Statement of the problem of simulation of shear processes in low-colusion plastics oils

Authors

DOI:

https://doi.org/10.32347/2410-2547.2023.110.47-62

Keywords:

landslides, modelling of slopes, dilatancy, coefficient of stability, methods of calculating slopes, FEM

Abstract

The article deals with the issue of modelling shear processes in plastic soils. The peculiarity and main difficulty of modelling landslide processes is the need to take into account a large number of various natural and technogenic influences on the slope, each of which can significantly affect its overall stability. It is also important to take into account not only the current state of the slope but also the forecasting of factors that may affect it over time. In this case, it may be justified to create complex models that include several interconnected sub-models to describe various physical phenomena. Considering the complexity of calculations to determine the stability of the slope or shear pressure on engineering protection structures, it is not surprising that all calculation methods rely on some assumptions when building calculation models to describe physical phenomena and reduce the complexity of calculations. However, it should be noted that the modelling of the non-linear behaviour of soils and the use of models that more accurately describe physical phenomena and processes occurring on slopes can significantly affect the results of calculations.

The article presents the main relationships of the mathematical model of elastic-plastic deformation of soils. The given ratios allow taking into account such phenomena as dilatancy and contraction, which makes it possible to more accurately model the stress-strain state of the soil medium, the distribution of pressure in the soil, taking into account the change in physical and mechanical properties during the deformation process.

In the article, the finite element method is chosen as the most effective method of numerical modelling of shear processes. Certain aspects of the implementation of calculations based on a complex model and the justification for determining the coefficient of slope stability within the framework of this method are presented.

Author Biographies

Ivan Solodei, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Professor of the Department of Construction Mechanics

Eduard Petrenko, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Geotechnics

Vasyl' Pavlenko, Kyiv National University of Construction and Architecture

graduate student of the Department of Construction Mechanics

References

Bishop A.U. Parametry prochnosti pri sdvihe nenarushennykh i miatykh obraztsov hrunta (Shear strength parameters of undisturbed and crumpled soil samples) // Opredeliaiushchie zakony mekhaniki hruntov. - M.: Mir, 1975. - S. 7-75.

Boiko I.P. Prohressivnye metody proektirovaniia osnovanii fundamentov na EVM (Progressive methods for designing foundations on a computer). – K.: Znanie, 1986. - 20 s.

Boiko I.P., Delnik A.E., Kozak A.L., Sakharov A.S., Semenets I.A. Metodika chislennoho modelirovaniia razvitiia zon predelnoho sostoianiia v hruntakh osnovanii po MKE (Numerical modeling technique for the development of limit state zones in foundation soils according to the FEM). – Kiev: Inzh.-stroit. In-t. Kiev, 1983. - 46 s.

Buhrov A.K. O reshenii smeshannoi zadachi teorii upruhosti i teorii plastichnosti hruntov (On the solution of a mixed problem of the theory of elasticity and the theory of plasticity of soils) // Osnovaniia, fundamenty i mekhanika hruntov. – 1974. - № 6. - S. 20-23.

Blokh V.I. Teoriia upruhosti (Theory of elasticity). - Kharkov: Izd-vo Khark. un-ta, 1964. – 483c.

Holdin A.L., Prokopovich V.S., Sapehin D.D. Upruhoplasticheskoe deformirovanie osnovaniia zhestkim shtampom (Elastic-plastic deformation of the base by a rigid stamp)// Osnovaniia, fundamenty i mekhanika hruntov. – 1983. - № 5. - S. 25-26.

Zaretskii Yu.K., Lombardo V.N. Statika i dinamika hruntovykh plotin (Statics and dynamics of earth dams). - M.: Enerhoatomizdat, 1983. - 255 s.

Koiter V.T. Obshchie teoremy teorii upruho-plasticheskikh sred (General theorems of the theory of elastic-plastic media). - M.: Izd-vo inostr. lit., 1961. - 79 s.

Kryzhanovskii A.L., Kulikov O.V. K raschetu ustoichivosti otkosov (To the calculation of slope stability) // Hidrotekhnicheskoe stroitelstvo. - 1977. - № 5. - S. 38-44.

Lombardo V.N., Hroshev M.E., Olimpiev D.N. Uchet napriazhenno-deformirovannoho sostoianiia pri raschetakh ustoichivosti hruntovykh plotin (Accounting for the stress-strain state in calculating the stability of earth dams)// Hidrotekhnicheskoe stroitelstvo. - 1986. - № 7. S. 16-18.

Mruz Z., Shimanskii Ch. Neassotsiirovannyi zakon techeniia v opisanii plasticheskoho techeniia hranulirovannykh sred (Non-associated flow law in the description of plastic flow of granular media). – V kn.: Mekhanika hranulirovannykh sred, M., Mir, vyp. 36, 1985. - S. 9-43.

Nikolaevskii V. N. Dilatansiia i zakony neobratimoho deformirovaniia hruntov (Dilatancy and laws of irreversible soil deformation) // Osnovaniia, fundamenty i mekhanika hruntov. – 1979. - № 5. - S. 29-32.

Nikolaevskii V.N. Mekhanika poristykh i treshchinovatykh sred(Mechanics of porous and fractured media). – M.: Nedra, 1984. - 232 s.

Nikolaevskii V.N. Opredeliaiushchie uravneniia plasticheskoho deformirovaniia sypuchei sredy(Constitutive equations of plastic deformation of a granular medium). – PMM, 1971, t. 35, - № 6. - S. 1070-1082.

