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Introduction

The problem of developing effective approaches, models, methods and algo-
rithms for solving nonlinear boundary value problems of shell mechanics, which
are widely used in many structures of the acrospace, chemical, oil and gas and
other industries, and the selection of their optimal parameters belongs to one of
the most urgent problems of the mechanics of deformable solids [1, 2, 3, 4].

Bellows, as compensators of thermal movements of pipelines, shell ele-
ments in the form of membranes, as sensitive elements of measuring devices,
and other similar elements refer to shells with a relatively small wall thickness,
irregular stiffness parameters, and a complex meridian shape [5]. In the
process of deformation of such shells, significant displacements are typical.
Therefore, the corresponding boundary value problem is significantly
nonlinear, and it is necessary to use efficient iterative numerical algorithms for
its solution.

Reducing computational costs for solving such nonlinear problems is also
important when solving problems of optimal design of complex
multiparameter structures [6 —8]. As known, the number of iterations of the
search optimization algorithm is often quite significant. Given that the direct
calculation of such optimization objects, the results of which are necessary at
each step of the search to calculate the objective function and constraints, and in
some cases also their derivatives, is also quite time-consuming, so the very
© Dzyuba A.P., Safronova I.A., Levitina L.D.
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possibility of correctly solving the optimization problem can be is called into
question. At the same time, there is an obvious need to develop effective
approaches, methods and algorithms for solving such boundary value
problems, as well as to accelerate their convergence in order to reduce the
corresponding computational costs.

Most of the known algorithms for solving nonlinear problems of the
mechanics of inhomogeneous shells are related to the reduction of the original
nonlinear boundary value problem to a Cauchy problem with unknown initial
conditions. The conditions are further clarified from the conditions for
fulfilling the boundary conditions on the right border of integration using the
shooting methods, Newton — Kantorovich and other approaches.

The essence of another group of methods, which include, in particular,
methods of variable parameters of elasticity, consists in the linearization of the
original nonlinear system of equations and the subsequent solution of a set of
corresponding linear boundary value problems [9, 10]. In [11], for this
purpose, the method of successive loads is used, in [12] — continuation by
parameter, in [13] — the method of disturbances taking into account the
differences between the geometry of the undeformed and deformed states of
the body under study.

1. Formulation of the problem. The analysis of the problem as a whole
and the main results achieved in this field and methods for calculating the state
of shells with nonlinear parameters, reflected in a fairly significant number of
reviews, monographs and scientific articles, indicates that the construction and
effective application of numerical algorithms for solving nonlinear boundary
value problems often includes elements of a certain "art", and their implemen-
tation, as a rule, is quite labor-intensive and, in addition, does not always allow
obtaining reliable solutions. At the same time, the question of the appropria-
teness of choosing one or another method still remains debatable due to the
lack of reliable and practically convenient criteria for evaluating the
convergence of existing methods of successive approximations for solving
nonlinear boundary value problems of the theory of shells. A number of
aspects of this problem are still insufficiently researched, and known models
and algorithms for accelerating convergence when used in practice often turn
out to be insufficiently efficient and computationally labor-intensive.

This article is devoted to computer and experimental modeling of the beha-
vior of flexible elements of shell structures, and the development of effective
algorithms for solving emerging nonlinear boundary value problems of their
calculation and optimization of parameters. At the same time, the probability
of the results obtained using different approaches to the construction of a
nonlinear theory is established. Their comparative analysis, error estimation,
which in this case is given by calculation according to linear and
corresponding nonlinear theories, is carried out. The results of calculated data
and experimental studies of the behavior of real structural elements are
compared.

2. Boundary value problems of nonlinear deformation of axisymmetric
shells of rotation. The nonlinear moment theory of shells is used. It is
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believed that the shells are isotropic, elastic and thin-walled. The equations of
the stress-strain state of such shells of rotation, in the presence of large
displacements during axisymmetric deformation, are presented in the form of
corresponding boundary value problems for systems of ordinary differential
equations with variable coefficients

%:A(E(s),s)x?+3(?(s),s), (D

fi(F(sp)) =0, j=Lm, @

it's correspond to different options for fixing the ends of the rotation shell at
the initial s,=sy and final s,=s points of the shell meridian.

-T
z (s)=1{&,9,,N,r,M,r,{} —is a vector of shell state variables here.

