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The formulation of the problem and the method of analysis of the stress-strain state, buckling
and vibrations of elastic shells with inhomogeneous structure are considered. The modal analysis
of the shells is performed at each stage of loading. The method allows one to study the behavior of
shells with a complex shape of the middle surface, geometric features throughout the thickness,
and a multilayer material structure under thermomechanical loading. We approximate a thin shell
with one finite element (FE) over the entire thickness. At the same time, we use spatial FEs of the
same type to model shell portions with stepwise-varying thickness. So we apply the universal
finite element. It is based on an isoparametric 3D element with polylinear shape functions for
coordinates and displacements and has additional parameters. The universal finite element can be
transformed (modified) to accurately describe portions of the shell with stepped-variable thickness.
This element can be eccentrically displaced relative to the average surface of the shell and change
its own thickness. The side edges of neighboring FEs are in continuous contact, and the FE allows
simulating sharp bends of the shell. The approach is modern and easy to implement, since it is
based on the use of the relations of the three-dimensional geometrically nonlinear theory of
thermoelasticity and the application of the moment finite-element scheme. The effectiveness of the
method is demonstrated on classical test examples. The convergence, accuracy and reliability of
the obtained solutions are investigated. Comparison of the results of calculations obtained by the
moment finite-element scheme with the data of other authors shows a good agreement between the
solutions.

Keywords: inhomogeneous shell, geometrically nonlinear deformation, buckling, modal
analysis, thermomechanical loading, universal 3D finite element, moment finite-element scheme.

Introduction. The analysis of the processes of nonlinear deformation,
buckling, post-buckling behavior, and vibrations are the most important part in
a research of the behavior of a thin elastic shell under the action of a static
thermo-mechanical load. Particular attention to these problems is explained by
the fact that the process of buckling and further deformation of the shell
usually exhausts its load-bearing capacity. And this, in turn, can lead to
catastrophic consequences. In addition, it is necessary to know the conditions
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of strength and reliability of a thin-walled structure for the safe operation. In
this regard, methods for analyzing their dynamic characteristics are of
particular importance, since the natural frequencies and vibration modes of the
shell are one of the main dynamic characteristics of any elastic system.

Usually, the elements of real thin-walled structures are shells, which
geometry has a non-canonical shape. As a rule, real shells are characterized by
a complex shape outline. They are made inhomogeneous throughout the
thickness in order to enhance reliability and reduce materials consumption.
They can be constant, linear-varying or piecewise-varying thickness, have
facets, ribs, cover plates, holes, cavities, channels, layers. Such shells are
usually called: inhomogeneous, shells of inhomogeneous structure, shells of
inhomogeneous rigidity, and shells with variable parameters in thickness [1].
During operation, the considered shells can be under the action of a static
thermo-mechanical load.

Various methods of numerical analysis are used to investigate the stress-
strain state (SSS), buckling and vibrations of shell structures [1-12]. Over the
last decades, the finite element method has been especially widely used in
solving the problems under consideration and is, in fact, the dominant method
among the methods used. However, most studies are devoted to the analysis of
the behavior of shells of a certain class under simple types of loading, mainly
mechanical.

This work is devoted to expanding the capabilities of the existing method
for studying the stress-strain state and stability of shells to the problems of
modal analysis, taking into account static loading. The method of modal
analysis of the structure at each step of thermomechanical loading, on the one
hand, is focused on obtaining deeper knowledge about the ongoing processes
and, on the other hand, makes it possible to determine the moment of buckling
of the shell simultaneously by two criteria: static and dynamic.

The method allows considering a wide class of shells both in terms of
geometric characteristics and types of load. An approach is used that makes it
possible, within the framework of one finite element, to simulate the behavior
of shells of a complex inhomogeneous structure, which are under the action of
mechanical, thermal and thermomechanical loads. The approach is modern and
easy to implement, since it is based on the use of the relations of the three-
dimensional geometrically nonlinear theory of thermoelasticity [13] and the
application of the moment finite-element scheme [10, 14].

1. A problem statement. An integrated approach is used to solve the
problem. It consists of two stages for each step of thermomechanical loading.
At the first stage, the stress-strain state of the shell is determined [14]. At the
second stage, a modal analysis of the shell is performed taking into account the
deformed and prestressed state [1, 15, 16]. This approach allows to trace how
the modal characteristics of the shell change during its loading. In addition, it
becomes possible to determine the moment of buckling of the shell
simultaneously by two criteria: static and dynamic.

In general, the solution of nonlinear shell stability problems is often a
process of obtaining results that are difficult to predict in advance. They
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depend on the influence of various system parameters, such as geometry,
boundary conditions, type of load, material, presence of various structural
elements, etc. These factors require a more thorough construction of universal
algorithms and a more detailed analysis of the process of obtaining solutions
for each problem. Therefore, the analysis of the bifurcation points of the “load-
deflection” curves and the modal analysis of the shell during its loading come
to the fore.