Nikolaevskii V.N., Syrnikov N.M., Shchefter H.M. Dinamika upruho-plasticheskikh dilatiruiushchikh sred (Dynamics of elastic-plastic dilating media). – V kn.: Uspekhi mekhaniki deformiruemykh sred, M.: Nauka, 1975. - S. 397-413.

Rais Dzh. Mekhanika ochaha zemletriaseniia (The mechanics of the earthquake source). – M., Mir, 1982. - 217 s.

Rosko K. Znachenie deformatsii v mekhanike hruntov (Importance of deformations in soil mechanics). – V kn.: Mekhanika, M., Mir, 1971. - № 3 (127). - S. 91-145.

Sakharov A.S. Momentnaia skhema konechnykh elementov MSKE s uchetom zhestkikh smeshchenii (Moment scheme of finite elements of MSFE taking into account rigid displacements) // Soprotivlenie materialov i teoriia sooruzhenii. - 1974. - Vyp.24. - S.147-156.

Sakharov A.S., Boiko I.P., Kozak A.L., Delnik A.E. Metodika chislennoho modelirovaniia nelineinoho deformirovaniia osnovaniia na primere zahlublennykh shtampov (Technique for numerical simulation of nonlinear deformation of the base on the example of buried stamps). – V kn.: Osnovaniia i fundamenty, vyp. 19, K., Budivelnik, 1986. - S. 57-59.

Sakharov A.S., Boiko I.P., Kozak A.L., Delnik A.E. Razlichnye sootnosheniia teorii plasticheskoho techeniia v zadachakh fizicheski nelineinoho deformirovaniia hruntov osnovanii (Different relationships of the theory of plastic flow in problems of physically nonlinear deformation of foundation soils). – V kn.: Aktualnye problemy prochnosti. Tezisy dokladov k Kh seminaru po teme «Plastichnost materialov i konstruktsii», Tartu, 1985. - S. 107-108.

Sakharov A.S., Kislookii V.N., Kirichevskii V.V. i dr. Metod konechnykh elementov v mekhanike tverdykh tel (Finite element method in solid mechanics) - Kiev: Vishcha shkola, 1982. - 479s.

Sidorov N.I., Spidin V.P. Sovremennye metody opredeleniia kharakteristik mekhanicheskikh svoistv hruntov (Modern methods for determining the characteristics of the mechanical properties of soils). – L., Stroiizdat, 1972. - 136 s.

Solodei I.I., Petrenko E.Iu., Pavlenko V.M. Klasyfikatsiia i prychyny vynyknennia zsuvnykh protsesiv ta metody rozrakhunku skhyliv (Classification and causes of shearing processes and methods of calculating slopes) // Opir materialiv i teoriia sporud: nauk.- tekh. zbirnyk – K.: KNUBA, 2022. – Vyp. 109.– S. 184-202. https://doi.org/10.32347/2410-2547.2022.109.184-202

Strohanov A.S. Analiz ploskoi plasticheskoi deformatsii hrunta (Analysis of plane plastic deformation of soil). – Inzhenernyi zhurnal. – 1965. - tom 5, vyp. 4. - S. 734-742.

Shirokov V.N. Model peschanoho hrunta (Sandy soil model). – V kn.: Sovremennye problemy nelineinoi mekhaniki hruntov, Cheliabinsk, ChPI, 1985. - S. 27-28.

Negre M. R., Stuts P. Contribution à l'étude des fondations de révolution dans l'hypothèse de la plasticité parfaite // Int. J. Solids and Struct. – 1970. - v.6 - № 1. - pр. 53-68.

Skempton A.W., Bishop A.W. Measutment of shear strength of Soils. – Geotechnique, 1950. - v. 2, № 2. - P. 113.

Solodei I.I., Petrenko E.Yu., Zatyliuk Gh.A. The stress-strain state investigation of underground structures on the basis of soil models with adjusted input parameters // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – K:KNUBA, 2019. – Issue 103.– pp. 63-70. https://doi.org/10.32347/2410-2547.2019.103.63-70

Solodei I.I., Petrenko E.Yu., Zatyliuk Gh.A.. Nonlinear problem of structural deformation in interaction with elastoplastic medium // Strength of Materials and Theory of Structures : Scientific-and-technical collected articles – K:KNUBA, 2020. – Issue 105 – pp 48–63. https://doi.org/10.32347/2410-2547.2020.105.48-63

Vermeer P.A., De Borst R. Non-associated plasticity for soils, concrete and rock. – “Heron”, 1984. - v. 29, № 3. - P. 1-63.

Pasternack S.0. Numerical methods in the stability analysis of slopes // Civil - Couip 87: Proc 3rd Int. Conf. Civ, an Struct. Eng. Comput. - London, 22nd - 24th Sept. - 1987. Vole 1. - PP. 307-314.

Zienkiewicz O.C., Chang C.T., Hinton E. Non-linear seismic response and liquefaction // Intern. J. Numer. and Anal. Meth. Geomech. - 1978. - v. 2, №4. - P. 381-404.

DBN V.1.1-46:2017 Inzhenernyi zakhyst terytorii, budivel i sporud vid zsuviv ta obvaliv. Osnovni polozhennia. – K.: Minrehionbud Ukrainy, 2017. – 47 s.

Published

2023-06-26

Issue

Section

Статті