Nonlinear components (of the second order of smallness) of the rotation
angle of the normal of the median surface and their influence on the remaining
components of the stress-strain state are taken into account in comparison with
the linear formulation in the equations of state of the shells of rotation with an
arbitrary shape of the meridian, in accordance with [14]. And system (1) is
served as:

a _ —ﬂ(cos& cos@—sin 9, sin0)& -9, sin O +-Lcos? (0+9.)(N,r)+
ds r Kr

+Lsin(9+9,)cos(9+l9,)F(s)+cos(9+9,)—cost9+9,sin9,
Kr 2r
ﬁ:L(Mrr)—élrﬂcos@+ﬁ(—sin(9+9,)+sin9+9rcos@),
ds Dr r r
W) K1-#) 1 F(s)
T2 = E+5cos(0+9,)(N,r)+Esin(0+3.)——=—q,r,
ds r r r 2n
2
d(M D(1-u
(drr)zé), ( )cos(@+9,)cost9+sin(6’+9,)(N,r)+
s r
F
+ﬂcos(9+9,)(M,r)—cos(9+‘9,)ﬁ+
r 2r
D(l—yz)
+———=cos(0+3,)(sin(0+9,.)—sin6 -9, cosH),
r
il—iz—%sin(9+9,)§+8,cost9+211<rsin(2(9+9r))(N,r)+
F
+Lsin2(0+9,) (s)+sin(9+9,)—sin9—9,cos9, 3)
Kr 2n

where s, <s<s; is the independent variable along the meridian; 7(s) is the

radius of a parallel circle; 6 (s) is the angle between the axis of rotation and the
normal to the undeformed surface; 3. is the angle of rotation of the normal to
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the middle surface during deformation; &, ¢ is radial and axial movement; N,
is tensile force; M. is bending moment;

S
F(s)=PRy+2x [ (g,cos0—gq,sinO)ds; B is axial load on the end of the
S0

shell; ¢, (s),q,(s) is tangent and normal to the surface components of the
external  distributed load; g, (s)=g¢,cosO+gq,sinf, K= Eh/ - pu?),

D=EK / 12 - y2 )) is tensile stiffness and cylindrical stiffness, respectively;
E, u is modulus of elasticity and Poisson's ratio; A(s) is the variable (in the

general case) thickness of the shell wall along the meridian.
Here, unlike [14], in the equations of nonlinear deformation (3), the

substitution 6" (s)=6(s)+9, (s) is made, where 0" (s) is the angle between

the axis of rotation and the normal to the deformed surface.
The boundary conditions for the main variables {é, 8,N., M., ¢ } of the

system (3) in accordance with the conditions for fixing the contours of the
shell are taken as follows:
a) rigid clamping: §= 9, = {=0;
b) hinged fastening: £={= M, = 0; C))
¢) free edge: N, = M, =0 or N, = Ny, M, = M,
where N, M|, are the given marginal forces.

Note that when both edges of the rotation shell are rigidly clamped or
hinged, it is additionally necessary to reveal the static uncertainty by one of the
known methods. It should be noted also that the solution of system (3) is
significantly complicated by the fact that the value of one of the variables 9, is
a nonlinear component of the system coefficients.

In accordance with the approach proposed in [15, 16], in contrast to the
linear theory, second-order variables are taken into account in the equilibrium
equations and relations for deformations, and the system of equations of the
nonlinear boundary value problem for the annular plate with respect to the

-
vector of variables z (s)={N,,£,0,,M,,9.,¢} is taken in the form

ﬁz_LN _ﬂé_lgl
"o 27"

ds K
ﬁ:LM}’ _ﬂ‘gr;
ds D

_ 1- 1)K
dN}" — 1 #Nr“’( ) é,
ds s §2
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er =_Qr_1 ‘qu+( ) 19},,

ds s 52
g
—==-9,, 5
s , S)

where in addition to the previously introduced designations; a < s<b ;a, b are
the inner and outer radii of the annular plate; O, is transverse force.

System (5) is supplemented by boundary conditions for fixing the contours
of the plate in the form (4), where p. ¢) for the free edge has the form
N, =M,=Q.,=0o0r N, =Ny, M,=M,, Q.= Q.

3. Linearization of nonlinear boundary value problems for the
calculation of envelopes of rotation. Solving the nonlinear boundary value
problem (1) with the corresponding boundary conditions (2) is complicated by

the fact that the coefficients are significantly nonlinear from the vector E(s)

components. Therefore, it is proposed to linearize the system of equations (1)
in such a way that one part of the nonlinear components refers to the matrix of

coefficients A(E(s), s) (as an analogue of the method of variable parameters

of elasticity), and other part — to the column of free components B(E(s), s)

(as an analogue of the method of additional loads). For the integration of linear
boundary value problems at each step of the iterative process of refinement of
nonlinear components, the sweep method with orthogonalization according to
S. K. Godunov [10] is used.

