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For the problems of axisymmetric nonlinear bending of thin shells of rotation with a complex 
meridian shape (such as thin annular plates, corrugated membranes of a sinusoidal profile and 
bellows), the comparative analysis of the application of two mathematical models of deformation 
of flexible shell elements was carried out. The numerical results are obtained by direct integration 
of boundary value problems of shell mechanics, by the finite element method and experimental 
research. The optimal design of a flexible corrugated membrane with a sinusoidal profile of the 
highest sensitivity are realized by using the necessary optimality conditions of the principle of 
maximum L. S. Pontryagin. The results are presented in the form of tables, photos and graphs. 

Keywords: flexible shells of rotation, corrugated membranes, bellows, numerical analysis, 
experimental studies. 
 

Introduction 
The problem of developing effective approaches, models, methods and algo-

rithms for solving nonlinear boundary value problems of shell mechanics, which 
are widely used in many structures of the aerospace, chemical, oil and gas and 
other industries, and the selection of their optimal parameters belongs to one of 
the most urgent problems of the mechanics of deformable solids [1, 2, 3, 4]. 

Bellows, as compensators of thermal movements of pipelines, shell ele-
ments in the form of membranes, as sensitive elements of measuring devices, 
and other similar elements refer to shells with a relatively small wall thickness, 
irregular stiffness parameters, and a complex meridian shape [5]. In the 
process of deformation of such shells, significant displacements are typical. 
Therefore, the corresponding boundary value problem is significantly 
nonlinear, and it is necessary to use efficient iterative numerical algorithms for 
its solution.  

Reducing computational costs for solving such nonlinear problems is also 
important when solving problems of optimal design of complex 
multiparameter structures [6 – 8]. As known, the number of iterations of the 
search optimization algorithm is often quite significant. Given that the direct 
calculation of such optimization objects, the results of which are necessary at 
each step of the search to calculate the objective function and constraints, and in 
some cases also their derivatives, is also quite time-consuming, so the very 
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possibility of correctly solving the optimization problem can be is called into 
question. At the same time, there is an obvious need to develop effective 
approaches, methods and algorithms for solving such boundary value 
problems, as well as to accelerate their convergence in order to reduce the 
corresponding computational costs. 

Most of the known algorithms for solving nonlinear problems of the 
mechanics of inhomogeneous shells are related to the reduction of the original 
nonlinear boundary value problem to a Cauchy problem with unknown initial 
conditions. The conditions are further clarified from the conditions for 
fulfilling the boundary conditions on the right border of integration using the 
shooting methods, Newton  – Kantorovich and other approaches. 

The essence of another group of methods, which include, in particular, 
methods of variable parameters of elasticity, consists in the linearization of the 
original nonlinear system of equations and the subsequent solution of a set of 
corresponding linear boundary value problems [9, 10]. In [11], for this 
purpose, the method of successive loads is used, in [12] – continuation by 
parameter, in [13] – the method of disturbances taking into account the 
differences between the geometry of the undeformed and deformed states of 
the body under study. 

1. Formulation of the problem. The analysis of the problem as a whole 
and the main results achieved in this field and methods for calculating the state 
of shells with nonlinear parameters, reflected in a fairly significant number of 
reviews, monographs and scientific articles, indicates that the construction and 
effective application of numerical algorithms for solving nonlinear boundary 
value problems often includes elements of a certain "art", and their implemen-
tation, as a rule, is quite labor-intensive and, in addition, does not always allow 
obtaining reliable solutions. At the same time, the question of the appropria-
teness of choosing one or another method still remains debatable due to the 
lack of reliable and practically convenient criteria for evaluating the 
convergence of existing methods of successive approximations for solving 
nonlinear boundary value problems of the theory of shells. A number of 
aspects of this problem are still insufficiently researched, and known models 
and algorithms for accelerating convergence when used in practice often turn 
out to be insufficiently efficient and computationally labor-intensive. 

This article is devoted to computer and experimental modeling of the beha-
vior of flexible elements of shell structures, and the development of effective 
algorithms for solving emerging nonlinear boundary value problems of their 
calculation and optimization of parameters. At the same time, the probability 
of the results obtained using different approaches to the construction of a 
nonlinear theory is established. Their comparative analysis, error estimation, 
which in this case is given by calculation according to linear and 
corresponding nonlinear theories, is carried out. The results of calculated data 
and experimental studies of the behavior of real structural elements are 
compared. 

