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A comparative analysis of finite element models and methods for solving complex problems of
geometrically nonlinear deformation, buckling and post-buckling behavior of thin shells of stepwise
variable thickness is carried out. An approach based on the use of the moment scheme of finite
elements is considered. The features of using the software suite LIRA and integrated software system
SCAD for solving the assigned problems are also provided. Thin and medium thickness shells are
considered. They can have different geometric features in thickness and be under the action of static
thermomechanical loads. A technique for solving these problems with the help of an efficient refined
approach is presented. The technique is based on the general methodological positions of the three-
dimensional theory of thermoelasticity and the use of the finite element moment scheme. With this
approach, the approximation through the shell thickness is carried out by a single universal spatial
finite element. The element can be modified in different portions of the shell with a step-variable
thickness. It can be located eccentrically relative to the middle surface of the casing and can change
its dimensions in the direction of the shell thickness. Such a unified approach made it possible to
create a unified designed finite element model of a shell of an inhomogeneous geometric structure
under the combined action of a thermomechanical load. A comparative analysis of the application of
three finite element approaches for problems of geometrically nonlinear deformation and buckling of
shells of stepwise variable thickness is carried out.

Key words: flexible shell, step-variable thickness, thin inhomogeneous shell, universal spatial
finite element, finite element moment scheme, geometrically nonlinear deformation, buckling,
post-buckling behavior, thermomechanical load.

Introduction

Shells as flexible thin-walled elements of increased strength are widely used
in various engineering structures in many industries. Therefore, the problems
of analyzing the behavior of thin elastic shells have a long history and
currently continue to arouse great and constant interest. In recent decades, the
number of works on the subject has increased significantly [1-20]. Much
attention is paid to the study of elastic shells of stepwise-variable thickness, in
particular, thin shells reinforced with ribs [1-6, 8-9, 12, 15, 16]. Much less
research is devoted to the consideration of shells with different types of
weakening [1-2, 4, 5, 12, 19, 20]. Shell structures are usually subjected to
various operational loads, including thermomechanical ones. It should be noted
that common algorithms for studying the nonlinear deformation and stability
of shell structures with stepwise thickness are not sufficiently developed in the
known software suites. Due to their complexity and possible ambiguity of the
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obtained results, obtaining solutions for this class of problems is difficult to
implement in the form of a standard computational procedure.

The development of approaches to solving this problem took place in
parallel with the progress in the field of computer technology. Modern
methods for studying the strength, stability and vibrations of the responsible
shell elements of structures under complex thermomechanical loads are
presented, in particular, in [1-9].The most significant developments are the
creation of a finite element method for studying the processes of nonlinear
deformation, buckling, post-buckling behavior and oscillations of a wide class
of thin and medium-thickness elastic shells of complex shape and structure
under the complex mechanical and thermal loads. The method is based on the
unified methodological positions of the 3D geometrically nonlinear theory of
thermoelasticity and the use of the finite element moment scheme (FEMS).

1. Technique for solving geometrically nonlinear problems of

deformation and buckling of inhomogeneous shells using the FEMS

A finite element method for studying geometrically nonlinear deformation,
buckling, post-buckling behavior and vibrations of elastic shells of various
shapes and structures under the static action of thermomechanical loads has
been developed from the unified standpoint of the 3D geometrically nonlinear
theory of thermoelasticity [1, 2]. A model of a linearly elastic continuous
medium subject to the generalized Duhamel-Neumann law has been used.
Large displacements but small deformations are assumed.

The finite element moment scheme developed and theoretically substantiated
by A.S. Sakharov [21] has been applied. The FEMS is extended to problems of
geometrically nonlinear deformation of thin shells of stepwise-variable thickness
under the action of thermomechanical loads [1-2, 5-6]. Approximations of
displacements and deformations within finite elements (FE) are coordinated
according to the FEMS. This approach guarantees the correct consideration of
rigid body motion, which increases the convergence and accuracy of the
solutions obtained for sparse meshes. The temperature field in the volume of the
shell is considered to be a known function of coordinates independent of the
stress-strain state [1-2]. The temperature distribution over the thickness of the
shell because of its thinness is assumed to be linear.

