Nonlinear dynamic analisys of reservoir shell with modelled shape imperfections

Authors

DOI:

https://doi.org/10.32347/2410-2547.2022.109.129-140

Keywords:

reservoir shell, shape imperfections, finite-element method, nonlinear dynamic analysis

Abstract

The nonlinear dynamic analysis of imperfect reservoir shell with a variable thickness of wall under pressure was executed. The finite-element model of reservoir in the form of a cylindrical shell in the software NASTRAN was built. The shell wall in the form of the three-cornered finite-element net was presented. Shape imperfection as a lower buckling form of perfect shell (Buckling) was modelled. Value of amplitude of imperfection was set proportionally to a minimum thickness of shell wall. The limits on the radial and tangential displacements of top edge nodes were entered, the nodes of lower edge were fastened. Excitation as external pressure, which linearly depended on  time  and  uniform distributed on all shell elements was presented. The modal analysis of shell  with modelled shape imperfections by using computational procedure of task on natural vibrations (Normal Modes) by the Lanczos method was executed. The nonlinear dynamic analysis (Nonlinear Direct Transient) of imperfect reservoir shell under pressure by N’yumark method was executed. Influence of amplitude of modelled imperfection on the shell stress-strain for different time intervals of excitation, the conditionally critical values of dynamic loading and corresponding of shell deformation forms were investigated.

It was discovered that a modelled shell shape imperfection as a lower buckling form of perfect shell under static pressure in the dynamic analysis of shell under the same type of the loading was effeсtive. Influence of modelled shape imperfections amplitude on the stress-strain state of shell for different time interval of excitation, the conditionally critical values of dynamic loading and appropriate forms of shell deformation was considerable. Presented imperfection model in the modal analysis of shell was not effective. The increase of amplitude of shell imperfection led to insignificant decrease of natural frequencies and amplitudes of appropriate natural forms with the same amount of the semiwaves in the circular direction. In our opinion presented model of shell shape imperfection can be effective in the modal analysis of shell with the stress-strain state from the previous action of static pressure and for the estimation of design reliability of reservoir shell in the case of the dynamic loadings using the Bolotin probabilistic approach.

Author Biographies

Olha Lukianchenko, Kyiv National University of Construction and Architecture

doctor of technical sciences, professor, leading researcher of the Research Institute of Construction Mechanics

Oleh Gerashchenko, Kyiv National University of Construction and Architecture

candidate of technical sciences, senior researcher of the Research Institute of Construction Mechanics

Oksana Paliy, Kyiv National University of Construction and Architecture

Candidate of Technical Sciences, Associate Professor of the Department of Theoretical Mechanics

References

Yao J.C. Dynamic stability of cylindrical shells under static and periodic axial and radial loads, AIAA Journal, 1963. – Vol. 1. – P. 2316-2320.

Geyzenblazen R.E. Nekotorye voprosy ustojchivosti i kolebanij czilindricheskikh obolochek s nachaljnoj pogibju [Some questions of stability and vibrations of cylindrical shells with initial imperfection]. Trudy Dneprop. ins-та sz.-d. transp., 1966. – Vyp. 64. – S. 62-78.(rus).

Hunt G.M. Imperfection and near-coincidence for symmetric bifurcations // New York Academy of Sciences. Bifurcation theory and applications in scientific disciplines. Ann. N. Y. Acad. Sci., 1977. – Vol. 316. – P. 572-589.

Gotsulyak Е.А., Guliaev V.I., Dekhtyaruk Е.S., Kirychuk А.А. Chislennoe issledovanie ustujchivosti nelinejnykh vynuszdenykh kolebanij tonkikh uprugikh obolochek [Numeral research of stability of the nonlinear forced vibrations of thin elastic shells]. Prikladnye problemy prochnosti i plastichnosti, 1981. – Т. 19. – S. 51-60.(rus).

Guliaev V.I., Bazhenov V.А., Gotsulyak Е.А., Dekhtyaruk Е.S., Lizunov P.P. Ustojchivost periodicheskih proczesov v nelinejnyh mekhanicheskih sistemah [Stability of periodic processes in the nonlinear mechanical systems]. Lviv, Vyschia shkola, 1983. – 287 s.(rus).

Rikards R.B. Metod konechnykh elementov v teoryy obolochek y plastyn [The Finite Element Method in the theory of shells and plates]. − Ryha: Zynatne, 1988. − 284 s.(rus).

Grigorenko Ya.M., Guliaev V.I. Nelyneinye zadachy teoryy obolochek y metody ykh reshenyia (obzor) [Nonlinear tasks of theory of shells and methods of their decision (review)] // Prykladnaia mekhanyka, 1991. − T. 27, №10. − S. 3-23 s.(rus).

Grigolyuk Е.І., KabanovV.V.Ustoichivostobolochek [Shellstability]. – М.: Nauka, 1978. – 359 s.