2. Boundary value problems of nonlinear deformation of axisymmetric 
shells of rotation. The nonlinear moment theory of shells is used. It is 
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believed that the shells are isotropic, elastic and thin-walled. The equations of 
the stress-strain state of such shells of rotation, in the presence of large 
displacements during axisymmetric deformation, are presented in the form of 
corresponding boundary value problems for systems of ordinary differential 
equations with variable coefficients 

     , , ,dz A z s s z B z s s
ds

                                  (1) 

   0j pf z s  ,   j =1,m ,                                       (2) 

it's correspond to different options for fixing the ends of the rotation shell at 
the initial sp=s0 and final sp = sl points of the shell meridian. 

   , , , ,
T

r r rz s N r M r    – is a vector of shell state variables here. 
Nonlinear components (of the second order of smallness) of the rotation 

angle of the normal of the median surface and their influence on the remaining 
components of the stress-strain state are taken into account in comparison with 
the linear formulation in the equations of state of the shells of rotation with an 
arbitrary shape of the meridian, in accordance with [14]. And system (1) is 
served as: 

     

     

21cos cos sin sin sin cos

( )1 sin cos cos cos sin ,
2

r r r r r

r r r r

d N r
ds r Kr

F s
Kr

      

      

          

        


 

    1 cos sin sin cos ,r
r r r r

d
M r

ds Dr r r
      

        
 

   
       

21
cos sin ,

2
r

r r r r

Kd N r F s
N r q r

ds r r r


     

      
  

   
     

       

 
    

2

2

1
cos cos sin

cos cos
2

1
cos sin sin cos ,

r
r r r r

r r r

r r r

Dd M r
N r

ds r
F s

M r
r
D

r


    

    


    


     

    



      

 

      1sin cos sin 2
2r r r r

d N r
ds r Kr

                

     21 sin sin sin cos ,
2r r r

F s
Kr

           


            (3) 

where 0 ls s s   is the independent variable along the meridian; r(s) is the 
radius of a parallel circle;  (s) is the angle between the axis of rotation and the 
normal to the undeformed surface; r  is the angle of rotation of the normal to 
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the middle surface during deformation; ,   is radial and axial movement; Nr 
is tensile force; Mr  is bending moment; 

   
0

0 2 cos sin
s

n
s

F s P q q rds      ; 0P  is axial load on the end of the 

shell;    , nq s q s  is tangent and normal to the surface components of the 

external distributed load;   cos sinr nq s q q    , 2(1 )K Eh   , 
3 2(12(1 ))D Eh    is tensile stiffness and cylindrical stiffness, respectively; 

E,  is modulus of elasticity and Poisson's ratio; h(s) is the variable (in the 
general case) thickness of the shell wall along the meridian. 

Here, unlike [14], in the equations of nonlinear deformation (3), the 
substitution      rs s s      is made, where  s  is the angle between 
the axis of rotation and the normal to the deformed surface. 

The boundary conditions for the main variables  , , , ,r r rN M    of the 
system (3) in accordance with the conditions for fixing the contours of the 
shell are taken as follows: 

a) rigid clamping:  = r =  = 0; 
b) hinged fastening:  = = Mr = 0;   
c) free edge: Nr = Mr = 0 or Nr = N0, Mr = M0, 

(4) 

where 0 0,N M  are the given marginal forces. 
Note that when both edges of the rotation shell are rigidly clamped or 

hinged, it is additionally necessary to reveal the static uncertainty by one of the 
known methods. It should be noted also that the solution of system (3) is 
significantly complicated by the fact that the value of one of the variables r is 
a nonlinear component of the system coefficients. 