Shell sections with stepwise-variable thickness
Casing with constant thickness

sing with smoothly-variable

Casing with \ Hole thickness
stepwise-variable U d
thickness A (a)

lower ribs

Mid-surface
of the FE

(b)

Fig. 1. Finite element fragment of an inhomogeneous shell

Elastic shells of thin and medium thickness are considered. In general, the
shell has a complex shape of the middle surface, smooth and stepped-variable
thickness, holes, faceting, multilayer material structure and other features in
thickness, as well as inhomogeneous conditions for fixing the contour. The
shell is under the action of thermomechanical load. An example of a fragment
of such a shell is shown in Fig. 1.

The finite element method for solving static problems of nonlinear deformation,
buckling and postbuckling behavior of shells under the action of
thermomechanical loads has been created on the basis of the unified
methodological positions of the three-dimensional geometrically nonlinear theory
of thermoelasticity. A detailed description of the method, substantiation of its
reliability, solution of a number of problems are presented in [1, 14, 17-22].

The casing of the shell and the ribs reinforcing it can consist of an arbitrary
number of layers of varying thickness bonded into a single piece. The layers of
the shell are considered linear elastic and described by the generalized
Duhamel-Neumann law. The shell is modeled by a nonlinear elastic
continuum subject to large displacements and small strains whose components
are linear functions of stresses. We consider a steady-state thermal process in
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which the temperature field in the shell is a known function of coordinates,
T=T (xi'), independent of the stress-strain state.

Thin inhomogeneous shells of variable thickness and complex geometry
(Fig. 1 (a)) are considered as a three-dimensional bodies. To develop a finite
element shell model (FESM), we approximate a thin shell by one spatial finite
element (FE) throughout the thickness, which is an efficient approach [14].

Two hypotheses are used to describe the SSS of the shell: (i) the non-
classical kinematic hypothesis of a deformed straight line, which makes it
possible to join spatial FEs keeping compatibility of the coordinates and
displacements and to naturally model sharp bends; (ii) the static hypothesis,
the use of which the stress state of the shell does not deprive the three-
dimensional properties. According to the kinematic hypothesis, a straight
segment along the thickness remains straight even after deformation. This
segment is not necessarily normal to the mid-surface of the shell. The static

hypothesis assumes that the compressive stresses GL] in the fibers of the nth

layer are constant throughout the thickness (along the x! -axis).

Spatial discretization of an inhomogeneous shell is implemented using a
universal spatial finite element (Fig. 1 (b)), which models shell portions with
different types of structural features. The universal FE is based on the well-
known ("standard") 8-node isoparametric spatial FE with polylinear shape
functions for coordinates and displacements [14]. We will call it the casing
finite element (CFE) (Fig. 2 (a)). The casing of the shell is understood as a
shell without geometric features in thickness. The spatial CFE can be
transformed into a modified finite element (MFE) by introducing additional
variable parameters. These parameters expand the capabilities of the universal
FE. The element can be eccentrically displaced relative to the mid-surface of
the casing and can change its dimensions in the thickness direction to model
ribs (MFE ¥ ; Fig. 2 (c)) and cavities (MFE ~; Fig. 2 (d)).

A unified computational model has been developed that takes into account
various features of the structural elements of an inhomogeneous shell based on
the universal 3D FE. According to the adopted approach, the investigation of
the behavior of shell structures of various types is implemented within the
framework of a unified methodology [14]. The moment finite-element scheme
(MFES) is used to derive the governing finite-element equations for
displacements [10, 14].

The geometrically nonlinear deformation of shells is analyzed using the
incremental method based on the general Lagrangian formulation. According
to this approach, the frequencies and forms of natural vibrations of the shell
are determined at the moments of stepped thermomechanical loading. At each
step, the new deformed state of the shell and the stresses accumulated in the
previous steps are taken into account. Thus, in the problems of the shell
vibrations, the presence of prestressing from the action of various static
thermomechanical loads is taken into account.
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Fig. 2. Universal 3D finite element

The problem of nonlinear deformation, buckling, and postbuckling behavior
of inhomogeneous shells is solved by a combined algorithm that employs the
parameter continuation method, a modified Newton—Kantorovich method, and
a procedure for automatic correction of algorithm parameters. An algorithm
based on these principles makes it possible to obtain the dependence
represented by a load-deflection curve, regardless of its shape and complexity.
The subspace iteration method is used to determine the low-frequency
spectrum and eigenvectors of shells of an inhomogeneous structure.