The matrices A(E(s), s) and B(E(s), s) of the boundary value problem

(3), (4) take the form when performing the above transformations directly:

_Heosot 0 Lcos?ot 0 0
r Kr

0 0 0 1 9

Dr
— K l—yz
A(Z (s),s) M 0 Hcoso* 0 0 (6)

r r

0 0 sin@* Heosot 0

r

~Hing? oLsin(ze*) 0 0

L r 2Kr
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—L_gin (29*)@ +cosO" —cosH
2Kr 2r

—ﬂ(sine)+ —sin9)+L

r R]
. F
B(z(s),s)= %sm9+§—qrr NG
D{1- yz
—cosO* F(s) + ( ) (sin (29*) —2cosfO" sin 6’)
T 2r

F
Lsin2 6" ﬁ+ sin@t —sin @
L Kr 2r

The study of the convergence of the algorithm for solving such boundary
value problems, which arise by transferring (linearizing) nonlinear components

from the matrix 4(z(s),s) to the matrix of free members B(E(s), s), was

carried out based on the results of a computational experiment using various
iterative processes for the variable 6'(s). The solution of the problem in a
linear formulation was chosen as the initial approximation. It turned out that
the algorithms for solving the boundary value problem (1), (2) with
unstructured (sparse) matrices of coefficients (6), (7) showed low and unstable
convergence, convergence to different solutions was observed, and sometimes
its absence [7].

In order to overcome these difficulties, in this work, it was proposed to
present the matrices (6), (7) of the system of nonlinear equations at large
displacements in a structured form, close to the matrices of the system of linear
equations, the solution of which has been sufficiently tested [14 — 16]. For this
purpose, two identical terms with different signs were added to the component
matrices of the right-hand parts of each of the 5 equations of system (3), taking

into account 67 (s)=60(s)+3.(s):
“(s)=0(s)+9,(s)

1)-9,sin6+9.sin6; 2)-9, Hcoso+9. Hcoso; 3)-0+0;

r r

D 1—/.12 D 1—,u2
4)9,Mcos(9+9,)c059—9rMcos(@h&)cos@; ®)
r

,
5)9, cosf -3, cosb.
At the same time, the first components of the terms were assigned to matrix
A, and the second to matrix B. Despite the fact that such an artificial technique
increased the number of nonlinear components of these matrices, it allowed
not only to present matrix 4 in the form of a corresponding matrix for a linear
system [14 ], but also to increase its conditioning:
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£ (—sin(6+9.)+sin6+9, cos6)
B
K F(s)
BG(S))z 7sm(9+l9,)7—qrr . (10)

F(s) D(-#
—cos(0+9, )ﬁ +uoos(0+‘9, )(sin(6+9.)—sin6—9. cosb)

2 r

—Lsin®(0+9,) =~ ()+31n(9+9) —sinf—9, cosd
Kr 2r

The results of the system numerical experiments showed that the presen-
tation of matrices 4 and B of system (3) in the form (9), (10) made it possible
to construct a stably convergent and positively sensitive to the application of
convergence acceleration algorithms iterative process of solving the boundary
value problem and to significantly reduce the total number of iterations.

In order to accelerate the convergence of the iterative process of solving
boundary value problems of shell mechanics, it is proposed to determine the
nonlinear component components of the next approximation vector Ei(nﬂ) by
extrapolation (imitation) of their values based on the results of calculations
—n-2 n-1 —n

Z; s Zj s Zj

at the previous steps for each of the nodal points s; (i = O,_L)
of the interval sy <s; <s; of solving the sequence of the corresponding

linearized systems.
Three steps of the iterative process are carried out, in which the nonlinear
components are refined using the method of upper relaxation (linear extrapolation)

Ei(n+1) e y(zin —El.(”‘l)) , (12)

where 0 <y <1 is the relaxation factor.
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For n=0, the linearized problem is solved at the initial value z°
corresponding to the solution of the linear problem. Next, the form of the

forecast for each nonlinear j-th component of the vector z; (j = 1,_5) is divided

by the form of an iterative process [17 — 19]. In the case when the sequence
22,21 2" is non-monotonic (zi"fl —z"? )(zl” —z" ) <0 for a certain j (in
the future, the index j is omitted), the forecast is proposed to be carried out
according to the Aitken — Steffensen formula

n_(n-2) (n-1)
Zl(nﬂ) . ziz; _(Zi

)2
,n>2,(=0,1), 13
T n (i ) (13)

_Zi(

and in the case when the process is monotonic (zl»”_] —zl»”_2)(z;’ —z;’_]) >0 —
in the form of an analogue of the Adams method, which is based on the
extrapolation dependences of Lagrange and Newton
(o) 232 —162" ) 4 57072)
w7 12

, n=2, (i=0,L), (14)

Next, according to the main algorithm, the linearized system is solved again
for the next two (using (12)) successive steps, and the process continues until
the specified accuracy is reached, taking into account the obtained three new
points, starting from the forecast point.

