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Thin-walled shell-type structures are widely used in various branches of technology and
industry. Such structures under operating conditions are usually exposed to various loads,
including thermomechanical ones. Real shell structures, as a rule, have a complex shapes. To
increase reliability, reduce material consumption, for technological reasons, they are designed as
inhomogeneous systems in thickness. This causes a great and constant interest of engineers and
designers in the problems of investigating the behavior of elastic thin-walled shell structures.

The work is devoted to the method of analysis of geometrically nonlinear deformation,
stability, post-buckling behavior and natural vibrations of thin elastic shells of complex shape and
structure under the action of static thermomechanical loads. The unified design model has been
created on the basis of the developed universal spatial finite element with introduced additional
variable parameters. The model takes into account the multilayer material structure and geometric
features for structural elements of the thin shell. The shells can be reinforced with ribs and cover
plates, weakened by cavities, channels and holes, have sharp bends in the mid-surface.

Such a uniform formulation made it possible to create a unified finite element model of the
shells with an inhomogeneous structure. It is shown on a number of problems that the method
presented in this article is an effective tool for analyzing geometrically nonlinear deformation,
stability, post-buckling behavior and natural vibrations of thin elastic shells of an inhomogeneous
structure under the action of static thermomechanical loads.

Key words: thin inhomogeneous shell, universal space finite element, geometrically nonlinear
deformation, buckling, vibration, thermo-mechanical load.

Introduction. Thin-walled shell-type structures are widely used in modern
construction, mechanical engineering and instrument making, rocket and space
technology, and many other industries. Such structures are usually exposed during
operation to various loads, including thermomechanical ones. These circumstances
are the reason for a great and constant interest of engineers and designers in the
problems of analyzing the behavior of shell systems. There are many numerical
methods suitable for efficiently solving particular problems [1-8]. Recently, the
finite element method has been recognized as one of the most frequently used and
effective numerical methods, due to its versatility, physicality and unlimited
applicability to complex structures under arbitrary loading,.
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Real shell designs are usually not limited to the classical canonical forms.
They are often structures of complex shapes. To increase reliability, reduce
material consumption, for technological reasons, such structures are designed
in the form of inhomogenecous systems: smooth and stepwise-varying
thickness, reinforced with ribs and cover plates, weakened by holes, cavities
and channels, faceted, multilayer. Shells are often subjected to mechanical and
thermal stress. In this case, temperature fields can cause significant
deformations and affect the shape of buckling and critical loads quantity.

The work is devoted to the method of analysis of geometrically nonlinear
deformation, stability, post-buckling behavior and natural vibrations of thin
elastic shells of complex shape and structure under the action of static
thermomechanical loads.

1. Problem statement and method of its solving. The static problems of
the stress-strain state (SSS), stability and post-buckling behavior of a wide
class of thin inhomogeneous shells under the action of external mechanical
loads and uneven volumetric heating are considered. Determination of natural
vibrations of inhomogeneous shells is carried out at each stage of
thermomechanical loading, taking into account the prestressed state. This
approach allows, within the framework of one algorithm, to determine the
critical loads of the shells using both the static and dynamic criterion of
buckling. By the inhomogeneity of a shell is meant that (i) its thickness is
continuously or stepwise variable and (ii) it consists of combinations of
multilayer stacks along the thickness and in plan.

The method for solving static problems of nonlinear deformation and
buckling of various shells subject to mechanical and thermal loads has been
developed on the basis of the unified methodological positions of the 3-D
geometrically nonlinear theory of thermoelasticity and the use of the moment
finite-element scheme (MFES). Detailed outline of the method, justification of its
reliability, solution of a variety of problems is given in [9, 10]. The shell is
modeled by a nonlinear elastic continuum subject to large displacements and small
strains whose components are linear functions of stresses. The layers of the shell
are considered linear elastic and described by the generalized Duhamel-Neumann
law. To develop a finite element model of the shell, we approximate a thin shell by
one spatial FE throughout the thickness, which is an efficient approach. So we use
the so-called one-layer FE approximation throughout the shell thickness. The
difficulties of describing the combined behavior of structural elements with
different dimensionality in an inhomogeneous shell are overcome by using the 3-D
FEs of the same type to model sections with stepwise-varying thickness. The
universal FE is based on an isoparametric spatial FE with polylinear shape
functions for coordinates and displacements. Additional variable parameters are
introduced to enhance the capabilities of the modified FE.