2. Algorithm for a comprehensive investigation of the buckling and
vibrations of the shells. The algorithm of the incremental (step-by-step)
method for solving problems of buckling and vibrations of the shells is shown
in Fig. 3. According to this approach, each step corresponds to an increment in
the parameter of external loads P . The solution of the static problem of
nonlinear stability is the found relationship between the parameter of external
load P and the displacement field U of the FESM. This relationship is
determined at each step of increasing the generalized load AP and is usually
represented by a “load-deflection” (P —U ) curve at characteristic points of
the shell. The effect of the mechanical Q and thermal T fields on the shell is
considered as a single process of loading described by a relationship between
the general load parameter P = P(Q,T ) and the parameters of mechanical and
temperature fields.

The technique for solving the problems of nonlinear deformation, buckling
and vibration of elastic shells is a two-stage algorithm implemented at each
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step k of the load increment. At the first stage, the static problem of nonlinear
deformation of the shell is solved. The SSS of the shell is determined for the
corresponding load increments: its deformed shape (new coordinates) and
increments of displacement and stress fields.

To perform modal analysis, files are generated with the necessary
information: the geometry (field of coordinates) of the shell at the beginning of

the step {x}:_] ; new coordinate field {x}:}z {x}:_]}+ {ujf} after deformation

from the applied load AP, ; stresses {GZ }: {cj{_] }+ {AGZ } in the elements of

the finite element shell model.

The second step of the current stage uses the new shell shape and its
prestressed state, which have been determined in the first step. The load is
assumed to be zero (that is, it is removed) and a modal analysis is carried out
[1, 15, 16]. Small vibrations of the shell relative to the static equilibrium
position are considered. In accordance with this, the natural frequencies and
vibration modes of the shell are determined for each moment of the load
increment. The input is the number of frequencies to be determined. The
modal analysis of the shell is performed down to zero (or negative) value of
the lowest frequency o,. The equality of the eigenfrequency to zero is a

dynamic criterion for the loss of stability of the structure. As is known, under
loads reaching critical values, the deformed system loses its ability to perform
oscillatory motions [23]. The resulting load value can be taken as critical. At
subsequent stages of the load increment, the modal analysis of the shell is not
carried out, and only its postbuckling behavior is investigated.

The problem of nonlinear deformation, buckling, and postbuckling behavior
of inhomogeneous shells is solved by a combined algorithm that employs the
parameter continuation method, a modified Newton—Kantorovich method, and
a procedure for automatic correction of algorithm parameters. Either the
parameter of the field of external nodal loads P = P(Q,T), or the displacement

U of the characteristic node selected by the algorithm can be used as the
continuation parameter A, =\, (P,U) at each moment k of load increment.
The node of the entire finite element shell model for which the increment of
the modulus of the nodal displacement vector has been the largest in the

previous step is characteristic [14].

The natural frequencies ®f (it is ©* in Fig. 3) and the corresponding
i 1

vibration modes are obtained in the module of the algorithm that implements
the modal analysis of the shell. The result of the modal analysis is presented as

a “load P —lower frequency ®,” (P —w,) curve. If there is the branching

point g on the P—U curve (Fig. 3 (a)), then the value P with ®; =0 can

be taken as the upper critical load according to the dynamic criterion. If there
is no branching point, the point a of the maximum of the P—-U curve
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(Fig. 3 (b)) corresponds to the upper critical load P,” both according to the

static criterion and to the dynamic one (®; =0).
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Fig. 3. Combined algorithm for solving the problem of geometrically nonlinear deformation,
stability and vibrations of flexible shells

3. Numerical analysis. The effectiveness of the method is demonstrated by
solving test problems. The convergence and accuracy of the obtained solutions
are investigated.

3.1. The test problem of natural

g x* vibrations of a cantilevered cylindrical

panel is considered (Fig. 4). The shell is
rigidly fixed along a curvilinear contour.

The input data: E£=0,2-10" N/m?,
v=0.3, p=0,704-10"kg/m>; size in
plan L=S5=0.3048 m, radius of mid-
surface R =0.6096 m, thickness /=
0.003048 m.

The analysis (Tab. 1) shows that the
solutions converge on the 15x 15 FE
mesh, and the error with respect to the

Fig. 4 solution with the 30x 30 FE mesh is less
than 2%.

Comparing the solution obtained by the MFES with those obtained by
using well-known software (SW): SCAD [24], LIRA [25], NASTRAN [26],
and by other authors, we conclude that the MFES solutions are in good
agreement for all considered frequencies (Tab. 2).