The estimation of the accuracy of the iterative process is calculated such

8 S (et (5) =2t ()

j=1i=0

i i (Zin(j) (Si))2

j=1i=0

<eg, (15)

where ¢is the specified accuracy.

This approach made it possible to replace the solution of the linearized
boundary value problem at every third step with predictive values calculated
by simple formulas (13), (14), and which, in addition, turn out to be closer to
the solution than those obtained by the main algorithm, and significantly (up to
2 times) speed up the computing process.

4. Numerical and experimental studies. The reliability of the results
obtained with the help of the constructed algorithm was evaluated by
comparing the data of numerical and experimental research.

In order to carry out experimental studies of the deformation of the annular
plate under the action of an axisymmetric load distributed along the inner hole
(Fig. 1, a), a special test setup was developed (Fig. 1, b). The load of the rigidly
clamped — 2 plate — 1 was carried out through a thin—walled cylindrical plug
washer — 3 with a micrometric thread, which made it possible to accurately
screw the washer and, thus, to obtain a load evenly distributed over the inner
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hole of the plate. In the center of the puck, a hole was made for fixing a rack
with a platform — 4, on which weights were installed for loading the plate.

(2) (b)

Fig. 1. Calculation scheme (a) and device (b) to determine the deflection of an annular plate

Measurements of plate deflections were made with a watch-type indicator —
6. The deflection value was chosen as the arithmetic mean of the measurement
results at four points located at the ends of the mutually perpendicular
diameters of the plate opening.

Calculations of the maximum deflection along the inner contour of the
annular plate under the action of a transverse load uniformly distributed along
the inner contour were carried out according to models of nonlinear deformation
(3), (at ) and (5) with boundary conditions (4, a), (4, c), the results of which are
shown in Fig. 3. The signs «M», «O» indicate the data obtained according to
models (3), (5), respectively. Line 1 corresponds to a linear solution. For
comparison, Fig. 2 also shows the results of the numerical calculation of the
plate in the Ansys R19.0 Academic, which are marked with «A» in Fig. 3, and
the «®» sign shows the data of the conducted experimental studies.

Fig. 2. Finite element calculation of the ring plate
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The deviation of the calculation results obtained according to the model (3),
(5) reaches 15%, and the finite element calculation according to the model (5)
and the experimental data are within 5%. It should be noted that with an
increase in the load and, as a consequence, the deflection, the experimental data
approach the middle of the gap between the data of calculations according to
models (3), (5).

& -10° (m)
1
038
0,8 /
|
|
u
07 | ]
ARRL"
0.6 = "EI'
| . L ] m ﬁ ) e
0,5 = L] m ®
/ m L
04 L= o
E | Os *
m_ O
03 = Oe
oA
0.2
01
0 P, (H)

0 248 5 75 W 125 15 AT5 20
Fig. 3. Dependence of «load — deflection» for an annular plate

under the action of an axisymmetric load, distributed along the inner opening

The study of the deformation of flexible shells of rotation with a complex
meridian shape is demonstrated on the example of the problem of numerical
and experimental modeling of the behavior of a bellows under the action of
longitudinal loading. Fig. 4,a. In some areas, the geometry of the middle
surface (Fig. 4, b) can be presented as follows:

— AB (plate): R, <s<4B, r(s)=s, 6(s)=0;

— BC (torus): AB<s<ABC, r(s)=|r, sin0|+ AB , 0(s)=(s— AB)/r, ;

— CD (plate): ABC<s<ABCD, r(s)= AB—(s—ABC), 0(s)=r ; (16)
— DE (torus): ABCD<s<ABCDE, r(s)=R,+r,—|r,sinf|, 6(s)=n—(s—ABCD)/r;
— EF (plate): ABCDE < s<ABCDEF, r(s)=s—ABCDE+R, +r,, 0(s)=0;

— FK (torus): ABCDEF < s<ABCDEFK, r(s)=AB+j,sinf|, 0(s)=(s—ABCDEF)/r ;
— KL (plate): ABCDEFK < s<ABCDEFKL, r(s)=AB—(s— ABCDEFK), 6(s)=r,
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where s is the distance of the point along the meridian from point 4; r,, r, are
the inner and outer radii of tori, respectively; R,, R, are the inner and outer
radii of the bellows; /4 is the thickness of its wall.

When integrating the boundary value problem (1), (2) taking into account
(9), (10) and (16), which describes the behavior of the bellows, each of the
sections (16) was divided in such a way that the nodal point was on the border
of the transition from the section to sections, and the connection between
conditional sections was considered mechanically ideal.