Gudramovych V.S. Osobennosty nelyneinoho deformyrovanyia y krytycheskye sostoianyia obolochechnykh system s heometrycheskymy nesovershenstvamy [Features of nonlinear deformation and critical conditions of the оболочечных systems with geometrical imperfections] // Prykladnaia mekhanyka, 2006. – T. 42, № 12. – S. 32-47(rus).

Gavrilenko H.D. Nesushchaia sposobnost nesovershennykh obolochek [Bearing strength of imperfect shells]. Monohr. Yn-t mekhanyky ym. S.P.Tymoshenko NAN Ukrayny, 2007. – 294s.(rus).

Nguyen Dinh Duc, Hoang Thi Thiem. Dynamic Analisys of Imperfect FGM Circular Cylindrical Shells Reinforced by Stiffener System Using Third Order Shear Deformation Theory in Term of Displacement Components // Latin American Journal of Solids and Structures, 2017, Vol. 14. P. 2534-2570.

Lukianchenko O.О. Rozviazannia problemy nadiinosti i bezpeky obolonkovykhstruktur znedoskonalostiamy formy metodamy obchysliuvalnoi mekhaniky [Decision of problem of reliability and safety of shell structures with shape imperfections by the methods of calculable mechanics]. − Kyiv: Vyd-vo „Karavela”, 2019. − 197 s (ukr).

Bazhenov V.A., Lukianchenko O.A., Kostina E.V., Geraschenko O.V. Probabilistic Approach to Determination of Reliability of an Imperfect Supporting Shell // Strength of Materials, 2014.  Vol. 46, №4. – Р. 567-574.

Bazhenov V.A., Lukianchenko O.A., Vorona Yu.V., Kostina E.V. Stability of the parametric vibrations of a shell in the form of a hyperbolic paraboloid // Internat. Appl. Mech., 2018.  Vol. 54, №3. – P. 274-286.

Bazhenov V.А., Lukianchenko O.О., Kostina О.V. Definition of the failure region of the oil tank with wall imperfections in combined loading // Strength of Materials and Theory of Structures, 2018. – Issue 100, S. 27-39.

Lukianchenko O.О., Paliy О.М. Chyselne modeliuvannia stiikosti parametrychnykh kolyvan tonkostinnoi obolonky vidiemnoi hausovoi kryvyzny [Numeral design of vibrations stability of the thin-walled shell with negative гаусової curvature] // Opir materialiv i teoriia sporud: nauk.-tekh. zbirn., K.: KNUBA, 2018. – Vyp. 101, S. 45-59 (ukr).

Lukianchenko O., Kostina O. The finite Element Method in Problems of the Thin Shells Theory, LAP LAMBERT Academic Publishing, 2019. − 134 p.(ukr).

Lukianchenko O.О., Vorona Yu.V., Kostina О.V., Vabyshchevych M.O., Paliy О.М. Nadiinist tonkykh obolonok z realnymy nedoskonalostiamy formy [Reliability of thin shells with real shape imperfections] // Visnyk KPI. Seriia Pryladobuduvannia, 2019. − Vyp. 58(2). − S. 34-40 (ukr).

Paliy О.М., Lukianchenko O.О. Chastotnyi analiz vidhuku hiperbolichnoho paraboloida na periodychne povzdovzhnie navantazhennia [Frequency analysis of response of hyperbolical paraboloid on the periodic longitudinal loading] // Opir materialiv i teoriia sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2019. – Vyp. 102, S. 199-206 (ukr).

Lukianchenko O.O. Application of stiffness rings for improving of operating reliability of the tank with shape imperfections // Strength of Materials and Theory of Structures: Scientificand-technical collected articles. − K.: KNUBA, 2020. − Issue 104. − P. 244-256.

Bazhenov V.A., Lukianchenko O.О., Vorona Yu.V., Vabyshchevych M.O. The influence of shape imperfections on the stability of thin spherical shells // Strengh of Materials, 2021. – Vol. 53, №6. – Р. 842-850.

Lukianchenko O.О., Bourau N.І., Geraschenko O.V., KostinaО.V.Chastoty i formy vlasnykh kolyvan zakhysnoi yemnosti rezervuara z defektamy zvarnykh shviv pry statychnii dii osovoho navantazhennia [Natural frequencies and forms of protective capacity of reservoir with the weld defects under the static action of axial loading] // Opir materialiv i teoriia sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2021. – Vyp. 107. – S. 103-119 (ukr).

Lukianchenko O.O., Kostina O.V., Paliy O.M. Periodichni kolyvania obolonky rezervuaru z realnymy nedoskonalostiamy formy vid dii poverhnevogo tysku[Periodic vibrations of reservoir shell with the real shape imperfections under pressure] // Opir materialiv i teoriia sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2022. – Vyp. 108, S. 255-266.(ukr).

Rudakov K.N. FEMAP 10.2.0. Heometrycheskoe y konechno-еlementnoe modelyrovanye konstruktsyi [Geometrical and finite-element design of constructions]. – K: NTTU KPY, 2011. – 317 s.(rus).

Published

2022-11-11

Issue

Section

Статті