The obtained oscillation modes (Fig. 5) agreement with those obtained
using the SCAD and LIRA software. The lower right edge of the forms shown
in Fig. 5 is rigidly fixed. The mode shapes are given for the finite element shell
model with the 20x 20 FE mesh.
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Table 1
Ne FEs
; 10x 10, A, 15x% 15, A, 20x 20, A, 30x% 30,
Hz % Hz % Hz % Hz
1 90,229 0,82 89,839 0,38 89,658 0,005 89,494
2 146,08 0,75 145,50 0,35 145,23 0,16 144,99
3 260,86 1,85 257,96 0,72 256,91 0,31 256,11
4 365,73 2,21 361,13 0,92 359,28 0,41 357,82
5 407,09 1,66 403,32 0,72 401,74 0,32 400,45
6 570,28 5,23 552,05 1,86 546,17 0,78 541,92
7 790,99 4,28 772,56 1,83 764,56 0,78 758,65
8 794,19 4,25 773,31 1,51 766,68 0,64 761,78
Table 2
Calculation method o,Hz | o,,Hz | ©;,Hz | 04,Hz | o5, Hz
20x 20 FE
MFES 89,658 145,23 256,91 359,28 401,74
Experiment
[27. 28] 85,60 134,50 258,90 350,60 395,20
20x 20 FE
SCAD 91,0345 146,94 256,02 364,03 404,81
20x 20 FE
LIRA 89.4434 145.02 256.53 357.67 400.39
20x 20 FE
NASTRAN 89,2368 144,65 253,44 355,32 395,39
M.A. Bossak,
0.C. Zienkiewicz [29] 88,30 142,80 257,60 369,20 441,80
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3.2. A shallow axisymmetric spherical panel of constant thickness is
considered. The input data: E=19.6-10"MPa, v=0.3, linear expansion
coefficient o =0.125-10"*deg™'; thickness /#=0.01 m, radius of support
contour g =100/ , radius of mid-surface R =12524, rise H =4h. The results
are presented in dimensionless form [7, 14,23]: ¢ =q/E{a/h)*, u! = ull/h ,
f= toc/2-(a/h)2, where ' is the deflection of the panel (along the x' -axis);
k=H/h is the panel shallowness parameter. The FESM is a half of the panel
uniformly partitioned along radius and circumference.

The shell is subjected to the thermomechanical load. The impact of the
thermomechanical load on the panel consists of two stages. First, the SSS of

the shell is perturbed by the temperature field, and then the panel is subjected
to external pressure ¢ , the temperature field remaining constant.

The effect of two factors on the
stability of the panel is examined: (i)
the type of the contour fastening; (i) g |
value of preheating. Three cases of

=1l

uniform heating by r°C 0
(T =0,20,40°C) is considered.
The panel is clamped at the edges.

This type has an icon (%¢) in Figures. A
numerical analysis for the nonheated

E

20

— MFES

panel (T =0°C) of the convergence of g | . E:%ﬂf:\m
solutions shows that the upper and --- Valmir
lower critical loads converge with an 0¥ : : . . ‘

error of 3% even on a 10x 10 FE mesh
[14, 17,19, 21]. The results agree well
with those from [7, 23] and with
obtained by the LIRA SW on the entire
“load-deflection” (g —u ) curve, with
insignificant discrepancy for the upper

critical load g2 (Fig. 6 (a), Tab. 3).

The buckling mode of the panel is (b)

ch.aracteri.zed by snap-through in the Fig, 6

middle (Fig. 6 (b)).

Table 3
Calculation method q.r A% T A o,

MFES 50.12 1.46 -0.882 2.56
LIRA 50.70 2.63 -0.920 6.98
Kantor [7] 48.80 -1.21 0.859 -0.12
Vol’mir [23] 49.40 0 -0.860 0




140 ISSN2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2023. Ne 110

The panel is hinged at the edges (). The nonheated panel (T =0°C).
Comparison of the MFES results with the results obtained by the LIRA SW
shows that the g —u curves (at the center of the panel) are in good agreement
in the prebuckling domain (Fig. 7 (a)). The MFES algorithm has allowed to
find a branching point (*) on the g —u curve in the prebuckling domain. The
solution obtained by the LIRA SW determines the same point (*) with
_ insignificant discrepancy (5%). The

1 7 k=4 T=0°C LIRA SW identifies this point as the
50 f % =% upper critical load.

Y yjst The MFES algorithm can find the

40 branching points and  allows

SR N determining adjacent deformation

s S modes in their neighborhood. To

o identify a branching point, a

qualitative theory is used. It states that

10k at least one negative eigenvalue of the

' linearized stiffness matrix represents a

Un YT T T A equilibrium configuration of the

' ' ' shell. To identify the adjacent

@ deformation mode, the perfect initial

mid-surface was perturbed according
,ﬁ g@ & to the formula nsin (mr/a)cos (),
‘ w @@j L where n=0.001 is a small perturbing

‘ parameter, » and ¢ are polar

coordinates. The initial imperfection

(b) allows to identify accurately the point

Fig. 7 (*) as a bifurcation point for a perfect

panel whose solution has branches.

This point (*) is considered as critical. The axisymmetric deformation mode

transforms into an adjacent nonaxisymmetric buckling mode (Fig. 7 (b)). Fig.
7 (a) shows, by the dotted line, the obtained branch of the solution.

