (see
column 2). It should be noted that searching for the optimum point has been
firstly realized in the continuous design space.

The optimum continuous values for coordinates of the truss lower chord are
presented by Fig. 3. The optimum structural weight for the considered 18-bar
cantilever truss is 2043.852 kg. There are 10 active constraints in the optimum
point, namely the flexural Euler’s buckling verification Eq. (19) for 2™, 6", 7%,
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10" 11 14™ 15™ and 18™ truss members (see Fig. 2), as well as tension
stress verifications Eq. (8) for 16™ and 17™ truss members.

e
@ ©

263.7195cm
) el
o

66.4012 cm

557.5243 cm
S

v
387.5405 cm

A0

511.826 cm

1048.0344 cm
1631.0945 cm
2313.0726 cm

Fig. 3. Optimum coordinates values for all nodes of the 18-bar cantilever truss lower chord

m\.‘imofstmcture‘ | B |
alv] ale| alv| 22002 [F32 | @] 2ol

M| | ol | tay| e o=t 2] | | |

Fig. 4. Optimum truss layout for 18-bar cantilever truss (OptCAD screenshot)

The variable cross-sectional areas of the truss members have been further
discretized based on the proposed discretization technique presented above. At
the first step the purpose function gradient relative to the variable cross-section
areas of the truss structural members was {0.710440, 1.031737, 0.157964,
0.143727}, where the component corresponded to the variable 4, had the
maximum value. That is why, the variable 4, has been discretized firstly at the
level of neighbor value on the left (lower) 4, = 114.5159 cm®. Than searching
for the optimum point in the design space of the variable cross-sectional areas
of the truss structural members {4, 43, A4}, as well as variable parameters of
the truss geometry {x;, z3, Xs, zs, X7, Z7, X9, Zo} has been performed. As a result
the optimum truss design with structural weight 2043.905 kg has been
obtained (see 3™ column of Table 2).
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Table 2
Optimum truss solution in continuous design space, as well as mixed design
space
Optimum |  Optimum solution in the mixed design space
Design variable solution in
continuous |  Step 1 Step 2 Step 3 Step 4
space
1 2 3 4 5 6
A;, e’ 80.59012 | 80.58439 | 80.645 80.645 80.645
A,, e’ 114.95256 | 114.5159 | 114.5159 | 114.5159 | 114.5159
As, e’ 34.11417 | 34.68031 | 34.70766 | 35.4838 35.4838
Ay, e’ 23.86916 | 23.94215 | 23.84594 | 23.84583 | 24.1935
X3, cm 2315.42400[2313.12283|2312.99463|2313.27053(2311.89259
z3, CM 471.46299 | 468.63030 | 468.55013 | 468.72269 | 467.85908
X5, Cm 1634.69376[1631.16983|1630.97784{1630.06180| 1628.59515
Zs5, CM 374.30071 | 371.29859 | 371.25254 | 371.24689 | 369.69831
X7, cm 1051.21702(1048.09826|1047.93536| 1046.4583 | 1045.74314
Z7, CM 249.80907 | 247.41659 | 247.52573 | 247.72279 | 250.77424
Xg, CM 513.70153 | 511.86057 | 511.77234 | 511.77234 | 511.77235
Zg, CM 78.10165 | 77.32506 | 77.70894 | 77.70894 | 77.70894
Weight, kg [2043.85212|2043.90517|2043.90744|2047.48540| 2049.60990
Count of 'flctlve 10 11 D 11 11
constraints
The maximum
constraint  [2.073x10”|1.039x10™ | 1.980x10°|5.372x10%| 3.753x10™*
violation

At the second step the purpose function gradient relative to the variable

cross-section areas of the truss structural members was {0.708205, 0.161196,
0.146550}, where the component corresponded to the variable 4; had the
maximum value. That is why, the variable 4; has been discretized secondly at
the level of nearest discrete value A; = 80.645 cm®. Than searching for the
optimum point in the design space of the variable cross-sectional areas of the
truss structural members {43, A4}, as well as variable parameters of the truss
geometry {x;, z3, Xs, zs, X7, Z7, X9, Zg} has been performed. As a result the
optimum truss design with structural weight 2043.907 kg has been obtained
(see 4™ column of Table 2).