In accordance with the approach proposed in [15, 16], in contrast to the 
linear theory, second-order variables are taken into account in the equilibrium 
equations and relations for deformations, and the system of equations of the 
nonlinear boundary value problem for the annular plate with respect to the 

vector of variables    , , , , ,
T

r r r rz s N Q M     is taken in the form  

 

 

2

2

2

2

2

1 1 ;
2

1 ;

11 ;

11 1 ;

r r

r
r r

r
r

r
r r r r n

d N
ds K s
d

M
ds D s

KdN
N

ds s s
KdQ Q N M q

ds s Ds

   

 


  


    

   

  

 



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 2

2

11 ;r
r r r

DdM
Q M

ds s s

   
   

,r
d
ds

                                                     (5) 

where in addition to the previously introduced designations; a s b  ; a, b are 
the inner and outer radii of the annular plate; rQ  is transverse force. 

System (5) is supplemented by boundary conditions for fixing the contours 
of the plate in the form (4), where p. c) for the free edge has the form 
Nr = Mr = Qr = 0 or Nr = N0,  Mr = M0, Qr = Q0. 

3. Linearization of nonlinear boundary value problems for the 
calculation of envelopes of rotation. Solving the nonlinear boundary value 
problem (1) with the corresponding boundary conditions (2) is complicated by 
the fact that the coefficients are significantly nonlinear from the vector  z s  
components. Therefore, it is proposed to linearize the system of equations (1) 
in such a way that one part of the nonlinear components refers to the matrix of 
coefficients   A z s , s  (as an analogue of the method of variable parameters 

of elasticity), and other part – to the column of free components   B z s , s  
(as an analogue of the method of additional loads). For the integration of linear 
boundary value problems at each step of the iterative process of refinement of 
nonlinear components, the sweep method with orthogonalization according to 
S. K. Godunov [10] is used. 

The matrices   A z s , s  and   B z s , s  of the boundary value problem 
(3), (4) take the form when performing the above transformations directly: 

    

 

2

2

1cos 0 cos 0 0

10 0 0 0

1
, 0 cos 0 0

0 0 sin cos 0

1sin 0 sin 2 0 0
2

r Kr

Dr
K

A z s s
r r

r

r Kr

 



 

 

  
 
 
 
  
 
 
 
 
 
   

  

  

 

  

,              (6) 
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  

 
 

 

      
 

1

2

2

( )1 sin 2 cos cos
2 2

1sin sin

sin, .2
1

cos sin 2 2cos sin
2 2

1 sin sin sin
2

r

F s
Kr

r R
F s

q rB z s s r
DF s

r
F s

Kr

 





  

 

   
 
   
 
 
   
 
 
   
 
 
  
 

  


  

 



   



  


 (7) 

The study of the convergence of the algorithm for solving such boundary 
value problems, which arise by transferring (linearizing) nonlinear components 
from the matrix   ,A z s s  to the matrix of free members   B z s , s , was 
carried out based on the results of a computational experiment using various 
iterative processes for the variable +(s). The solution of the problem in a 
linear formulation was chosen as the initial approximation. It turned out that 
the algorithms for solving the boundary value problem (1), (2) with 
unstructured (sparse) matrices of coefficients (6), (7) showed low and unstable 
convergence, convergence to different solutions was observed, and sometimes 
its absence [7]. 

In order to overcome these difficulties, in this work, it was proposed to 
present the matrices (6), (7) of the system of nonlinear equations at large 
displacements in a structured form, close to the matrices of the system of linear 
equations, the solution of which has been sufficiently tested [14 – 16]. For this 
purpose, two identical terms with different signs were added to the component 
matrices of the right-hand parts of each of the 5 equations of system (3), taking 
into account      rs s s     : 

  


 

 
 

 



2 2

1 sin sin ; 2 cos cos ; 3 0 0;

1 1
4 cos cos cos cos ;

5 cos cos .

r r r r

r r r r

r r

r r
D D

r r

     

 
  



        

 
       

   

    (8) 

At the same time, the first components of the terms were assigned to matrix 
A, and the second to matrix B. Despite the fact that such an artificial technique 
increased the number of nonlinear components of these matrices, it allowed 
not only to present matrix A in the form of a corresponding matrix for a linear 
system [14 ], but also to increase its conditioning: 
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  

   

 
 

     

    

2

2

3

1cos sin cos 0 0

10 cos 0 0

1
0 cos 0 0

0 cos cos sin cos 0
12

1sin cos sin 2 0 0
2

r r

r

r r r

r r

r Kr

r Dr
KA z s

r r
Eh

r r

r Kr

     
 