The value of preheating of the shell significantly affects the shape of the

g —u curves, and the type of the contour fastening also affects their character

(Figs. 6, 7, 8; Tab. 4). The solution for the panel hinged at the edges when

T =20°C (Fig. 7 (a)) also has a branch point in the prebuckling domain, as in

the case of a non-heated panel (7 =0°C, Fig. 7).
3.3. Consider a shallow spherical panel of square planform with curvature

parameter K =32 (K:Zaz/(Rh); h is the thickness; R =225h is the
radius; a =604 is the side length of the panel). The shell has a central square
hole of width 5 =12A. The panel is hinged at the edges and subjected to
heating and pressure. The input data: A=0.0lm, E =20.59-10* MPa,
v=03, a=0.12-10"deg ™.
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Table 4

Effect of the type of the contour fastening and the value of heating on the g.”

Type of T=0C T=20°C T=40°C

fastening | g | Agy % | @l | A% | @l | A%
% 50,40 - 67,82 - 76,40 =
55.48 | 10,08 | 78,35 15,53 | 53,50 | -29,97
h q°=50,05| 0,69 |g"=69,82| 2,95

The effect of three cases preheating by 7'=-20°, 0°, 20°C on the stability

and vibration of the shell is investigated [14, 17, 19, 20]. The design model has
the mesh 40x 40 FEs. The results of the investigation of a smooth panel
behavior are basic for analyzing the influence of a such geometric feature as a
hole on the buckling and natural vibrations of the shell. The results for a panel
with the hole are marked by an icon (m:m), and the solutions for a smooth panel
are marked by an icon (mm). Deflection is considered at a center of the smooth
panel, and at point 4 for the panel with a hole.

For the smooth shell (wm) the upper critical load g.” obtained using the

LIRA SW is in good agreement with that obtained using the MFES
(Fig. 9 (a)): for two variants of the method of successive loadings (SL)
discrepancy is less than 3%, the Newton—Raphson (N—R) method gives error -
1.8% [22]. This problem with the SCAD SW has been solved by the Newton—
Kantorovich (N-K) method and by the Newton—Raphson method (errors -
4.9%) [22]. Disagreement with the MFES solution is -3.15%. Shapes of the
deformed panel for all solutions have a simple form in the prebuckling and
postbuckling domains and are in good agreement with each other (Fig. 9 (b)).
For the panel with the hole (m:m) the MFES results agree well with those
obtained by the LIRA SW on the entire g —u curve, with insignificant

discrepancy for the upper critical load g7 (Fig. 10, Tab. 5). The critical load
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g.r for a panel with a hole (m:m) differs from that for a smooth panel (wm) by
19.2% (T =0°C).

150
100
50
0 I rot USSR ’
0 -2 -4 -6 u 0 5 10 15 20 25 XZkem
(a) (b)
Fig. 9
") T=0° KE=12 q wm K=32
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(a) Fig. 11. Deformation and buckling shapes

of the panel
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For both methods, we have a complete agreement of the deformation shapes
obtained after heating by T'=+20°C and cooling by T'=-20"C (Fig. 11 (a)).
The shapes differ little from the initial panel configuration. Buckling occurs
through the snapping at the center of the shell (Fig. 11 (b)).

An analysis of the calculations of natural vibrations of smooth (wsm) and
weakened by a hole (m:m) panels shows that for unloaded shells
(T'=0°C, g =0) the presence of a hole reduces the natural frequency by 3.3%

(Tab. 6). There is a good agreement between the frequencies obtained by the
MFES and using the LIRA SW. In this case, if the frequencies ®, and ®, are
multiples for the smooth shell, then the frequencies ®, and w; are multiples for

the panel with the hole. Therefore, the vibration modes for the corresponding shells
are different (Figs. 12, 13). The mode shapes obtained using the LIRA SW are
shown in the figures in the form of moiré fringes for clarity.