At the third step the purpose function gradient relative to the variable cross-
section areas of the truss structural members was {0.161319, 0.145911}, where
the component corresponded to the variable 4; had the maximum value. That
is why, the variable 4; has been further discretized at the level of nearest
discrete value 45 = 35.4838 cm’. Than searching for the optimum point in the
design space of the variable cross-sectional area of the truss structural
members {44}, as well as variable parameters of the truss geometry {x;, z3, xs,
zs, X7, Z7, X9, Zg} has been performed. As a result the optimum truss design with
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structural weight 2047.485 kg has been obtained (see 5™ column of Table 2).

Finally, at the fourth step the variable A4 has been further discretized at the
level of nearest discrete value A44=24.1935c¢cm’ Than searching for the
optimum point in the design space of variable parameters of the truss geometry
only {x3, z3, xs, zs, X7, 27, X9, Z9} has been performed.

Table 3
Optimization results for the 18-bar cantilever truss problem
%’eiv . Ch Farqad Thi
. ishna- . en arqa is
Deglgn moorthy Gholizadeh [8] et al. [%] et a1(.1[7] study
variable [20]

GA PSO | SCPSO | TLBO ABC GPM
Ay, cm’ 80.645 | 77.4192 | 77.4192 | 80.6450 | 80.6450 | 80.6450
Ay, cm” | 104.8385 [119.3546|111.2901] 116.1290 | 114.5159 [ 114.5159
A, cm’ 51.6128 | 33.8709 | 40.3225 | 33.8709 | 37.0967 | 35.4838
A, cm’ | 25.8064 |29.0322 | 30.6451 | 24.1935 | 24.1935 | 24.1935

X, cm | 2265426 |2296.111(2293.402(2322.8910] 2319.013 |2311.893

z3, cCm 369.062 | 471.883 | 443.789 | 479.5342 | 466.5487 |467.8591

Xs, cm 1550.924 11638.089|1607.091]1644.2715/1632.4943|1628.595

Zs, Cm 300.228 | 368.222 | 358.891 | 380.1948 | 365.4859 |369.6983

X7, cm 978.916 |1087.678|1034.116|1058.7507| 1045.697 | 1045.743

z7, cm 184.15 | 255.428 | 218.270 | 257.3833 | 246.7550 |250.7742

X9, CI 468.376 | 532.236 | 502.087 | 518.5791 | 510.3081 |511.7724

Zg, CM 59.436 61.912 | 50.316 | 80.4215 | 76.7564 | 77.7089

Weight, kg| 2094.145 |2090.608 2068.894 | 2053.280 | 2057.98 | 2049.61

A, cm’ 80.6450 | 83.8708 | 79.0321 | 79.0321 | 80.6450 | 80.6450

Ay, cm® | 117.7417 | 117.742 [117.7417] 117.7417 | 116.1290 | 114.5159

As, cm’ 35.4838 | 35.4838 | 30.6451 | 30.6451 | 33.8709 | 35.4838

Ay, cm’ 24.1935 | 19.3548 | 27.4193 | 27.4193 | 24.1935 | 24.1935

X3, cm 2369.82 | 2319.02 |2328.926| 2338.862 |2324.5920|2311.893

z3, cm 477.52 | 462.28 |487.6063| 434.1165 | 478.6536 |467.8591

Xs, cm 1671.32 | 1645.92 [1661.729| 1621.885 [1645.1308|1628.595

Zs, Cm 375.92 386.08 | 396.494 | 355.270 | 378.2959 |369.6983

X7, cm 1071.88 | 1059.18 | 1075.69 | 1039.917 [1058.3781|1045.743
z7, cm 254 261.62 ]260.5303| 233.106 | 255.5695 [250.7742
X9, CI 520.7 518.16 [527.0983| 504.889 | 517.7244 |511.7724
Zg, CM 81.28 99.06 | 72.5907 | 74.940 | 79.5078 | 77.7089
Weight, kg| 2074.859 | 2062.89 |2058.750| 2065.259 | 2053.798 | 2049.61

As a result the optimum truss design with structural weight 2049.61 kg has
been obtained (see 6™ column of Table 2).