The boundary conditions were as follows: the lower end was considered rigidly
clamped (4,a), and the upper end was considered to be loaded by the longitudinal
compressive force Py (4, ¢) uniformly distributed along the upper edge.

A special test setup was developed for the experimental study of the axial
movements of the bellows under the action of axial compression (Fig. 5).

P.
VYVYYYYYYY
O

(2)

Fig. 4. Bellows geometry

Axial displacement was measured with a
clock-type indicator with division price is
0.0l mm, and the load was carried out
according to the «dead» load scheme. The
physical parameters of the bellows were as
follows: height, inner and outer radii of the
bellows — L =0.23x10”m, R, = 37.5x10°m,
R, = 45%107 m, respectively; the diameter
of the inner and outer torus — r, = 1x10™ m,
r, =2.5%10" m, respectively; material —
12X18HIT (stainless steel) with
appropriate physical characteristics.

The results of calculating the
deformation parameters (axial
displacements) of the bellows were
obtained using the developed approach, Fig. 5. Experimental installation
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which was implemented in the form of the author's software package in the
PGI Visual Fortran language and is presented in the table. 1. The calculation
results obtained using the ABAQUS 6.12-1 / CAE and the results of experimental
tests are also given there.

Table 1
Dependence of the bellows length change on the axial load
Load Py, N 9,8 | 19,6 29,4 | 32,3 | 33,3 | 39.2
Axial
movement, Q><103, m
Visual Fortran 2.10 | 4.10 6.40 7 7.20 | 10.2
ABAQUS / CAE 2.18 | 4.36 6.54 | 7.19| 7.41 | 10.0
experiment 2.00 | 4.00 6.00 | 7.00| 7.50 | 11.0

The obtained results of numerical calculations and experimental studies
demonstrate the reliability and efficiency of the application of the developed
algorithm for the calculation of envelopes of rotation with a complex meridian
shape at large displacements. The application of the convergence acceleration
algorithm (12) — (14) allows you to significantly reduce the number of direct
calculations by up to 1.5+1.8 times (and several times with certain input
parameters of the problem) compared to known algorithms for direct
sequential integration of linearized boundary value problems shell mechanics.

5. Corrugated membrane of the highest sensitivity. The sensitivity of the
measuring device, which contains a membrane, in particular a sinusoidal
profile (Fig. 6), is determined by the angle of inclination of the characteristic
curve, which expresses the dependence between the deflection in the center
and the pressure on the membrane. The elastic characteristic of the corrugated
membrane, among other parameters, also depends on the shape of the middle
surface of the shell [5], which forms the membrane. At the same time, the
sensitivity of the membrane increases as the corrugation depth decreases, so
that the thin smooth membrane (plate) has the highest sensitivity among round
membranes, the behavior of which becomes significantly nonlinear even at low
loads (Fig. 2). This is a disadvantage in the practical application of membranes
as a sensitive element, as it reduces the range of measuring pressures on a scale
with a uniform
division price.

Creating a
membrane  of the
desired sensitivity and
with a wide range of
measurable (within the
linear scale) pressures
is possible by choosing
a rational depth of its
corrugation. The
Fig. 6. Corrugated membrane with transmission mechanism variational problem of
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optimizing the membrane of the highest sensitivity consists in maximizing its
deflection in the center according to the 5™ equation in (3)

rb
c(r,) = —I(—%sin(9+9,)u+9, cos 6 +$sin (2(6+8,))(N,r)+

Ta

+KLsm 0+39, ) Fis )+sm(9+9 )—sinf -39, cos@}cos@dr, (17)
r

when limiting the length of the meridian and, thus, the depth of corrugation of
the membrane, in the form

L:rjb\/1+y'2dr:rﬂ1+rg29dr (18)

Ta

and availability of strength requirements
maxcri <[a], (19)

Ta

where o; :\/0' -0,0, +o- +3c2

In the paper, the profile of the membrane is given in the form
y(r) = A(r)sin(o(r-r,)); A(r), is depth and frequency of corrugation,
respectively; 7, is the radius of the rigid center, 7, is the outer radius of the
membrane; /1 is membrane wall thickness; o,., O Ty, I normal (radial and
annular) and tangential stresses. It should also be noted that in equations (3) it
is convenient to switch to integration over the variable r (radius of the

membrane) taking ds =drcos¢g . It is also assumed that the greatest stresses

rz

occur on the surface of the shell z = //2.