Table 5
T=-20°C T=0°C T=+20°C
Calculation method " . =T
qcuf Ecrup qcuf Ecrup qcuf ucrup
MFES 140.83 | -1.095| 156.41 | -0.950| 171.55| -0.904
LIRA 145.00 | -1.098| 161.00 | -1.018| 177.56 | -0.941
A, % 3.0 0.3 2.9 7.2 3.5 4.1
Table 6
Panel vibration frequencies o; at different load values g’ (7 =0°C)
N g’ o, ®, 3 0, s o
- =
MFES 533.78 | 533.78 | 547.40 | 691.24 | 796.09 | 816.64
LIRA 529.29 | 529.29 | 545.25 | 682.01 | 774.27 | 796.41
mm =0
MFES 516.04 | 519.38 | 519.38 | 609.26 | 714.34 | 819.60
LIRA 515.17 | 519.63 | 519.63 | 610.02 | 713.51 | 818.96
1 512.13 | 512.51 | 512.51 | 599.17 | 703.29 | 810.49
2 498.05 | 498.05 | 500.57 | 581.03 | 685.30 | 793.48
3 474.53 | 474.53 | 481.76 | 551.37 | 656.03 | 766.20
4 433.68 | 433.68 | 449.05 | 499.43 | 605.37 | 720.19
5 348.14 | 348.14 | 379.47 | 387.73 | 499.78 | 631.41
6 275.18 | 275.18 | 292.54 | 332.49 | 455.78 | 584.81
7 245.66 | 245.66 | 250.91 | 319.14 | 443.42 | 574.59
8 181.04 | 191.33 | 191.33 | 285.32 | 410.71 | 555.81
9 144.46 | 165.03 | 165.03 | 271.48 | 396.84 | 549.46
10 85.034 | 132.49 | 132.51 | 264.27 | 387.24 | 548.44
11 -31833. | 93.008 | 93.082 | 260.60 | 379.89 | 550.59
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Preheating and pre-cooling of a shell with a hole (¢ =0) lead to
insignificant changes in frequencies (Tab. 7). In the case of pre-cooling
(T =-20°C), the first three vibration modes are similar to those shown in

Fig. 13. In the case of preheating (7 =+20°C), the shape modes are similar to
the corresponding shapes (b), (c), (a). The obtained results are in good
agreement with the data obtained with the help of LIRA SW.
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(a) (b) ©
Fig. 13

For smooth and perforated panels, the “ ¢ —®,” curves have the same shape
when only pressure (7' =0°C) is applied (Fig. 14). Loading moments g’

(i =m) (Tab. 6), at which the modal analysis has been carried out, are
marked in the figure by circles. The applied pressure causes both the
restructuring of the frequency multiplicity and the corresponding
transformation of the mode shapes. Vibrations for ®; of both shells (smooth
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and with a hole) occur in their central part (Figs. 12,c; 13,a) when a load

approaching the critical one g7 .

Table 7
Vibration frequencies for a heated shell ("m:m", g =0)

T°C ) ®; ®3 Wy @5

0 516.04 519.38 519.38 609.26 714.34
+20 530.17 530.28 531.51 616.65 716.62
AP +2.37 +2.10 +2.33 +1.21 +0.32
-20 499.77 508.29 508.38 602.11 712.05
A -3.15 2.13 2.12 -1.17 -0.32

The “¢g —, ” curves are similar for all cases of shell preheating (Fig. 15).

L) =1
- K=32 %+ v
500 TeTe - (5 ] "
Al ]
v A T=0C
a0 | e e
”@—CO" - “l +20°C
300 o 41
-mec A8
200 F ”@—1‘,_{,” L 1
//,,’ + 1-0.5
100 = - ?
- ! 0
0 \ . \ |
0 50 100 150 g
Fig. 14 Fig. 15

Conclusions. A complex method for investigating geometrically nonlinear
deformation, buckling, and vibrations of thin inhomogeneous shells under the
action of static thermomechanical loads is considered. The method is based on
geometrically nonlinear relations of the three-dimensional theory of
thermoelasticity, the use of the finite element moment scheme, and the
application of the universal 3D isoparametric finite element with multilinear
shape functions. The modal analysis of the shell is performed at each step of
thermomechanical loading, taking into account the prestressed state of the
deformed shell.

The convergence and accuracy of solutions are investigated. Comparison of
the calculation results obtained by the moment finite elements scheme with the
data of other authors shows their good agreement.
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Cmamms naoitiwna 28.04.2023