A thin shell is considered as a three-dimensional body and is modeled in
thickness by one isoparametric spatial FE with multilinear shape functions.
The FE is universal. It can be eccentrically displaced relative to the middle
surface of the shell casing, can change its dimensions in the thickness
direction, modeling ribs and cavities. The casing of a shell is understood as the
body of the shell without stepped features. The universal FE has additional
variable parameters. Varying the values of these additional FEs’ parameters
makes it possible to model a wide class of shells with geometric features along
the thickness according to a unified methodology. Thanks to this approach, the
volume of finite elements with ribs, cover plates, channels and cavities, located
eccentrically with respect to the middle surface of the shell, is accurately
modeled. The examples of modeling shells of stepwise variable thickness by
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the universal FE are schematically shown in Fig. 1 (for the shell with 'ribs”)
and Fig. 2 (for the shell with ‘cavities’).

upper rib e=(h‘r“’—h'r‘"’)l2

mid-surface p 1= Z
of the casing P - %y
h ‘s
~ r /s
lower rib & Ioe:

Fig. 1. Modeling a shell portion with ‘ribs’ by the universal FE

mid-surface of FE
with ribs

upper mid-surface of FE e=(-h+hy")i2
cavity (deepening)/ with reduced thickness

mid-surface lower
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Fig. 2. Modeling a shell portion with ‘cavities’ by the universal FE

Features of the stress-strain state of a thin inhomogeneous shell are taken into
account by using two non-classical hypotheses: (i) the static hypothesis which
assumes that the compressive stresses in the fibers throughout the shell thickness
are constant; and (ii) the kinematic hypothesis of deformed straight line. The use
of the first hypothesis does not deprive the stress state of an inhomogeneous shell
of its three-dimensional properties. The latter hypothesis makes it possible to
perform the docking of spatial FEs in the process of deformation without
violating the compatibility in terms of coordinates and displacements, as well as
to simulate in a natural way sharp bends in the mid-surface, slopes of the walls
of ribs, recesses and holes. In the thickness direction, the distribution of
displacements is assumed to be linear as it is accepted in the theory of thin shells
[22]. The nodal displacements on the bounding surfaces of the finite element
shell model, defined in the global Cartesian coordinate system, are taken as
unknown. To improve the convergence of solutions for thin shells, the set of
displacements of nodal points on the middle surface of the FE and the difference
of nodal displacements on its bounding surfaces are usually taken as resolving
functions [1, 2]. The algorithm for constructing a system of resolving equations
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for a finite element model of a shell with a stepped thickness always requires
transformation of the corresponding matrices of the modified FE relative to the
reference surface [1, 2]. The mid-surface of the shell’s casing is taken as a single
reference surface.

The implementation of the nonlinear stability problem is performed by a
step-by-step algorithm that combines the parameter continuation method and
the Newton-Kantorovich iterative procedure. Automated procedures have been
developed for solving problems of nonlinear deformation, buckling, and post-
buckling behavior of inhomogeneous shells with determination of branching
points g *, the upper g.¢ and lower cjcllv critical loads [1, 2].

2. The analysis of geometrically nonlinear buckling problems for shells

with stepped thickness using LIRA and SCAD software

Two types of flat shell FE are applied to determine the stress-strain state of
thin shells and plates with the help of the software package (SP) LIRA [23, 24]
and the integrated software system (ISS) SCAD [25, 26]: (i) the triangular
three-node FE No.342 and (ii) the quadrangular four-node FE No. 344. Finite
elements have a constant thickness. FE nodes located on its middle surface
have 6 degrees of freedom: three displacements u;,u,,u3 and three rotations

ay, oy, a3 relative to local Cartesian axes x; .

2.1. Modeling of shell fragments with step-variable thickness in SP
LIRA and ISS SCAD. Special elements are used in SP LIRA and ISS SCAD,
when modeling the geometric features of shells in the form of eccentrically
located elements of stepwise-constant thickness (ribs, overlays, channels and
cavities). Two types of such elements are used in SP LIRA. These are the so-
called ‘absolutely rigid insertions’ (ARIs) and ‘absolutely rigid bodies’
(ARBs) [23, 24]. ISS SCAD uses ‘absolutely rigid (solid) bodies’ (ARBs)
[25, 26]. In all cases, this is an artificial technique. It is used to approximate
the step change in the thickness of the shell and consider the eccentric location
of its elements. The purpose of introducing these special elements is to set the
kinematic connection of the corresponding nodal displacements.

2.1.1. ‘Absolutely rigid insertions’ of SP LIRA are used for attaching special
elements nodes to the main structural nodes located on its middle surface in
areas of the stepwise-constant thickness. Modeling of the shift (eccentricity) of
the “elastic part’ of the FE is carried out with the help of the ARI too.