Two hypotheses are used to describe the SSS of a thin inhomogeneous
shell. The nonclassical kinematic hypothesis of deformed straight line: though
stretched or shortened during deformation, a straight segment along the
thickness remains straight. This segment is not necessarily normal to the mid-
surface of the shell. The static hypothesis assumes that the compressive
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stresses in the fibers of the # -th layer are constant throughout the thickness.
The use of this hypothesis does not deprive the stress state of an
inhomogeneous shell of its three-dimensional properties. Finite element
models, constructed on the basis of the developed modified element and the
use of the FEMS, have stable indicators of convergence of solutions, both for
thin shells and shells of medium thicknesses.

In the problems of natural vibrations of the shell, the presence of prestress
in the deformed structure from the action of various static loads is taken into
account [11, 12]. The presence of shell prestressing significantly affects the
spectrum of natural vibrations. This approach makes it possible to analyze, at
each step of thermomechanical loading, small vibrations of the shells relative
to the reference deformed state, caused by an arbitrary static load, taking into
account large displacements and the presence of a pre-stressed state. Thus, the
adopted approach allowed to develop a universal methodology for studying the
stress-strain state, stability, post-buckling behavior and vibrations of shell
structures of various classes. Their list is determined by the type of structural
elements characterizing the shell: constant, smoothly or stepped-variable
thickness, ribs, cover plates, inserts, cavities, channels, holes, fractures of the
middle surface, multilayer material.

2. Analysis of stability and post-buckling behavior of inhomogeneous
shells. The versatility of the developed method requires proving the reliability of
solutions for various classes of problems falling within the scope of its
application. Justification of the reliability of solutions by studying the
convergence of the results and their comparison with known nonlinear solutions
has been proven on a number of specially selected problems [9, 10]. The
effectiveness and versatility of the method is demonstrated below on several
problems of nonlinear deformation and stability of shells of different classes.

2.1. Conical panel in a nonuniform temperature field. The convergence
and accuracy of nonlinear solutions are analyzed for a clamped axisymmetric
shallow conical panel subject both temperature and mechanical fields. The
numerical solution of this problem has been obtained with the use of a
variational method by B.Ya. Kantor [3]. The effect of the thermomechanical
load on the panel consists of two stages: (i) the SSS of the shell is perturbed by
the temperature field 7'(¢,7), whose parameter ¢ increases to a set value ¢,

and (ii) the panel is subjected to pressure, the temperature field remaining
constant. Three options of temperature field that is constant throughout the
thickness /# and uniform or nonuniform along the radius » are examined:

() T(t,7)=t(1-7%); (i) T(t,?):%; (i) T(t,7) =172
The results are presented in dimensionless form: k=H/h=35,

f =ta(a/h)* =5 (a — radius of support boundary, 4 — thickness, H — rise,
o — coefficient of linear thermal expansion, the material is isotropic).
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Good agreement of the solutions for the value of the upper critical load g.”

is obtained. The upper critical load g,/ is in good agreement with the
axisymmetric solution [3] (error is 2,86+3,75%, Fig.1). A complete
coincidence of the diagrams "¢ —u " up to the upper critical point and their
gradual divergence in the supercritical area (Fig. 1,a) have been obtained when
heating was uniform (variant (i)). Comparison of solutions gives their complete
coincidence when only pressure is present (variant 7 =0). The heating causes
deformation opposite to that induced by pressure. Therefore, in all the cases of
preheating, the stiffness of the panel increases considerably and g7 increases
by a factor of 1.75 to 2 compared with the nonheated shell (7 = 0) (Fig. 1,b).

a k=3

g _ g
10 12424FE k=3 10

10 a0

Fig. 1

2.2. Shells of revolution with linearly varying thickness. The issue of
more rationally distributed material over the volume of the structure is
considered. The stability of spherical shallow panels with linearly varying
thickness clamped at the edge and subjected to pressure ¢ is analyzed. The

effect of thickness variation parameter %(r) on the stability of panels is
examined using three linear dependencies:

() h(F) =1+, -r, () h(F)=1+(b, -D(1-7), (i) A7) =by,
where b, =h;:1/h*, b, =h;:0/h* and by =h,//h* are parameters of
dimensionless thickness & = h/ h" along the radius 7=r/a. The value
b, =b, =b, =1 corresponds to a panel of constant “base” thickness #* and
volume 7" . In the 1st case, the thickness in the center of the panel takes the