Kpueenko O.I1., Jlizynoe I1.11., Bopona FO.B., Karawmnixos O.b.
METOJMKA TOCJIIKEHHA HEJIHIHMHOIO JE®OPMYBAHHS, CTIAKOCTI TA
KOJINBAHb TOHKHX MPYXHUX OBOJIOHOK HEOJTHOPIJTHOi CTPYKTYPH
PO3risiHyTO MOCTaHOBKY 3ajadyi Ta METOAMKY aHali3y HAaIpy)KeHO-Ie)OPMOBAHOTO CTaHy,
BTPaTH CTIMKOCTI Ta KOJNMBaHb MPYXHUX OOOJIOHOK 3 HEONHOPIZHOIO CTPYKTYporo. MomanbHHiA
aHami3 OOOJOHOK BHKOHYETbCS HA KOXXHOMY KpOLi HaBaHTaXeHHsi. Meron nae 3Mory
JOCTIIKYBATH IOBEAIHKY OOOJOHOK 31 CKJIAQAHOIO (POPMOIO  CEPEAMHHOI  [OBEPXHI,
rEOMETPUYHUMH OCOOIHMBOCTSMU 33 TOBLIMHOIO Ta 0AaraTOLIApPOBOIO CTPYKTYPOIO MaTepialy MpH
TEPMOCHJIOBOMY HaBaHTaKeHHi. TOHKa OOOJOHKA AaImpPOKCUMYETHCS OAHHM CKiHYCHHUM
enemenToM (CE) 3a ToBimHoOr0. I1pn nboMy BUKOpHCTOBYIOThCs IpocTopoBi CE ogHoro tumy ams
MOJICJIFOBAHHS JIIJITHOK OOOJIOHKH 31 CTYIIHYaCTO-3MIHOK TOBIIMHOKW. TOMY 3aCTOCOBYETHCS
yHiBepcaJbHHil CKiHYeHHHMH eneMeHT. Bin mnoOynoBanuii Ha ©0a3i  i3omapaMeTpUYHOrO
IPOCTOPOBOrO eJIeMEHTA 3 MONUTIHIHHUMHU QyHKIiIMH GOPMH 1711 KOOPAMHAT i IIEPEMIILeHb 1 Mae
JIONATKOBI IapaMeTpu. YHIBEpCaNbHUH CKIHYCHHHH €IEMEHT MOXe TpaHchOopMyBaTUCS
(MoandixyBaTHCs) U TOYHOTO OMHUCY AUIIHOK OOOJIOHKH 3i CTYNIHYacTOH 3MIHOKO TOBILHMHH.
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Lleit emeMeHT MOXE EKCLEHTPHYHO 3MILYBATHCS INOJO CEPEAHBOI IOBEPXHi OOOJIOHKH 1
3MiHIOBaTH ToBUMHY. biuni rpani cycignix CE 3HaxomsaThes B GesnepepBHOMY KoHTakTi, a CE
JI03BOJISIE MOAENIOBATH Pi3Ki 3710MH 00070HKH. IlinxXix € cydacHHMM 1 mpocTHM y peamizawil,
OCKUIbKH 0a3yeTbcsi Ha BHKOPHCTAHHI CIIBBIIHOLICHb TPUBHMIPHOI I'€OMETPUYHO HEINiHIIHOI
TEOpii TEPMONPYXKHOCTI Ta 3aCTOCYBaHHI MOMEHTHOI CXEMH CKIHYCHHHX €JICMCHTIB.
EdexTuBHICTS METOLY NPOJEMOHCTPOBAHO HA KJIACHYHHMX TECTOBHMX MpHKIazax. JlocmimkeHo
301KHICTb, TOYHICTH 1 HAAIIHICTh OTPHMMAHUX PO3B’s3KiB. I1OpIBHIHHS pe3ybTaTiB PO3PAXYyHKIB,
OTPHMAHHX 33 MOMEHTHOIO CXEMOIO CKIHYCHHHX CJIEMEHTIB, 3 JAHUMH IHIIMX aBTOPIB MOKa3ye
XOpoluii 30ir po3B’s3KiB.

KurrouoBi c1oBa: HeomHOpigHA 000I0HKA, TEOMETPUYHO HElliHIlHE nehOopMyBaHHs, CTIHKICTD,
MOJAJbHUI aHaii3, TEPMOCHJIOBE HABAaHTAXKCHHs, YHIBEPCAJbHUIl MPOCTOPOBHI CKIHYCHHHI
€JIEMEHT, MOMEHTHA CXeMa CKIHUEHHUX €JIEMEHTIB.

VK 539.3

Kpueenxo O.I1, Jlisynos IIII1., Bopona FIO.B., Kanawmnixoe O.5. MeTroauka KOCTizKeHHS
HeJiHiliHOro nedopmyBaHHs, CTiliKOCTI Ta KOJHMBaHb TOHKHX IIPY’KHHUX 000JIOHOK
HeOoXHOPiTHOI cTpyKTYpH // Omip MaTepianiB i Teopis cropya: Hayk.-Tex. 30ipH. — K.: KHYBA,
2023. - Bun. 110. - C. 131-149.

Posensidaemobcst nocmaHoska 3a0ayi wjodo Memooy aHAi3y HANPYICEHO-0ehOPMOBAHO20 CMAHY,
cmiukocmi, 3aKpumu4Hoi NOGediHKU Ma 6AACHUX KOAUBAHb HEeOOHOPIOHUX 06010HOK npu Oii
MepMocunosux —Haeanmadicenvb. HucenvHi  pesynomamu  niOMEepOAICYIOMb  MOYHICMb  Mmad
eexmugnicms po3pobeHo2o memooy.

Tab6un. 7. In. 15. Bi6miorp. 26 Ha3s.

UDC 539.3

Krivenko O.P., Lizunov P.P., Vorona Yu.V., Kalashnikov O.B. A Method for Analysis of
Nonlinear Deformation, Buckling, and Vibrations of Thin Elastic Shells with Inhomogeneous
Structures // Strength of Materials and Theory of Structures: Scientific-and-technical collected
articles. — K.: KNUBA, 2023. — Issue 110. — P. 131-149.