 
 
 

   
 
 

   
 
     

     

 

   

      

     

,  

 

(9) 

  

     

  

   

     
    

     

2

2

( )1 sin cos cos cos sin
2

sin sin cos

sin
2

1
cos cos sin sin cos

2
1 sin sin sin cos

2

r r r r

r r

r r

r r r r

r r r

F s
Kr

r
F s

q rB z s r
DF s

r
F s

Kr

       
 
     
 
   
 

 
       
 
 

     
 

        


     

  



        



      


. (10) 

The results of the system numerical experiments showed that the presen-
tation of matrices A and B of system (3) in the form (9), (10) made it possible 
to construct a stably convergent and positively sensitive to the application of 
convergence acceleration algorithms iterative process of solving the boundary 
value problem and to significantly reduce the total number of iterations. 

In order to accelerate the convergence of the iterative process of solving 
boundary value problems of shell mechanics, it is proposed to determine the 
nonlinear component components of the next approximation vector  1n

iz   by 
extrapolation (imitation) of their values based on the results of calculations 

2 1, ,n n n
i i iz z z   at the previous steps for each of the nodal points  0,is i L  

of the interval 0 i Ls s s   of solving the sequence of the corresponding 
linearized systems. 

Three steps of the iterative process are carried out, in which the nonlinear 
components are refined using the method of upper relaxation (linear extrapolation) 

    1 1n nn n
i ii iz z z z    ,                               (12) 

where 0 1   is the relaxation factor. 
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For n = 0, the linearized problem is solved at the initial value 0z  
corresponding to the solution of the linear problem. Next, the form of the 
forecast for each nonlinear j-th component of the vector ( 1,5)jiz j   is divided 
by the form of an iterative process [17 – 19]. In the case when the sequence 

2 1, ,n n n
i i iz z z   is non-monotonic    1 2 1 0n n n n

i i i iz z z z      for a certain j (in 

the future, the index j is omitted), the forecast is proposed to be carried out 
according to the Aitken – Steffensen formula 

 
    

   

22 1
1

2 12

n nn
i i in

i n n n
ii i

z z z
z

z z z

 


 




 
, 2n  , (і = 0,L ),                 (13) 

and in the case when the process is monotonic    1 2 1 0n n n n
i i i iz z z z      – 

in the form of an analogue of the Adams method, which is based on the 
extrapolation dependences of Lagrange and Newton 

 
   

1
1 223 16 5

12

n nn
i

i
in iz z z

z 
  

 ,  2n  ,  (і = 0,L ),            (14) 

Next, according to the main algorithm, the linearized system is solved again 
for the next two (using (12)) successive steps, and the process continues until 
the specified accuracy is reached, taking into account the obtained three new 
points, starting from the forecast point. 

The estimation of the accuracy of the iterative process is calculated such 

    

  

21
( ) ( )

1 0
2

( )
1 0

m N n n
i j i i j i

j i
m N n

i j i
j i

z s z s

z s



 

 







 ,                         (15) 

where  is the specified accuracy. 
This approach made it possible to replace the solution of the linearized 

boundary value problem at every third step with predictive values calculated 
by simple formulas (13), (14), and which, in addition, turn out to be closer to 
the solution than those obtained by the main algorithm, and significantly (up to 
2 times) speed up the computing process. 

4. Numerical and experimental studies. The reliability of the results 
obtained with the help of the constructed algorithm was evaluated by 
comparing the data of numerical and experimental research. 

In order to carry out experimental studies of the deformation of the annular 
plate under the action of an axisymmetric load distributed along the inner hole 
(Fig. 1, a), a special test setup was developed (Fig. 1, b). The load of the rigidly 
clamped – 2 plate – 1 was carried out through a thin–walled cylindrical plug 
washer – 3 with a micrometric thread, which made it possible to accurately 
screw the washer and, thus, to obtain a load evenly distributed over the inner 
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hole of the plate. In the center of the puck, a hole was made for fixing a rack 
with a platform – 4, on which weights were installed for loading the plate. 

