Numerical implementation of multicriteria parametric optimization of minimum surface shell on a square contour under thermforce loading

Authors

DOI:

https://doi.org/10.32347/2410-2547.2022.109.50-65

Keywords:

optimization, parametric optimization, multicriteria parametric optimization, shape optimization, topological optimization, minimum surface shell, objective function, pair of objective functions, design variables, constraints, limit, movement along coordinate axes, shell weight

Abstract

The article considers the numerical study of the multicriteria parametric optimization of the minimum surface shell on the square contour under thermoforce loading. The mathematical algorithm for solving the problem of multicriteria parametric optimization of minimal surfaces shellsis described: the necessary output data are given, which target functions can be used, design variables and constraints are described. The influence of initial data on the numerical study of multicriteria parametric optimization was shown. The calculation of necessary components and matrices for multicriteria parametric optimization of minimal surfaces shells, as well as methods of its simplification, depending on the initial data was made. Was shown in which cases the algorithm is executed successfully, and where it was necessary to return to change the initial parameters.

The sensitivity analysis of multi-criteria parametric optimization of minimal surfaces shells is presented. In article reveals the inner essence of the structure's work while the optimization calculation was done. Work with internal forces and stresses, the connection with the finite element method and its stiffness matrix were made.

The process and methodology of setting ofthermoforce loadare revealed.All initial parameters, as well as how the load works with multicriteria parametric optimization are shown.

The numerical experiment made it possible to reduce the weight of minimum surface shell on the square contour by 5%, and the movement along the coordinate axes by 38%, which are the target functions of multicriteria parametric optimization. Redistribution of the thickness of the minimum surface shell on the square contour from 1 mm to 31 mm was realized. The interaction of the objective functions is shown - they conflict, as well as the graphs of changes in Mises stresses, shear stresses and strain energy, which makes it possible to reveal the internal processes of multi-criteria parametric optimization of the minimum surface shell on a square contour.

Subject of this study is an interesting applied problem for construction mechanics, as it is the first time to display the application of two types of optimization on one research object.

Author Biographies

Hryhorii Ivanchenko, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Dean of the Faculty of Civil Engineering

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

Doctor of Philosophy, Associate Professor of the Department of Theoretical Mechanics

Oleksandr Koshevyi, Kyiv National University of Construction and Architecture

candidate of technical sciences, associate professor, head of the department of strength of materials

References

Herasymov E.N., Pochtman Yu.M., Skalozub V.V. Mnohokryteryalnaya optymyzatsyya konstruktsyy. (Multicriteria optimization of structures). – Donetsk: Vyshcha shkola. Hlavnoe Yzd-vo – Kyev – 1985 – 134 p.

2. Hyll F., Myurrey U., Rayt M. Praktycheskayaoptymyzatsyya.(Practical optimization). – M.: Myr, 1985. – 509 p.

Ivanchenko H.M., Cheverda P.P., Kushnirenko M.H., Kozovenko A.M. Analiz reaktsiy v elementakh prostorovykh skhem pry riznykh sposobakh zyednan (Analysis of reactions in elements of spatial schemes with different methods of connections) // Opirmaterialiv i teoriyasporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2012. – Vyp. 90. – P. 163-170.

KoshevyiO.O. Optymalne proektuvannya tsylindrychnykh rezervuariv z zhorstkymy obolonkamy pokryttya. (Optimal design of cylindrical tanks with rigid coating shells) // Opir materialiv I teoriya sporud: nauk.-tekh. zbirnyk. – K.: KNUBA, 2019. – №. 103. – P. 253-265.

Koshevyi O.O. Optymizatsiya stalnoho zvarenoho rezervuaru pry obmezhenni: napruzhen, peremishchen, vlasnykh chastot kolyvannya. (Optimization of steel welded tank with limitations: stresses, displacements, natural frequencies of oscillations). // Budivelni konstruktsiyi. Teoriya I praktyka: nauk.-tekhn. zbirnyk. K.: KNUBA. 2018. №.3.–P.34 – 50.

Hotsulyak Ye.O., Koshevyi O.P., Morskov Yu.A. Chyselne modelyuvannya obolonok, utvorenykh minimalnymy poverkhnyamy. (Numerical modeling of shells formed by minimal surfaces). // Prykladna heometriya ta inzhenerna hrafika: nauk.-tekhn. zbirnyk. K.: KNUBA. 2001. №. 69.-P.47-51.

Koshevyi O.P., Koshevyi O.O. Chyselne doslidzhennya vlasnykh kolyvan roztyahnutykh obolonok utvorenykh minimalnymy poverkhnyamy. (Numerical study of natural oscillations of stretched shells formed by minimal surfaces) // Mistobuduvannya ta terytorialne planuvannya, №. 55. – Kyiv, KNUBA, 2015. – P. 215-227.