The ‘elastic part’ of the rigid insertion is understood as the FE of the
corresponding constant thickness, shifted relative to the middle surface of the
structure. The nodes of the ‘rigid insertion”’ are tied to the middle surface of the
original shell using kinematic relations. The use of the ARIs in the calculation
model is schematically shown in Fig. 3 on the example of a shell portion with
‘lower’ and ‘upper’ deepening (cavities). A similar technique is used when
modeling ribs and cover plates.
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Fig 3. Modeling of step-variable shell thickness by ‘absolutely rigid insertions’ in SP LIRA
(a) in a portion with a ‘lower cavity’; (b) in a portion with the ‘upper cavity’

2.1.2. ‘Absolutely rigid bodies’ of SP LIRA and of ISS SCAD are special
(conditional) FEs of high rigidity. They are additionally introduced into the
calculation model to connect the nodes of the middle surfaces of the casing and
the eccentric element.

In general, the ARB can only be conditionally attributed to the concept of a
finite element, since it, in fact, does not have the classical attributes of a FE (basis
functions, finite element area, etc.) [24]. However, from an implementation point
of view, the ARB fits into a finite element procedure. The ARB is a rigid
connection between nodes of eccentrically located elements when modeling
displacements. This FE has no number in SP LIRA and it has No. 100 in ISS
SCAD. The use of the ARBs in the calculation model is schematically shown in
Fig. 4 on the example of a shell portion with ‘lower’ and ‘upper’ deepening
(cavities). A similar technique is used when modeling ribs and cover plates.

2.2. Algorithms for solving geometrically nonlinear problems in SP

LIRA and ISS SCAD

In both software suites three step algorithms are implemented.

2.2.1.SP LIRA implements the following algorithms for solving the
geometrically nonlinear stability problem:

(1) sequential loading method (‘simple stepping’). The number of steps and
the value of the load step are set by a user. It has the designation in the figures
as ‘1. SL’;
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(i1) sequential loading method (‘with automatic step selection’). The number
of steps and its value are automatically selected by the algorithm (‘2. SLA’);

(ii1) Newton-Raphson method (‘step by step with the search for new shapes
of equilibrium”) implements the method of compensating loads. The buckling
moment is fixed and the transition to a new stable branch of equilibrium is
performed (‘3. N-R’).

mid-surface of FE e>0

with reduced thickness

hd lhlcw

‘absolutely lower mid-surface
rigid body’ cavity (deepening) of the casing
upper
Ee e<0

cavity (deepening)

hg

mid-surface of FE ‘absolutely / mid-surface
with reduced thickness rigid body' of the casing

(b)

Fig 4. Modeling of step-variable shell thickness by ‘absolutely rigid bodies’ in SP LIRA and ISS
SCAD (a) in a portion with a ‘lower cavity’; (b) in the portion with the ‘upper cavity’

The first two algorithms use a simple modification of the sequential loading
method, where the calculation is performed until the system stiffness matrix
degenerates. The branch points and the upper critical load do not differ. The
solution of the problem of nonlinear deformation is realized either up to the

branching point (g *) or up to the point of the upper critical load (g.? ). The

third algorithm implements the transition to a new stable branch. As studies
have shown [4] it leads to a significant error.

2.2.2. The SCAD software also implements step-by-step algorithms for
solving a geometrically nonlinear stability problem:

(1) sequential loading analysis (‘simple stepping’). The number of steps and
the value of each step of the load are set by a user (‘1. SL”);

(i) Newton-Kantorovich method (‘step-by-step with refinement’). The
number of steps, the value of each step and the number of iterations are set
(‘2. N-K*);
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(iii) Newton-Raphson method (‘step iterative’). The number of steps, the
value of each step, the number of iterations are set (‘3. N-R”).

The ISS SCAD does not analyze the possible occurrence of a branch point.

3. Numerical examples

Documentation for SP LIRA and ISS SCAD has insufficiently complete
descriptions of nonlinear algorithms. Therefore, the problems have been solved
using each of the three programs.

3.1. A smooth spherical panel of constant thickness is considered. All non-
linear calculation algorithms have been investigated in order to evaluate them
and select the most suitable one. The obtained solutions have been compared with
the solutions obtained using the FEMS and those presented in the article [12].

We consider the panel that is square in plan (in the 2 plane of the

global Cartesian coordinate system), hinged along the contour and loaded with
uniform normal pressure of intensity ¢ . The research results are presented

using dimensionless parameters 7 = a%q / (Eh*), uV =ul / h . The curvature of

the panel is determined by the parameter K =242 / (Rh)=32. The following
values of the design parameters have been accepted: a =604 — panel size in

plan, R =225h —radius, 4 =1cm — thickness, E =2.1-10° kg/cm2 , v=03.
The design fragment is a quarter of the panel with a finite element mesh of
30 x 30 elements.