 

 
(a) (b) 

Fig. 1. Calculation scheme (a) and device (b) to determine the deflection of an annular plate 
 

Measurements of plate deflections were made with a watch-type indicator –
6. The deflection value was chosen as the arithmetic mean of the measurement 
results at four points located at the ends of the mutually perpendicular 
diameters of the plate opening.  

Calculations of the maximum deflection along the inner contour of the 
annular plate under the action of a transverse load uniformly distributed along 
the inner contour were carried out according to models of nonlinear deformation 
(3), (at ) and (5) with boundary conditions (4, a), (4, c), the results of which are 
shown in Fig. 3. The signs «», «» indicate the data obtained according to 
models (3), (5), respectively. Line 1 corresponds to a linear solution. For 
comparison, Fig. 2 also shows the results of the numerical calculation of the 
plate in the Ansys R19.0 Academic, which are marked with «» in Fig. 3, and 
the «» sign shows the data of the conducted experimental studies. 

 
Fig. 2. Finite element calculation of the ring plate 
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The deviation of the calculation results obtained according to the model (3), 
(5) reaches 15%, and the finite element calculation according to the model (5) 
and the experimental data are within 5%. It should be noted that with an 
increase in the load and, as a consequence, the deflection, the experimental data 
approach the middle of the gap between the data of calculations according to 
models (3), (5). 

 
Fig. 3. Dependence of «load – deflection» for an annular plate  

under the action of an axisymmetric load, distributed along the inner opening 
 

The study of the deformation of flexible shells of rotation with a complex 
meridian shape is demonstrated on the example of the problem of numerical 
and experimental modeling of the behavior of a bellows under the action of 
longitudinal loading. Fig. 4, a. In some areas, the geometry of the middle 
surface (Fig. 4, b) can be presented as follows: 
 АВ (plate): Rа s<AB,  r s s ,   0s ;  
 ВС (torus): AB s<ABC,   br s r sin AB  ,     bs s AB r  ; 
 СD (plate): ABC s<ABCD,   ( )r s AB s ABC   ,  s   ; (16) 
 DE (torus): ABCD s<ABCDE,   a a ar s R r r sin    ,     as s ABCD r    ; 
 EF (plate): ABCDE s<ABCDEF,   a ar s s ABCDE R r    ,   0s  ; 
 FK (torus): ABCDEF s<ABCDEFK,   sinbr s AB r   ,     bs s ABCDEF r  ; 

 KL (plate): ABCDEFK s<ABCDEFKL,   ( )r s AB s ABCDEFK   ,  s   , 
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where s is the distance of the point along the meridian from point A; ra, rb are 
the inner and outer radii of tori, respectively; Ra, Rb are the inner and outer 
radii of the bellows; h is the thickness of its wall. 

When integrating the boundary value problem (1), (2) taking into account 
(9), (10) and (16), which describes the behavior of the bellows, each of the 
sections (16) was divided in such a way that the nodal point was on the border 
of the transition from the section to sections, and the connection between 
conditional sections was considered mechanically ideal.  

The boundary conditions were as follows: the lower end was considered rigidly 
clamped (4,a), and the upper end was considered to be loaded by the longitudinal 
compressive force P0 (4, c) uniformly distributed along the upper edge. 

A special test setup was developed for the experimental study of the axial 
movements of the bellows under the action of axial compression (Fig. 5).  

 
(a)                                                                              (b) 

Fig. 4. Bellows geometry 
 

Axial displacement was measured with a 
clock-type indicator with division price is 
0.01 mm, and the load was carried out 
according to the «dead» load scheme. The 
physical parameters of the bellows were as 
follows: height, inner and outer radii of the 
bellows – L = 0.23×10-3m, Ra = 37.5×10-3m, 
Rb = 45×10-3 m, respectively; the diameter 
of the inner and outer torus – ra = 1×10-3 m, 
ra =2.5×10-3 m, respectively; material – 
12Х18Н9Т (stainless steel) with 
appropriate physical characteristics. 

The results of calculating the 
deformation parameters (axial 
displacements) of the bellows were 
obtained using the developed approach, 

 
Fig. 5. Experimental installation 
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which was implemented in the form of the author's software package in the 
PGI Visual Fortran language and is presented in the table. 1. The calculation 
results obtained using the ABAQUS 6.12-1 / CAE and the results of experimental 
tests are also given there. 