The task of designing the membrane of the greatest sensitivity consists in
finding the optimal control from the condition of maximum deflection of the
rigid center (17) in the presence of restrictions (18), (19). The solution of the
problem is carried out on the basis of the necessary conditions of optimality in
the form of L. S. Pontryagin’s maximum principle. As is known [20, 21], the
task in this case is to find the optimal control A(r) from the conditions of the

maximum of the Hamiltonian

H(Z(5),A(5), A(s),5) = i A +8(x)(o(x)~[o])+cyl +1g°0,  (20)
j=0

where y; (J =1,_5) are the right-hand parts of the equations of the
mathematical model (3) of the deformation of the corrugated sinusoidal
membrane; v, is integral expression of the objective function (17); &(s) is
Lagrange function, (8(s)=0 when o(s) <[c]; 6(s)#0, when a(s)=[0c]); ¢
is the Lagrange multiplier, which is found from the conditions of execution
(18); Ag=-1; A(s)( :1,_5) are conjugate functions found by solving the
boundary value problem
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da;
2% __OH 1)
ds 0z
with boundary conditions of transversality (2)
A (E(sp)) = chqradfj (E(sp)), (22)
j
where 5, =5, Vs, .

The algorithm for satisfying the necessary optimality conditions of the
maximum principle in the presence of constraints (19), containing control and
phase variables, and integral conditions (18) is based on the scheme of

successive approximations A(r)k_1 >zF 5 2F SsupH > A(r)k [22].
A(r)

Here, the calculation z*, 1% with a given initial approximation A(r)o is

carried out by successive integration of the corresponding boundary value

problems (3), (4) and (21), (22). Attention should be paid to the peculiarities of

solving the conjugate system (21), the right-hand parts of which may differ in

some sections r, <r<p by the presence or absence of the Lagrange

multiplier 6(s) associated with the fulfillment of constraint (19). The optimal

control of the next step is sought from the maximum condition (20) by solving
a number of auxiliary nonlinear programming problems for fixed (nodal)

points r; of the integration interval [r,,7] .

To determine the control of the next step of approximations from the point
of view of acceleration of convergence (as shown by the results of numerical
simulations obtained when solving specific problems), it is advisable to use the
relations

A = aF )+ (F(2 25 4 ) -4 ) 77, @)
where F (Ek ,Ik ,Ak ,rl») is the operator matching the control AF with a new

control A" value that satisfies the conditions of the (k+1)-" step maximum,
and the relaxing components of the vector y (0 <y, <1) are taken from the

requirements of the best convergence of the iterative process. An analysis of
the algorithmic processes of satisfying the necessary optimality conditions of
the Pontryagin’s maximum principle is given in [22].

Numerical results were obtained for a membrane with seven corrugations
under the action of uniform transverse pressure and the following parameters:
[=1.810"m; 7 =0.2-10° m; R = 25-10° m; E = 100 MPa/m’.

The application of the proposed approaches to the linearization of the
nonlinear boundary value problem and the convergence acceleration algorithm
made it possible to obtain a convergent process of solving the nonlinear
problem of membrane deformation in the form of a sequence of linearized
boundary value problems in 8 iterations (Fig. 7), where the results of the
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calculation of the membrane deflection of a sinusoidal profile under the action
of uniform pressure are presented in the form of an undeformed profile (line 1)
and membrane deflections (lines 2 — 4, 8) at individual steps of the iterative
process. For comparison, it should be noted that the simple iteration method
converged in 91 iterations.

£10'm

Ra VANV

)
r-l10m

25

N

0,51

1,0

15+

20 +
Fig. 7. Graph of membrane deflection at individual steps of the iterative process
The membrane profile of the optimal shape is shown in Fig. 8, where

H,=047-10> m; H, = 1.1-10° m. (In the general case, for the membrane of
the highest sensitivity, H,/H, varies in the range of 0.44-+0.75).

Fig. 8. The optimal shape of the corrugated membrane of the greatest sensitivity

The elastic characteristics of such a membrane are shown in Fig. 9. Here,
for comparison, the characteristics of the designed membrane (line 1) and two
membranes of permanent corrugation are shown, one of which has the same
length (OA=04") of the linear section of the «load — deflection»
characteristic as for the optimal one (line 2), and the second (line 3) has the
same sensitivity as the optimal profile membrane.

The obtained results show that the sensitivity of the proposed membrane is
2.1 times greater than the sensitivity of the membrane ¢, =tana, with a

constant depth of corrugation, and in the case of the same sensitivity ¢, =+¢,,
the length 04 of the linear section of the elastic characteristic of the proposed

membrane is 12% longer than the corresponding section 0A4" for the
membrane with a constant depth of corrugation.
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Conclusions

AQ-I 0%, m ~ Techniques  for effective
0.6 linearization of nonlinear
1 boundary-value problems of
” the mechanics of flexible
0.4 A shells of rotation with a
AR complex meridian shape and
Al algorithms for accelerating the
0.2 An | convergence  of  iterative
' " KZ processes for their solution
based on extrapolation
(forecasting) of the solutions
0 0.2 0.4 0.6 obtained in the previous
approximation steps and their
application to the study of the
behavior of flexible ring plates, bellows and corrugated membranes,
demonstrating the effectiveness of the proposed approach.