Fig. 5 and Table show the comparison between results obtained using the
described finite element algorithms (FEMS, SP LIRA, ISS SCAD) and results
presented in [12] that are considered benchmark. As can be seen in Fig. 5 (a),

all results of the comparison give complete agreement of the curves ‘g -iz)

of the panel center in the sub-buckling domain.
Both variants of the sequential loading analysis (the ‘1. SL’ and ‘1. SLA’
methods of the SP LIRA) give a good match in terms of the value of the upper

critical load g7, where the solution of the problem ends (Fig. 5 (¢), the point

“*7), Newton-Raphson method (‘3. H-P’) implements the transition to a new
stable equilibrium branch with a large error (Fig. 5 (a)). The sequential loading
algorithm with automatic step selection (‘2. PNA”) leads to acceptable results.
All SCAD algorithms allow switching to a new stable branch of
equilibrium. Sequential loading approach (‘1. PS’) performs the transition to
the post buckling branch with a large error that occurs when calculating the

value g, (Fig. 5(d)). This problem is solved quite accurately by the

algorithms using Newton-Kantorovich method (‘2. N-K’) and Newton-
Raphson method (‘3. H-R’) (Fig. 5 (a), (d)).

The equilibrium shapes of the deformed panels in the subcritical and post
buckling domains have a simple form and are in good agreement when using
all the software suites. The Fig. 5 (b) shows the shapes of the middle surface of
the shells in the vicinity of the upper critical load.
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Table
Solution method (Algorithm) | g A% | w® | A%
Karpov V.V. [12] 200 0 1.1250 0
FEMS I:I—K [1,2] 193.7 -3.15 0.9125 -18.89
q* 192.6 0.8888
1.SL(g*) 194.1 -2.95 0.8796 -21.81
SP LIRA 2.SLA (g*) 202.8 1.40 0.8580 -23.73
3.N-R(g*) 196.4 -1.80 0.9013 -19.88
1. SL - - - -
ISS SCAD | 2. N-K 190.2 -4.90 0.7729 -31.30
3. N-R 190.2 -4.90 0.7730 -31.29

3.2. Analysis of the stability of shells with stepped-variable thickness is
illustrated using the problem of deformation of a panel weakened by four criss-
crossed channels [4]. The shell with the same parameters as in the previous
problem is considered. The channels are located symmetrically on the inner
and outer sides of the shell. Two types of channels are considered. Narrow
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channels have a width 5. =2k and a total depth 7, =0.34. Wide channels have
such parameters: b, =6k, h.=0.7h. The design fragment is a quarter of the

panel with a mesh of 30 x 30 finite elements.

To approximate channels, ‘absolutely rigid insertions’ are used in SP LIRA,
and ‘absolutely rigid bodies’ in ISS SCAD. Method ‘2. SLA’ in SP LIRA is
used to solve the nonlinear stability problem. Newton-Kantorovich method 2.
N-K’ is used in ISS SCAD. Comparison of the results with the solution
obtained using FEMS is carried out.

All curves ‘load-displacement’ obtained using FEMS, SP LIRA and ISS
SCAD completely coincide in the subcritical region and in the zone of the
upper critical load (Fig. 6, Fig. 7).

ar— " 0 7 9= LRA SCAD
! r : X fesitasziitas
’ W
200 o
150 | % b
FEMS
150 | A
: 100 |
100 FHif
ai
50 (f ot b.=2h ars]|_Lol] |
h:=0.3h e
]
0 0

0 -02 -04 -06 -08 -1 Q'
(b)

Fig. 6

Changing the width and depth of the channels significantly affects the
results. For panels with narrow channels (see Fig. 6), the discrepancy between
the value obtained by FEMS and SP LIRA is 4.45% while in the case of using
ISS SCAD it is -0.73%. For panels with wide channels (see Fig. 7), the
discrepancy is 2.43% when ISS SCAD is used. SP LIRA stopped calculations
at the branch point g*. The branch point g* has been also detected by
FEMS. The discrepancy of the results at the branch point is -1.83%. In this
case, the SP LIRA takes the branch point as the upper critical load. This load is
-11.2% lesser than critical one. The difference between the deformation shapes
is shown in Fig. 7b for the panel with wide channels.

Conclusions

Three methods for studying geometrically nonlinear deformation, buckling,
and post-buckling behavior of thin elastic shells of complex shape and
structure under the action of static loads are presented and analyzed. The
methods are intended for the calculation of shell structures, which may have
ribs, cover plates, channels, cavities, holes, breaks of the middle surface. An
approach based on the use of the finite elements moment scheme is considered.