Table 1 

Dependence of the bellows length change on the axial load 
Load P0, N 

Axial  
movement, ×103, m 

9,8 19,6 29,4 32,3 33,3 39.2 

Visual Fortran 2.10 4.10 6.40 7 7.20 10.2 
ABAQUS / CAE 2.18 4.36 6.54 7.19 7.41 10.0 
experiment 2.00 4.00 6.00 7.00 7.50 11.0 

 
The obtained results of numerical calculations and experimental studies 

demonstrate the reliability and efficiency of the application of the developed 
algorithm for the calculation of envelopes of rotation with a complex meridian 
shape at large displacements. The application of the convergence acceleration 
algorithm (12) – (14) allows you to significantly reduce the number of direct 
calculations by up to 1.51.8 times (and several times with certain input 
parameters of the problem) compared to known algorithms for direct 
sequential integration of linearized boundary value problems shell mechanics. 

5. Corrugated membrane of the highest sensitivity. The sensitivity of the 
measuring device, which contains a membrane, in particular a sinusoidal 
profile (Fig. 6), is determined by the angle of inclination of the characteristic 
curve, which expresses the dependence between the deflection in the center 
and the pressure on the membrane. The elastic characteristic of the corrugated 
membrane, among other parameters, also depends on the shape of the middle 
surface of the shell [5], which forms the membrane. At the same time, the 
sensitivity of the membrane increases as the corrugation depth decreases, so 
that the thin smooth membrane (plate) has the highest sensitivity among round 
membranes, the behavior of which becomes significantly nonlinear even at low 
loads (Fig. 2). This is a disadvantage in the practical application of membranes 
as a sensitive element, as it reduces the range of measuring pressures on a scale 

with a uniform 
division price. 

Creating a 
membrane of the 
desired sensitivity and 
with a wide range of 
measurable (within the 
linear scale) pressures 
is possible by choosing 
a rational depth of its 
corrugation. The 
variational problem of 

 

Fig. 6. Corrugated membrane with transmission mechanism 
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optimizing the membrane of the highest sensitivity consists in maximizing its 
deflection in the center according to the 5th equation in (3) 

     1( ) sin cos sin 2
2

b

a

r

a r r r r
r

r u N r
r Kr

       


      

    2 ( )1 sin sin sin cos cos ,
2r r r

F s dr
Kr

      


       


 (17) 

when limiting the length of the meridian and, thus, the depth of corrugation of 
the membrane, in the form 

2 21 ' 1
b b

a a

r r

r r
L y dr tg dr     

                           

(18) 

and availability of strength requirements  

z
max [ ]i   ,                                                (19) 

where 2 2 23i r r rz          .  
In the paper, the profile of the membrane is given in the form 

 ( ) ( )sin ( )ay r A r r r  ; ( ),A r   is depth and frequency of corrugation, 
respectively; ra is the radius of the rigid center, rb is the outer radius of the 
membrane; h is membrane wall thickness; , ,r rz    are normal (radial and 
annular) and tangential stresses. It should also be noted that in equations (3) it 
is convenient to switch to integration over the variable r (radius of the 
membrane) taking cosds dr  . It is also assumed that the greatest stresses 
occur on the surface of the shell z = h/2. 

The task of designing the membrane of the greatest sensitivity consists in 
finding the optimal control from the condition of maximum deflection of the 
rigid center (17) in the presence of restrictions (18), (19). The solution of the 
problem is carried out on the basis of the necessary conditions of optimality in 
the form of L. S. Pontryagin’s maximum principle. As is known [20, 21], the 
task in this case is to find the optimal control ( )A r  from the conditions of the 
maximum of the Hamiltonian 

   
5 2

0
( ), ( ), ( ), ( ) ( ) [ ] 1 ,j j

j
H z s s A s s x x с tg


                (20) 

where ( 1,5)j j   are the right-hand parts of the equations of the 
mathematical model (3) of the deformation of the corrugated sinusoidal 
membrane; 0  is integral expression of the objective function (17); ( )s  is 
Lagrange function, ( ( ) 0 ( ) [ ];s when s    ( ) 0, ( ) [ ]s when s    ); c 
is the Lagrange multiplier, which is found from the conditions of execution 
(18); 0 1  ; ( ) ( 1 5)i s i ,  are conjugate functions found by solving the 
boundary value problem 
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j

j

d H
ds z

 




                                          
(21) 

with boundary conditions of transversality (2)  
   ( ) ( )j p j j p

j
z s c qrad f z s ,                           (22) 

where 
a bp r rs s s  .  