“base” value (f_ = n ) and at the edge it is given by b, . In the 2nd case, the

thickness at the edge is of the “base” value (/- = h*) and in the center it is
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given by b,. In the 3rd case, the thickness 7/, is determined through the
volume of the panel V : h, =V /(2nHR) .
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Comparing the results for panels with the (i) law of variation in thickness
with the results from [3] reveals an insignificant difference between the upper

g.p critical loads (2.4-3.3%) and between the lower c?f;v critical loads (0.2—
5.8%) and complete agreement between the curves "g—u" on all sections
(Fig. 2). For the (i) law, g_.” depends nonlinearly on b, (Fig.4,a). When
1<b, <175, an increase in the mass of the panel does not lead to an increase
in g,7 . This nonlinear effect is due to the dependence of the buckling modes
on the parameter b, (Fig. 5-6). For the (ii) law, the dependence of ./ on b,
is nearly linear (Fig. 4,b). For the (iii) law, g. depends nonlinearly on b, in
a similar manner when 1,05<b, <1167 (Fig. 4,c). The material is more
rationally used in panels that are thicker in the middle (Fig. 3).
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2.3. Effect of heating on the buckling of smooth and faceted panels.
Curvilinear shapes are what make the manufacturing of shells difficult. In
practice, this problem is solved by changing the smooth curvilinear shape with
a faceted one, the flat elements of which are made from an assortment of
standard sheet products. Let us consider the above-considered spherical panels

of constant thickness (4 =0,01; 0,013; 0,02m). The shell heated to 7°C
(-10°%,0°, 20°,100%) is loaded with pressure. The dependences of the relative
values §'¥ and V are shown in Fig. 8, where ¢“/(h",T=0") is the

maximum load of a smooth unheated panel with a thickness h.
The replacement of the curvilinear shape mm with a faceted one ™ causes

a minor alteration of the SSS and g.” (Fig.8, curve 7=0°C), which

increases by 1% as the volume decreases by 2.5% because the panels are
shallow. The effect of preheating on the stability of smooth and faceted panels
of constant thickness is examined (Fig. 8). In all cases, the critical loads of
faceted panels are slightly greater than those of the smooth panel: the upper
loads by 3—-13,1% and the lower loads by 2,4-7,4%. The investigation of the
stress state of the panels shows that the transition to a faceted structure is
characterized by a qualitative redistribution of stress fields: from axisymmetric
to cyclically symmetric in accordance with the location of the edges.
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2.4. Behavior of ribbed shells under the various thermomechanical
loadings. The stability of shells, reinforced by ribs, is considered in this
paragraph. The object is a shallow square spherical panel with a curvature
parameter K = 24? / (Rh) (where K =32, thickness of the casing 4 =0,01m,
panel size a = 60/ , radius R =225h). The panel is hinged at the edges.

Consider panels reinforced, from inside, with two cross ribs (height
h,=3h without casing thickness /&, width b, =2k, length a=60/) and

subjected to pressure and heating (the casing is heated by 7, and the ribs by

T. degrees). The heating of the casing and ribs by 40°C is terminated at

q=9q.r O which is the critical load of the ribbed panel subject to pressure

alone (T =0°C). Four cases of thermomechanical loading are examined:

(i) g, T,=0°C, T, =0°C - only pressure (for reference);

(i) g, T, =0°C, T. =40°C — heating only the ribs;

(iii) ¢, T, =40°C, T, =0°C —heating only the casing;

(iv) ¢, T, =40°C, T. =40°C — heating the casing and the ribs.

The pressure causes the ribbed shallow panel to snap through in the middle
(Fig. 10, (1)). In all cases with heating the stiffness of the panels increases and

there is no buckling. The panel becomes the stiffest when both casing and ribs
are simultaneously heated (Fig. 10, (iv)) and least stiff when only ribs (Fig. 10,

(ii)) are heated. The instant the terminated heating (g =g, 0) is represented

by the salient point “e” on the curves. With further loading by pressure, the
deformation process stabilizes — the curves "g—u" merge (Fig.9).

Deformation of heated shells occurs with an insignificant predominance of the
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membrane component of the deformation energy in comparison with its
bending component (Fig. 11).
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2.5. Effect of the way of thermomechanical loading on the behavior of
shells with channels. The effect of the weakening parameters (channels) on
the stability of the considered above panels under thermomechanical loads is
investigated. Consider a shallow panel (K =32, a = 604 ) weakened with four
identical cross channels (width b, =2h, h,, =03h). The panel is hinged at

the edge.