The considered geometry and cross-sectional optimization problem for 18-
bar cantilever truss has been also solved in the papers [2, 7, 8, 11, 12, 14, 16,
20] using the different optimization methods and calculation techniques such
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as genetic algorithm (GA), improved genetic algorithm (IGA), Jaya algorithm
(JA), group search optimization (GSO), particle swarm optimization (PSO),
sequential cellular particle swarm optimization (SCPSO) as well as force
method and genetic algorithm (FMGA) and teaching learning-based
optimization (TLBO). Table 3 presents the results of the performed
optimization for the 18-bar cantilever truss. As you can see, the optimum truss
design obtained using the gradient projection method is better than the cited
references [2, 7, 8, 11, 12, 14, 16, 20].

Conclusion. The results of the presented study can be formulated as follow:

1. The paper considers geometry and cross-sectional sizes optimization
problems for the truss structures formulated as nonlinear programming task
with discrete and continuous design variables.

2. The method of the objective function gradient projection onto the active
constraints surface with simultaneous correction of the constraints violations
has been used to solve the presented parametric optimization problem in the
continuous design space.

3. A discretization technique for the design variables that vary discretely has
been proposed for parametric optimization problems stated as non-linear
programming task where the purpose function and non-linear constraints of the
mathematical model are continuously differentiable functions. The
discretization of the optimal design solution obtained in the continuous space
of the design variables is performed by the purposefully selecting discrete
points around the point of the continuous optimum.

4. The comparison of the optimization results presented by the paper
demonstrates that improved gradient method together with proposed
discretization technique for the discrete design variables converges to better
solutions comparing to metaheuristic algorithms (such as genetic algorithms,
improved genetic algorithms, Jaya algorithm, group search optimization,
particle swarm optimization, sequential cellular particle swarm optimization as
well as force method and genetic algorithm and teaching learning-based
optimization).
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Ienewrxo 1. /I., FOpuenxo B. B.
MAPAMETPUYHA ONITAMIZALIS CTEP)KHEBUX KOHCTPYKIIINA 3A
HASIBHOCTI JUCKPETHUX TA HEIEPEPBHUX 3MIHHUX TPOEKTYBAHH! 3
BUKOPUCTAHHSM MOKPAIIEHOIO METOJY MPOEKIIIi TPAJIIEHTA

VY craTTi po3rismaeThes 3agada [apaMeTpPUYHOl ONTHMIi3alii CTEP)KHEBUX KOHCTPYKLIH,
cdopMysboBaHa SIK 3a7ava HENIHIHHOrO MpOrpaMyBaHHs, y sKifl (YHKIis METH Ta HeiHifHI
OOMEKEHHSI MAaTEeMAaTH4HOI MOJETI € HemepepBHO IudepeHLiioBaHUMHI (GYHKIIIMUA 3MiHHHX
HpoeKTyBaHHs. J{Jisi po3B’si3Ky C(HOPMYJIbOBAHOI 3ajavi ONTHUMI3allil BUKOPHCTOBYETHCS METOJ
HpoeKii rpagieHTa GyHKLIl METH Ha MTOBEPXHIO aKTHBHUX OOMEKEHb 3 OJHOYACHOIO JIIKBigalli€o
HEB'SI30K Yy MOPYLICHMX OOMEKEHHSAX. 3ampollOHOBaHAa METOIMKA JAUCKPEeTH3aLii 3MIHHHX
IPOEKTYBAHHS, SKi MOBHHHI BapiloBaTH MUCKPETHO. J(MCKpeTH3allis ONTHMAIBHOIO PO3B’SI3KY,
OTPHMAHOr0 y HENEPepBHOMY IIPOCTOPI 3MIHHHUX HPOEKTYBAHHS, BUKOHYETHCS 33 JOIOMOIOIO
LIJIeCIPSIMOBAHOIO BiIOOPY JUCKPETHUX TOYOK B OKOJI TOYKH HEMIEPEPBHOIO ONTUMYMY. Y CTATTI
IPEACTABICHO IIOPIBHSHHS PE3yJIbTaTiB ONTHMI3aL[iHHUX PO3PAaxXyHKIB, sKE 3aCBIIYMIO, IO
HOKpPAIICHUH METOA MPOEKLIi IpaJieHTa pa3oM i3 3alpOIOHOBAHOI0 METOJHMKOI0 AMCKpeTH3awil
3MIHHHX TPOEKTYBAHHSI, 10 MOBHHHI BapilOBaTH JAMCKPETHO, 3abe3nedye 301KHICTh 10 Kpamoro
PO3B’s13Ky 3a/1a4i IOPIBHIHO 10 META-EBPICTHYHHX aIrOPUTMIB.