The algorithm for satisfying the necessary optimality conditions of the 
maximum principle in the presence of constraints (19), containing control and 
phase variables, and integral conditions (18) is based on the scheme of 
successive approximations  

 
 1 supk kk k

A r
A r z H A r      [22]. 

Here, the calculation ,k kz   with a given initial approximation  0A r  is 
carried out by successive integration of the corresponding boundary value 
problems (3), (4) and (21), (22). Attention should be paid to the peculiarities of 
solving the conjugate system (21), the right-hand parts of which may differ in 
some sections a br r r   by the presence or absence of the Lagrange 
multiplier ( )s  associated with the fulfillment of constraint (19). The optimal 
control of the next step is sought from the maximum condition (20) by solving 
a number of auxiliary nonlinear programming problems for fixed (nodal) 
points ir  of the integration interval  ,a br r . 

To determine the control of the next step of approximations from the point 
of view of acceleration of convergence (as shown by the results of numerical 
simulations obtained when solving specific problems), it is advisable to use the 
relations 

  1( ) ( ) , , , ( )k k k k k k T
i i i iA r A r F z A r A r      ,            (23) 

where  , , ,k k k
iF z A r  is the operator matching the control kA  with a new 

control A  value that satisfies the conditions of the (k+1)-th step maximum, 
and the relaxing components of the vector  ( 0 1j  ) are taken from the 
requirements of the best convergence of the iterative process. An analysis of 
the algorithmic processes of satisfying the necessary optimality conditions of 
the Pontryagin’s maximum principle is given in [22]. 

Numerical results were obtained for a membrane with seven corrugations 
under the action of uniform transverse pressure and the following parameters: 
l = 1.810-3 m; h = 0.210-3 m; R = 2510-3 m; E = 100 MPa/m2. 

The application of the proposed approaches to the linearization of the 
nonlinear boundary value problem and the convergence acceleration algorithm 
made it possible to obtain a convergent process of solving the nonlinear 
problem of membrane deformation in the form of a sequence of linearized 
boundary value problems in 8 iterations (Fig. 7), where the results of the 
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calculation of the membrane deflection of a sinusoidal profile under the action 
of uniform pressure are presented in the form of an undeformed profile (line 1) 
and membrane deflections (lines 2 – 4, 8) at individual steps of the iterative 
process. For comparison, it should be noted that the simple iteration method 
converged in 91 iterations. 

 
Fig. 7. Graph of membrane deflection at individual steps of the iterative process 

 
The membrane profile of the optimal shape is shown in Fig. 8, where 

H1 = 0.4710-3 m; H2 = 1.110-3 m. (In the general case, for the membrane of 
the highest sensitivity, H1/H2 varies in the range of 0.44÷0.75). 

 

Fig. 8. The optimal shape of the corrugated membrane of the greatest sensitivity 
 
The elastic characteristics of such a membrane are shown in Fig. 9. Here, 

for comparison, the characteristics of the designed membrane (line 1) and two 
membranes of permanent corrugation are shown, one of which has the same 
length (OА OА ) of the linear section of the «load – deflection» 
characteristic as for the optimal one (line 2), and the second (line 3) has the 
same sensitivity as the optimal profile membrane. 

The obtained results show that the sensitivity of the proposed membrane is 
2.1 times greater than the sensitivity of the membrane 2 2tant    with a 
constant depth of corrugation, and in the case of the same sensitivity 1 2t t , 
the length OА  of the linear section of the elastic characteristic of the proposed 
membrane is 12% longer than the corresponding section OА  for the 
membrane with a constant depth of corrugation. 
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Conclusions 
Techniques for effective 

linearization of nonlinear 
boundary-value problems of 
the mechanics of flexible 
shells of rotation with a 
complex meridian shape and 
algorithms for accelerating the 
convergence of iterative 
processes for their solution 
based on extrapolation 
(forecasting) of the solutions 
obtained in the previous 
approximation steps and their 
application to the study of the 

behavior of flexible ring plates, bellows and corrugated membranes, 
demonstrating the effectiveness of the proposed approach. 