Koshevyi O.P., Koshevyi O.O. Vlasni kolyvannya obolonok minimalnykh poverkhon na kruhlomu ta kvadratnomu konturi. (Own oscillations of shells of minimal surfaces on a round and square contour) // Mistobuduvannya ta terytorialne planuvannya, №. 59. – Kyiv, KNUBA, 2016. – P. 234-244.

Koshevyi O.O., Koshevyi O.P., Hryhoryeva L.O. Chyselna realizatsiya bahatokryterialnoyi parametrychnoyi optymizatsiyi obolonky minimalnoyi poverkhni na pryamokutnomu konturi pry termosylovomu navantazhenni (Numerical implementation of multi-criteria parametric optimization of minimum surface shell on a rectangular contour under thermforced loading) // Opirmaterialiv i teoriyasporud: nauk.-tekh.zbirnyk. – K.: KNUBA, 2021. – Vyp. 108. – S. 309–324.

Koshevoy A.P. Ustoychivost plastiniobolochekslozhnoyformi (Stability of plates and shells of complex shape) // Soprotivleniye materialov I teoriya sooruzheniy: nauch.-tekh. sbornik. – K.: KISI, 1991. – Vip. 59. – P. 65–71.

Manyta L.A. Usloviya optymyzatsyi v konechnomernykh nelyneynykh zadachakh optymyzatsyi. (Optimization conditions in finite-dimensional nonlinear optimization problems). – M.: Moskovskiyhosudarstvenniyinstytutélektronyky y matematiki, 2010. – 81 p.

Melkumova E.M. O nekotorykhpodkhodakh k reshenyyumnohokryteryalnykhzadach. (About some approaches to solving multicriteria problems). // Vestnyk VHU. Seryya Systemnyy analyz y ynformatsyonnye tekhnolohyy. – V.: VHU– №2– 2010– 3 p.

Peleshko I.D., Yurchenko V.V. Optymalne proektuvannya metalevykh konstruktsiy na suchasnomu etapi (ohlyad prats). (Optimal design of metal structures at the present stage (review of works)). // Metalevi konstruktsiyi: zbirnyk naukovykh prats. – 2009. – №15 – P. 13–21.

Peleshko I.D., Baluk I.M. Optymizatsiya poperechnykh pereriziv stryzhniv stalevykh konstruktsiy. (Optimization of cross sections of rods of steel structures). // Zbirnyk naukovykh prats UkrNDIPSKim. V. M. Shymanovskoho. – K.: Stal, №. 4. – 2009. – P. 142–151.

Peleshko I.D., Lisotskyy R.V., Baluk I.M. Optymalne proektuvannya stalevoyi stryzhnevoyi konstruktsiyi pokryttya torhovo-rozvazhalnoho kompleksu. (Optimal design of a steel rod cover structure of a shopping and entertainment complex). // Zbirnyk naukovykh prats UkrNDIPSKim. V. M. Shymanovskoho. – K.: Stal, №. 5. – 2010. – P. 181–191.

Sakharov A.S., Kyslookyy V.N., Kyrychevskyy V.V., Altenbakh Y., Habbert U., Dankert YU., Keppler KH., Kochyk Z. Metod konechnykh élementov v mekhanyke tverdykh tel. (Finite element method in solid mechanics). // Vydavnytstvo Vyshcha shkola. Holovnoe yzdatelstvo – Kyev – 1982. – 480 p.

Bazhenov V.A., Gaidaichuk V.V., Koshevoy A.P. Stability of multiply connected ribbed shells and plates in a magnetic field. // Journal of Soviet Mathematics 66(6). –1993. – С. 2631–2636.

Cheung Y. K. The Finite Strip Method. Them. – Boca Raton. : CRC Press, 1997. – 416 p.

Guest J.K., Prievost J., Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. // International Journal for Numerical Methods in Engineering, 2004. –61(2) – P.238–254.

Kroese D.P., Taimre T., Botev Z.I. Handbook of Monte Carlo Methods. — New York: John Wiley and Sons, 2011. — 772 p.

Lobo M.S., Vandenbeghe L., Boyd S. Applications of second-order cone programming. // Linear Algebra and its Applications. – 1998. – Vol. 284, no. 1. – P. 193–228.

Yonekura K., Kanno Y. Second-order cone programming with warm start for elastoplastic analysis with von mises yield criterion. // Optimization and Engineering. – 2012. – Vol. 13, no. 2. – P. 181–218.

Wasiytynski Z., Brandt A. The present state of knowledge in the field of. Optimum design of structures. // Appl. Mech. Rew. – 1963. Vol. 16 no. 5. – P. 341-35.

Published

2022-11-11

Issue

Section

Статті