The results of the numerical analysis obtained from the application of the
described approach for two mathematical models of deformation of flexible
shell elements are presented. Their comparative analysis with the data of the
conducted experimental tests is presented, indicating the sufficient adequacy of
the selected models. The results of the calculations according to which there
are deviations from the experimental data of up to 5% in both directions.

The results of the optimization of the corrugated membrane of the
sinusoidal profile were obtained. They demonstrate advantages in its
sensitivity more than 2 times, in the range of the linear scale of measurements.

WA q;10]N/m?
_—

Fig. 9. Elastic characteristics of membranes

REFERENCES

1. Bazhenov V.A. Kryvenko O. L., Solovei M. O. Nonlinear deformation and stability of elastic
shells of heterogeneous structure. — K., 2010. — 316 p.

2. Hrigorenko Y.M., Hulyaev V.1 Nonlinear problems of shell theory and methods of solving
them (review) // Applied Mechanics, 1991. — No. 10. — P.3-33.

3. Molchenko L. V. Flexible shells of rotation in a magnetic field: monograph. — K., 2013.-196 p.

4. Bazhenov V., Krivenko O. Bucling and Naturel Vibrations of Thin Elastic Inhomogeneous
Shells. — LAP LAMBERT Academic Publishing Saarbruken, Deutseland, 2018. 97 p.

5. Ponomaryov S.D., Andreeva L.E. Calculation of elastic elements of machines and devices. —
M.: Mashinostroenie. — 1980. — 326 p.

6. Karamzin D., Pereira F.L. On a Few Questions Regarding the Study of State-constrained
Problems in Optimal Control // J. Optim. Theory Appl., 2019. — 180. — P. 235-255.

7. Dzyuba A.P., Sirenko V.N., Dzyuba A.A., Safronova 1.A4. Models and Algorithms for
Optimizing Elements of Heterogeneous Shell Structures. Actual problems of mechanics:
Monograph ed. by N. V. Polyakov. Dnipro: Lira, 2018. — P. 225-244.

8. Kostyra N.O. The problem of optimal design of flexible shells of complex configuration //
Building materials, materials, machine construction. Dn.: PGASA, 2012. — Iss. 65. — P. 298-
303.

9. Birger I.A. General algorithms for solving problems in the theory of elasticity, plasticity, and
creep // Uspekhi mekhaniki deformiruemykh sred. — M.: Nauka, 1975. — P. 51-73.

10. Hrigorenko Ya.M., Bespalova E.1., Kitaigorodsky A.B., Shinkar A.I. On the numerical solution
of nonlinear boundary value problems of the statics of flexible shells. — DAN of the Ukrainian
SSR. Ser. A, 1980.—No. 6. — P. 44-48.



ISSN2410-2547 19
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2023. Ne 110

11. Petrov V.V. The method of successive loads in the nonlinear theory of plates and shells. —
Saratov, 1975.-120 p.

12. Hrigolyuk E.I, Mamai V.I. Nonlinear deformation of thin-walled structures. -M., 1997. 272 p.

13. Kagadiy T. S., Shporta A. G., Bilova O. V., Shcherbina 1. V. Mathematical modeling in
problems of geometrically nonlinear theory of elasticity / Prikl. math question modeling.
Kherson National Technical University Univ, 2021. —T.4. —No. 1. —P.103-110.

14. Biderman V.L. Mechanics of thin—walled structures — M.: Mashinostroenie, 1977. — 488 p.

15. Hrigorenko Y.M., Mukoed A.P. Solving nonlinear problems of the theory of shells on a
computer. — K.: Higher School, 1983. — 286 p.

16. Hrigorenko Ya.M., Hrigorenko A.Ya., Vlaikov G.G. Problems of mechanics for anisotropic
Inhomogeneous Shells. On the basis of different models. K.: S. P. Timoshenko Institute
Academy of Science of Ukraine, 2009. —556 p.

17. Bulakajev P.I, Dzjuba A.P. An algorithm for the prediction of search trajectory in nonlinear
programming problems optimum design // Structural Optimization: Research Jornal of Intern.
Society of Struct. and Multidisciplinary Optimiz. Springer —Verlag, 1997. —V.13. —-Ne2,3. —
P.199-202.

18. Dzyuba, A.P., Safronova, 1.4. Algorithms for accelerating the convergence of iterative processes
for calculating the envelopes of rotation of a complex meridian shape for large displacements //
Visnyk Dnipropetr. university Ser.: Mechanics. —Vol. 2. — Dn-sk: PH of DNU, 2015. Iss. 19. — P.
38-55.