KurouoBi ciroBa: ontumizanist GopMHu, CTEp)KHEBI KOHCTPYKLii, HeiHiHE MporpaMyBaHHS,
HOPMATHBHI OOMEKEHHS, METOA MpPOEKLii TpaxieHTa, MHporpamMHe 3a0e3MEYEHHS, METOJ
CKIHYGHHHX €JICMEHTIB.

Peleshko 1.D., Yurchenko V. V.
PARAMETRIC OPTIMIZATION OF BAR STRUCTURES WITH DISCRETE AND
CONTINUOUS DESIGN VARIABLES USING IMPROVED GRADIENT PROJECTION
METHOD

The paper considers a parametric optimization problem for the bar structures formulated as
nonlinear programming task, where the purpose function and non-linear constraints of the
mathematical model are continuously differentiable functions of the design variables. The method
of the objective function gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations has been used to solve the parametric optimization
problem. A discretization technique for the design variables that should vary discretely has been
proposed. The discretization of the optimal design solution obtained in the continuous space of the
design variables is performed by the purposefully selecting discrete points around the point of the
continuous optimum. The comparison of the optimization results presented by the paper
demonstrates that improved gradient method together with proposed discretization technique for
the discrete design variables converges to better solutions of the problem comparing to the meta-
heuristic algorithms.

Keywords: shape optimization, bar structures, nonlinear programming, design code
constraints, gradient projection method, optimization software, finite element method.

Ilenewrxo U. /I., FOpuenxo B. B.
IMAPAMETPHYECKASI ONTUMM3ALIMS CTEPKHEBBIX KOHCTPYKIMI ITPU
HAJIUWYUU JTUCKPETHbIX 1 HEITPEPBIBHBIX IEPEMEHHBbIX
MNPOEKTUPOBAHUSI C UCITOJIB30OBAHUEM YJYUIIEHHOTO METOJA
MPOEKIIMU T'PAIUEHTA

B cratee paccmaTpuBaercsi 3ajada  [apaMETPUUECKOW  ONTHMHU3ALMK  CTEP)KHEBBIX
KOHCTPYKIHH, COPMYJIMpOBaHHAs KaK 3ajlaya HEJIMHEWHOro MpOrpaMMHPOBAHHUS, B KOTOPOM
(yHKIMS 1eId ¥ HEJIMHEHHbIC OrPaHWUYCHUS MATEMAaTHYECKOM MOICIH SBJISIOTCA HEIPEPBIBHO
nuddepeHupyeMbIME  QYHKIMSIMH ~ [EPEMEHHBIX  MpOeKTHpoBaHus. s peuieHus
cOpPMYIIMPOBAHHOW 337a4K ONTHMH3ALUKH HUCIIOJIb3YETCS METOJ MPOCKUHH IpajueHTa (QYHKIHN
LEeNM Ha TOBEPXHOCTh AKTUBHBIX OrpaHMYEHHUH IPH OJHOBPEMEHHOM JIMKBHUIALMU HEBS30K B
HapyLICHHBIX  OrpaHuueHusx. [IpeiyioxkeHa  MeETOAMKAa  JAMCKPETHU3alMM  [EPEMEHHBIX
NPOCKTUPOBAHMS, KOTOpPBIC IOJDKHBI BapbUpOBAaTh JUCKPETHO. J[MCKpeTH3alus ONTUMAalbHOTO
peLICHUs, IMOJIyYCHHOTO B HENPEPHIBHOM MPOCTPAHCTBE IEPEMEHHBIX IPOCKTHPOBAHMS,
BBINOJIHSIETCS TIPH TOMOILM 1EJICHANIPABICHHOr0 0TO0pa JUCKPETHBIX TOUYEK B OKPECTHOCTU TOUYKH
HENpepbIBHOIO ONTHMyMa. B craThe mpencTaBieHO CpaBHEHHE PE3yJIbTATOB ONTUMH3ALMOHHBIX
pacyeroB, IIOKa3bIBaloOllee, YTO YJIYYLICHHBIH METOJ IPOCKLUUU TIpajueHTa BMECTe C
NPEJIOKEHHOW METOAMKOW JMCKPETH3aLUU IEPEMEHHBIX NPOEKTUPOBAHMS, KOTOPBIC JIOJDKHBI
BapbUPOBATh AUCKPETHO, 00ECIIEUMBAET CXOAMMOCTD K JIyUIIEMY PELICHHUIO 3aauy 110 CPABHEHHUIO
C METa-dBPUCTHYECKUMH QJITOPUTMAMH.
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KiroueBble cioBa: ontumm3anus (GOpPMBI, CTEpXKHEBbIE KOHCTPYKLHH, HENHHEHHOE
HPOrpaMMUPOBAHUE, HOPMATHUBHBIC OTPAaHUYEHMS, METOJ IMPOEKLUHM IpajeHTa, MPOrpaMMHOE
obecrieueHne, METO]] KOHEUHBIX JJIEMEHTOB.