The formulation of the problem of the method of analysis of the stress-strain state, buckling, post-
buckling behavior and vibrations of inhomogeneous shells under the action of thermo-mechanical
loads is considered. Numerical results confirm the accuracy and effectiveness of the developed
method.

Tabl. 7. Fig. 15. Ref. 26

VK 539.3

Kpueenko A.Il., Jluzynoe ILII., Bopona FO.B. Kanawnuxoe A.5. MeToauka HccJiei0BaHHS
HeJIMHeiiHoOro e opMUPOBAHNsA, YCTOHYMBOCTH M KoJ1e0aHUH TOHKHX YNPYrux 000/104eK
HEOXHOPOAHOI CcTPYKTYpHI // CONpOTUBICHHE MAaTEpPHANIOB M TEOPHUs COOpYXeHui. — 2023. —
Boim. 110. — C. 131-149.

Paccmampusaemces nocmanogka 3a0auu  mMemood aHaau3d HANPANCEHHO-0epopMUpo8aHHo20
COCMOAHUS, YCMOUYUBOCIU, 3AKPUIMUYECKO20 NOGEOeHUsl U KOICOAHUL HeOOHOPOOHbIX 06010YeK
npu oeticmeuu MepMOCUNIOBbIX HA2PY30K. Hucnennvle pe3yiomamsl NOOMEEPHCOAIOm MOYHOCHb U
apghexmusrocms pazpabomanno2o memooa.

Tab6n. 7. V. 15. bubmnorp. 26 Ha3B.

ABTOp (BYEHAa CTyNeHb, BYeHe 3BaHHM, NMOCANA). KAHOUOAM MEXHIYHUX HAYK, CMapuiuil
HAyKoBUll CnigpoOimHUK, npogionuil Haykoeutl cnigpobimuux HII 6Oyodisenvnoi mexaixu
KPUBEHKO Onvea Ilempisna

Anpeca podoua: 03037 Vipaina, m. Kuis, Iosimpogromcwvkuii npocnexkm 31, Kuiscokuil
HayionanbHull yHisepcumem 6yoienuymesa i apximexmypu, H/JI 6yodisenvHoi mexamiku

Pobounii Ten.: +38(044) 245-48-29.

MoOibHMIA Te.: +38(066) 048-32-77

E-mail: olakop@ukr.net

ORCID ID: https://orcid.org/0000-0002-1623-9679



ISSN2410-2547 149
Omip matepianiB i Teopis cropya/Strength of Materials and Theory of Structures. 2023. Ne 110

ABTOp (BY€Ha CTYNEeHb, BU€He 3BAHHS, I0CA/A). JOKMOP MEXHIYHUX HAYK, npopecop, 3a8idyeau
kagheopu byoisenvroi mexanixu JII3YHOB [lempo I[lemposuy

Aopeca poooua: 03035 Vrpaina, m. Kuis, Iosimpogromewvkuit npocnekm 31, Kuiscokuii
HayioHanbHull yHisepcumem 6y0i6HUYMSA i apximekmypu, kapeopa 6y0ieebHoi MEXaHiKu
Pobounii Ten.: +38(044) 245-48-29.

MooinbHmiIA Te.: +38(067) 921-70-05

E-mail: lizunov@knuba.edu.ua

ORCID ID: https://orcid.org/0000-0003-2924-3025

ABTOp (BYeHa CTyNeHb, BYeHe 3BaHHS, IOCAAA). KAHOUOAM MEXHIYHUX HAYK, OOYeHm,
sasioyeau iodiny H/I 6yodieenvnoi mexanixu BOPOHA FOpiii Bonooumuposuy

Aopeca poooua: 03035 Vrpaina, m. Kuis, Iosimpogromcwruit npocnekm 31, Kuiscokuii
HayionanbHull yHisepcumem 6yoienuymesa i apximexmypu, H/JI 6yodisenvbHoi mexamiku

Pobounii Ten.: +38(044) 245-48-29.

MooinbHMIA Tea.: +38(050) 750-13-61

E-mail: yuvv@ukr.net

ORCID ID: https://orcid.org/0000-0001-8130-7204

ABTOp (BYeHA CTyNeHb, BUYEHE 3BaHHS, MOCANA). 3000Y6ay CMYNeHs KAHOUOAMA MEXHIYHUX
Hayk, kageopa 6yodieenvnoi mexanixu Karawnixoe Onexcanop bopucosuu

Aopeca poooua: 03035 Vrpaina, m. Kuis, Iosimpognromcwruii npocnekm 31, Kuiscokuil
HayionanbHull yHisepcumem 6yoienuymesa i apximexmypu, H/JI 6yodisenvHoi mexamiku

Pobounii Tex.: +38(044) 245-48-29

MooinbHMIA Tea.: +38(066) 71-88-099

E-mail: kalash2d@gmail.com

ORCID ID: https://orcid.org/0009-0009-7825-9809