116 ISSN2410-2547
Omip matepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2022. Ne 108

The features of using the software suites LIRA and SCAD for solving the
assigned problems are provided too.
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The performed investigations of nonlinear deformation and buckling of
inhomogeneous shells confirm the reliability of the solutions obtained by the
FEMS, software suites LIRA and SCAD.
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Kpusenko O.11., Bopona FO.B. . .
MOPIBHSIVIBHUM AHAJII3 HEJIIHIMHOI'O JE®OPMYBAHHS I CTIMKOCTI
TOHKHUX MPYKHUX OBOJOHOK CTYINIHYACTO-3MIHHOI TOBII[MHA

IIpoBeieHO TMOPIBHUIBHUI aHali3 CKIHYEHO-CJIEMEHTHHX MOJeIed 1 MeTomiB pO3B’s3aHHS

CKJIAJHUX 3a7ad IeOMETPUYHO HemmiHiHHOI nedopmariii Ta BTpaTH CTIHKOCTI TOHKHX OOOJOHOK
CTYHIHYACTO-3MIHHOT TOBIMHY. PO3rIIsHYTO MigXin, 0 CHMPAEThCsl HA BUKOPHCTAHHI MOMEHTHOL
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CXeMH CKiHYEGHHHX eJeMeHTIB. Takoxk HaBeneHO ocobimBocTi BukopuctanHs mporpam JIIPA Ta
SCAD s BUpilIGHHS MOCTaBJICHHX 3aiad. PO3rsIaroThCsl TOHKI Ta CEPEAHBOI TOBIIMHH
000510HKH. BOHM MOXXyTh MaTH Pi3HI reOMETPHYHI OCOOIMBOCTI 3a TOBILMHOIO 1 epedyBaTh Mix
Ii€I0 CTATHYHHX TEPMOCHJIOBUX HaBaHTaKeHb. HaBeeHO MeTOMNKY PO3B’sI3yBaHHs KX [IPOOIEM
3a JJOMOMOror e(pEeKTHBHOIO YTOYHEHOro miaxoxy. Meroanka Oa3yeTbcsi Ha 3araibHHX
METO/OJIOTTYHHX MOJIOXKEHHIX TPUBUMIPHOI TEOPii TEPMONPYKHOCTI Ta BUKOPHCTAHHI MOMEHTHOI
CXeMH CKIHYEHHHX eyeMeHTiB. Ilpu TakoMy migxoni ampokcHMaiiss 10 TOBIUMHI OOOJIOHKH
3[IHCHIOETHCS. OHMM YHIBEpCaJbHHM IPOCTOPOBUM CKIHUCHHHMM €JIeMEHTOM. EjeMeHT Moxe
Moau(biKyBaTHCS HA PI3HUX OUITHKAaX OOOJIOHKH 31 CTYNMiHYacTO-3MIHHOIO TOBIIHHOIO. BiH Moxe
PO3TALIOBYBATUCS EKCLIEHTPUYHO BiJIHOCHO CEPEAHBOI MOBEPXHi OOLIMBKM 1 3MIiHIOBATH CBOI
pO3MipH B HANpPSAMKY TOBUIMHK OOOJOHKH. Takuii yHi(iKOBaHHM MiIXiJ 103BOJIMB CTBOPHTH
€IMHY CKIHYEHO-CJIEMEHTHY MOJEIb OOOJIOHKH HEOJHOPIAHOI I'eOMETPUYHOI CTPYKTYypH MpH
CHIBHIM Aii TEPMOCHIOBOrO HaBaHTaKEHHs. IIpoBefeHO MOPIBHSUIBHUN aHali3 3aCTOCYBAaHHS
TPbOX CKIHYEHHHX €JIEMEHTIB AJIs1 3aJad eOMETPHYHO HEeNiHiHHOro nedopMyBaHHS Ta BTPAaTH
CTifiKOCTI 000JIOHOK CTYIIHYACTO-3MIHHOT TOBILIUHH.

KurouoBi cioBa: ruydka O00OJOHKa; CTYHIHYAacTO-3MiHHA TOBIUMHA; TOHKa HEOMHOpIIHA
000JI0HKa; YHIBepcaJbHUH MPOCTOPOBHI CKIHYCHHHI €JIEMEHT, MOMEHT Ha CXeMa CKiHYCHHHX
€JIEMEHTIB; I'€OMETPHYHO HeiHiiiHe AeopMyBaHHSI; CTIHKICTb; BTpaTa CTIHKOCTI; 3aKpUTHYHA
HOBEiHKA; TEPMOCHJIOBE HABAHTAXKCHHSI
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