Y]K 624.04.012.4.044, 519.853

Ilenewxo 1]]., FOpuenxo B.B. TlapameTpuuHa oONTHMIi3alisi CTep:KHeBHUX KOHCTPYKUiii 3a
HASIBHOCTiI /JIMCKPETHHX TAa HeNepPepBHUX 3MIHHMX TNPOEKTYBAHHS 3 BHKOPHCTAHHAM
MOKPAIIEHOr0 MeTOAy Npoekuii rpaxienTa / Omip MartepialiB i Teopis CHOpPYA: HayK.-TEX.
36ipH. — K.: KHYBA, 2023. — Bun. 110. - C. 178 — 198.

YV ecmammi posensoaemvca 3adaua napamempuunoi onmumizayii cmepoCHe8UX KOHCMPYKYIl,
chopmybosana K 3a0a¥a HEHIUHO20 NPOSPAMYSAHHS, V SKIU (DYHKYIs Memu ma HeNiHitiHi
0OMEINCEHHS MAMEMAMUYHOL MO0l € HenepepsHo OupepeHyitiosaHuMu QYHKYIIMU 3MIHHUX
npoexkmysanns. Jisi po36 3Ky copmyibosanol 3a0aui onmumizayii UKOPUCMOBYEMbCL MEMOO
npoekyii 2padichma QyHKYii Memu Ha ROBEPXHIO AKMUBHUX OOMENCEHb 3 0OHOHACHOI0 TIKBIOAYIEH0
He@’SI30K Y NOpYulenux 00MediceHHsX. 3anpononosana memoouka OuUCKpemu3ayii 3MiHHUX
NPOEKMYBAHHSA, AKI NOGUHHI 6apitoeamu Ouckpemno. lIpedcmaeieno NOPIGHAHHA pe3yIbmamis
ONMUMIBAYIUHUX PO3PAXYHKIB, SIKE 3ACEIOHUN0, WO NOKPAWEHUNl Memood NpoeKkyii epadichma
paszom i3 3anponoHOBAHOI0 MEmMOOUKOI0 OUCKPEeMU3ayii 3MIHHUX NPOEKMYSAHHS, WO NOGUHHI
sapirosamu Ouckpemmuo, 3abesneuye 30idcHICMb 00 Kpaujoeo po36 53Ky 3adaui NOPIGHAHO 00
Mema-e8picmuyHux an2opummis.

Tab6u. 3. L. 3. bibior. 24 Ha3s.

UDC 624.04.012.4.044, 519.853
Peleshko I. D., Yurchenko V. V. Parametric optimization of bar structures with discrete and
continuous design variables using improved gradient projection method // Strength of
Materials and Theory of Structures: Scientific-and-technical collected articles — Kyiv: KNUBA,
2023.—Issue 110. —P. 178-198.

The paper considers a parametric optimization problem for the bar structures formulated as
nonlinear programming task, where the purpose function and non-linear constraints of the
mathematical model are continuously differentiable functions of the design variables. The method
of the objective function gradient projection onto the active constraints surface with simultaneous
correction of the constraints violations has been used to solve the parametric optimization
problem. A discretization technique for the design variables that should vary discretely has been
proposed. Presented comparison of the optimization results demonstrates that improved gradient
method together with proposed discretization technique for the discrete design variables
converges to better solutions of the problem comparing to the meta-heuristic algorithms.