19. Dzyuba A.P., Safronova I.A., Levitina L.D. Algorithm for computational costs reducing in
problems of calculation of asymmetrically loaded shells of rotation. Omip maTepiaiis i Teopist
criopyn /Strength of Materials and Theory of Structures, 2020. —Ne 105. —C. 99-113.

20. Bryson A.E., Yu-Chi Ho Applied Optimal Control. Toronto, London, 1969.

21. Pontryagin L.S., Bolteanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical
Theory of Optimal Processes. Interscience: New York. — NY, USA, 1962.

22. Dzyuba A., Torskyy A. Algorithm of the successive approximations method for optimal control
problems with phase constraints for mechanics tasks. Mathematical modeling and computing.
—Vol. 9, 2022. —No. 3 — P. 734-749.

Cmamms naoitwna 07.02.2023

Izioba A1, Cagpponosa 1.A., Jlesumina J1/].
YUCJIOBE TA EKCHEPUMEHTAJIBHE MOJIEJIIOBAHHS TIOBEJJIHKU THYUKHUX
OBOJIOHKOBUX EJJEMEHTIB KOHCTPYKIIIA

Jlist 3amad OCECHMETPHYHOrO HEMIHIHHOrO 3TrHMHAHHS TOHKHX OOOJIOHOK oOOepTaHHS 3i
CKJIaAHOK  (OpMOK  MepHIiaHy (TOHKMX KUIBLEBHX IUIACTHH, TO(ppOBaHMX MeMOpaH
CHHYCOIaIbHOro npodiiro Ta cHib(POHIB) MPOBEACHO NOPIBHSUIBHUI aHai3 3aCTOCYBAHHS BOX
MaTeMaTHYHHUX MoJenel 1eGopMyBaHHs THYYKHX OOOJOHKOBHX €IEMEHTIB. UHCIIOBI pe3ysibTaTi
OTPHMaHI LULIXOM OE3M0CePEeIHBOr0 IHTerpYBaHHS KpalOBHX 3aJady MeEXaHIKH OOOJIOHOK,
METOJI0M CKiH“leHl/lX eJ'leMeHTiB Ta CEKCIICPUMEHTAJIbHUX }ZlOCJ'li}l)KeHb. Pe3yﬂbTaTl/l OIITUMAJIBHOI'O
NPOCKTYBaHHs THYYKOI Tro(ppoBaHOi MeMOpaHH CHHYCOIZaJbHOrO Mpodia0 HaHOLIbIIOl
YyTIIMBOCTI OTPUMAHIi 3 BAKOPUCTAHHAM HEOOXITHUX YMOB ONTHMAIbHOCTI IPUHIHITY MAKCHMYyMY
JI. C. Iourpsrina. Pe3ynpraty nofaHi y BUrisiai Tabnuue, pororpadiii Ta rpadikis.

KuarouoBi ciioBa: rHy4Ki 00010HKH 00epTaHHs, roppoBaHi MeMOpaHu, CHIIb(OHU, YUCITOBUI
aHaJIi3, eKCIepUMEHTAIIbHI JTOCIIDKEHHS.

Dzyuba A.P., Safronova 1.A., Levitina L.D.
NUMERICAL AND EXPERIMENTAL MODELING OF THE BEHAVIOR OF FLEXIBLE
SHELL ELEMENTS OF STRUCTURES

This article is devoted to computer and experimental modeling of the behavior of flexible
elements of shell structures, and the development of effective algorithms for solving emerging
nonlinear boundary value problems of their calculation and optimization of parameters. At the
same time, the probability of the results obtained using different approaches to the construction of
a nonlinear theory is established. Their comparative analysis, error estimation, which in this case is
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given by calculation according to linear and corresponding nonlinear theories, is carried out. The
results of calculated data and experimental studies of the behavior of real structural elements are
compared.

The results of a comparative analysis of the application of two mathematical models of
deformation of flexible shell elements, obtained by direct integration of boundary value problems
of shell mechanics, by the finite element method and experimental research, are presented.

The problems of axisymmetric nonlinear bending of thin ring plates, corrugated membranes of
a sinusoidal profile and bellows as a shell of rotation with a complex meridian shape are
considered.

Using the necessary optimality conditions of the principle of maximum L. S. Pontryagin
obtained the results of the optimal design of a flexible corrugated membrane with a sinusoidal
profile of the highest sensitivity. The results are presented in the form of tables, photos and graphs.

Keywords: flexible shells of rotation, corrugated membranes, bellows, numerical analysis,
experimental studies.
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