The results of the numerical analysis obtained from the application of the 
described approach for two mathematical models of deformation of flexible 
shell elements are presented. Their comparative analysis with the data of the 
conducted experimental tests is presented, indicating the sufficient adequacy of 
the selected models. The results of the calculations according to which there 
are deviations from the experimental data of up to 5% in both directions. 

The results of the optimization of the corrugated membrane of the 
sinusoidal profile were obtained. They demonstrate advantages in its 
sensitivity more than 2 times, in the range of the linear scale of measurements. 
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Дзюба А.П., Сафронова І.А., Левитіна Л.Д. 
ЧИСЛОВЕ ТА ЕКСПЕРИМЕНТАЛЬНЕ МОДЕЛЮВАННЯ ПОВЕДІНКИ ГНУЧКИХ 
ОБОЛОНКОВИХ ЕЛЕМЕНТІВ КОНСТРУКЦІЙ 

Для задач осесиметричного нелінійного згинання тонких оболонок обертання зі 
складною формою меридіану (тонких кільцевих пластин, гофрованих мембран 
синусоїдального профілю та сильфонів)  проведено порівняльний аналіз застосування двох 
математичних моделей деформування гнучких оболонкових елементів. Числові результати 
отримані шляхом безпосереднього інтегрування крайових задач механіки оболонок, 
методом скінчених елементів та експериментальних досліджень. Результати оптимального 
проектування гнучкої гофрованої мембрани синусоїдального профілю найбільшої 
чутливості отримані з використанням необхідних умов оптимальності принципу максимуму 
Л. С. Понтрягіна. Результати подані у вигляді таблиць, фотографій та графіків. 

Ключові слова: гнучкі оболонки обертання, гофровані мембрани, сильфони, числовий 
аналіз, експериментальні дослідження. 

 
 

Dzyuba A.P., Safronova I.A., Levitina L.D.  
NUMERICAL AND EXPERIMENTAL MODELING OF THE BEHAVIOR OF FLEXIBLE 
SHELL ELEMENTS OF STRUCTURES  

This article is devoted to computer and experimental modeling of the behavior of flexible 
elements of shell structures, and the development of effective algorithms for solving emerging 
nonlinear boundary value problems of their calculation and optimization of parameters. At the 
same time, the probability of the results obtained using different approaches to the construction of 
a nonlinear theory is established. Their comparative analysis, error estimation, which in this case is 
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given by calculation according to linear and corresponding nonlinear theories, is carried out. The 
results of calculated data and experimental studies of the behavior of real structural elements are 
compared. 

The results of a comparative analysis of the application of two mathematical models of 
deformation of flexible shell elements, obtained by direct integration of boundary value problems 
of shell mechanics, by the finite element method and experimental research, are presented. 

The problems of axisymmetric nonlinear bending of thin ring plates, corrugated membranes of 
a sinusoidal profile and bellows as a shell of rotation with a complex meridian shape are 
considered. 

Using the necessary optimality conditions of the principle of maximum L. S. Pontryagin 
obtained the results of the optimal design of a flexible corrugated membrane with a sinusoidal 
profile of the highest sensitivity. The results are presented in the form of tables, photos and graphs. 

Keywords: flexible shells of rotation, corrugated membranes, bellows, numerical analysis, 
experimental studies. 
 
УДК 539.3 
Дзюба А.П., Сафронова І.А., Левитіна Л.Д. Числове та експериментальне моделювання 
поведінки гнучких оболонкових елементів конструкцій // Опір матеріалів і теорія 
споруд: наук.-тех. збірн. – К.: КНУБА, 2023. – Вип. 110. – С. 3-20. – Англ. 
Подано результати експериментальних випробувань та числового порівняльного аналізу 
поведінки гнучких елементів оболонкових конструкцій (сильфонів, гофрованих мембран 
синусоїдального профілю та ін.) з оптимальними параметрами. 
Табл. 1, Іл. 9. Бібліогр. 22 назв. 
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