Tabl. 3. Figs. 3. Refs. 24.
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Ilenewrxo U. [i., IOpuenxo B. B. [lapaMeTpu4ecKasi ONTUMH3ALHUA CTEP:KHEBBIX KOHCTPYKIMIi
NpH HAJIMYHA JUCKPETHBIX M  HENPEPBIBHBIX I€PEMEHHbIX NPOEKTHPOBAHHS ¢
HCHOJIB30BAHHEM YJIYYIIEHHOI0 MeToa NpoeKnuyu rpaguenTa // ConpoTUBICHHE MaTEPHAIOB
¥ TEOPHsI COOPY)KEHHii: Hayd.- TeX. cOopH. — K.: KHYCA, 2023. — Beim. 110. - C. 178-198.

B cmamve paccmampusaemcs 3adava napamempuueckou ORMUMUSAYUU CIEPICHEBLIX
KOHCMPYKYUUl, CHOPMYIUPOBAHHA KAK 3A0a¥d HEAUHEUHO020 NPOSPAMMUPOBAHUs, 6 KOMOpOU
GyuKkyus yenu u HenuHeliHvle OZPAHUYEHUS MAMEMAMUYECKOU MOOeNU AGNAIOMCA HeNnPepbleHO
ouggepenyupyemvbimu  GYHKYusMU  nepemMeHHblX — npoekmupoeanusi.  J[na  pewenus
chopmynuposannoll 3a0ayy ONMUMU3AYUL UCNOTL3YEMCs MeNOo0 NPOeKyul 2paoueHma QyHKyuu
yenu HA NOBEPXHOCHIb AKMUSHLIX OZPAHUYEHUU NPU OOHOBPEMEHHOU IUKBUOAYUU HEBA30K 6
Hapywiennvlx  oepanudenusix.  Ilpeonoocena  memoouxa — OUCKpemusayuu — NepeMeHHbX
nPOeKmuposanusi, Komopwvle OOJJICHbI 6apbuposamsv Ouckpemuo. Ilpedcmaeneno cpasnenue
Pe3yIbmamos ONMUMU3AYUOHHLIX PACYEINO08, NOKA3LIBAIOWee, YMOo YIyHueH bl MeMoO NPoeKyuu
epaduenma  emecme €  NPEONONCEHHOU  MEMOOUKOU  OUCKpemusayuu  nepemeHHbix
nPOEKmMuposanusi, KOMopvle O0JJICHbL 6apbUPOSant: OUCKPemHo, obecneyugaem cx00UMOCHs K
JyHUeMy petueHuio 3a0aii o CPAGHEHUIO C MEeMa-36PUCIMUYeCKUMY an0PUMMAMU.

Tab6u. 3. Y. 3. bubmuor. 24 Ha3s.



198 ISSN2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2023. Ne 110

ABTOP: Kanouoam mexiuHux Hayk, doyenm kageopu 6yoieenvHo2o supoonuymea Ilerewko Isan
JImumposuy

Anpeca po6oua: 79013 Vipaina, m. Jlveie, eyr. Cm. Banoepu 12, Hayionanohuil ynieepcumem
«/Ivsiscoka nonimexuikay

Po6ounii Ten.: +38 (032) 258-25-41

Mooinbumii Tea.: +38(098)41-57-517

E-mail: ipeleshko@polynet.lviv.ua

SCOPUS ID: 25637832500

ORCID ID: https://orcid.org/0000-0001-7028-9653

ABTOP: 00KMOp MeXHIYHUX HAYK, npogecop Kapedpu memanesux ma O0epes siHux KOHCMpPYKYill
FOpuenko Bimanina Bimaniiena

Anpeca po6oua: 03680 Vrpaina, m. Kuis, [losimpogpnomcoruii np. 31, Kuiscokuii HayionanoHuil
yHisepcumem 6y0i6HUYMeA i apXimekmypu

Po6ounii Tea.: +38(044)249-71-91

Mooinbumii Tea.: +38(063)89-26-491

E-mail: vitalina@scadsoft.com

SCOPUS ID: 25637856200

ORCID ID: https://orcid.org/0000-0003-4513-809X