Examination of the eccentric positions of the channels relative to the
middle surface of the casing shows a greater weakening effect when they are
located on the outer surface “ma#” (Fig. 12). A dash-dotted line marked with
“mm’ is the solution for a smooth panel, for comparison.

Tree cases of thermomechanical loading are examined for the panel which
casing weakened from inside “w®” (Fig. 13):

(i) pressure (for reference), T =0°C;
(ii) preheating by 7 =40°C followed by pressure at constant temperature;
(iii) simultaneous pressure and heating (7 = 40°C) until the upper critical

point of the 1st case g =g,/ % is reached.
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With heating, g.” increases by 17.7% (i) and 68.3% (ii), respectively, in

7

all the cases. When heat and pressure ((iii) case) act simultaneously, g.~
increases by 43.0% compared with the case ((ii) case) where they act

sequentially. In this case, c?cl;v increases by a factor of 12. These effects are

due to the increased stiffness of the heated shell.
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3. Modal analysis of shell structures. It is known that static loads
significantly affect both the stress-strain state of the structure and the dynamic
characteristics, which include the frequencies and mode shapes of natural
vibrations. Investigation of the effect of static load on vibrations of shells, even
of constant thickness, is a complex and insufficiently studied problem of
structural mechanics. The results of the study of buckling and vibrations of
thin shells of constant and stepped-variable thickness under the action of
thermomechanical loads are reproduced below.

3.1. Effect of static loads on natural vibrations of ribbed shells.

Consider the rib-reinforced shallow spherical panel square in plan
(K=32,a=60h,R=225h), hinged at the edges, and subject to pressure.
The panel is reinforced, from inside, with two cross ribs (height 4. =3h

without casing thickness 4, width b, =24, length a = 604 ).

The dependences of the characteristics of natural vibrations on the growth
of the static load are obtained.
Comparison the curves “load — deflection” (“g —u ) (Fig. 14) and “load —

frequency” (“¢ —; ”) (Fig. 15) for smooth (“=mm) and ribbed (“™ ") panels
shows the following. The panel mass increase by 19.3% due to the setting of
two ribs increases the critical load value g.? by 1.5 times in comparison with
a smooth panel and leads to a decrease of the vibration frequency ®, in the
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initial state by 7.5%. The frequency w; for the ribbed panel becomes higher
than for the smooth one when the load parameter value g > 80.
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The vibration mode of the ribbed panel corresponding to the frequency
has a simple form (Fig. 16,a) in the prebuckling domain. The vibration mode
near the critical load is characterized by skew-symmetric deformation with a
maximum amplitude in the center of the quarters (Fig. 16,b).

Fig. 16

3.2. Effect of thermomechanical loading on buckling and vibrations of
a panel with a hole. Consider the shallow spherical panel square in plan
(K=32, a=60h, R=225h), hinged at the edges. The panel has a central

square hole of width b;; =124 . The effect of three cases of preheating

(T'=-20°,0°, 20°C) on the stability and vibrations of the shell is analyzed.

The result of a smooth panel calculations (“mm) serves as the basis for the
analysis of the influence of the hole geometric features (“m:m”) on the behavior
of a shallow shell. The deflection of the smooth panel is calculated at its center
where as the deflection of the panel with a hole is determined at the point 4 .
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The accuracy of calculations in solving static stability problems has been
determined by a comparative analysis of the two solutions. The first one has
been obtained by the authors using the MFES while the second one has been
obtained using the LIRA software [13] (Fig. 17). Under the pressure alone

(T =0°C), the weakening of the smooth panel reduces the critical load g7

by 19.5%. (Fig. 17,a). Pre-cooling and pre-heating leads to a change of the
critical load g, by -9,97 and 9,78% compared to the corresponding unheated

panel (T =0°C) for the shell with the hole (Fig. 17,b).
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to pressure alone (7 =0°C) (Fig. 18,a). Load quantities at which natural
vibrations are calculated, shown in the figure by circles. For all heating cases,

the “ g — o, ” curves look similar as well (Fig. 18,b).
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In the initial state (7=0°C, g =0) the frequencies ®; and ®, are
double for a smooth shell, and frequencies ®, and ®; are double for a panel

with a hole. Therefore, the mode shapes differ for the respective shells
(Fig. 19). So, the mode shapes that correspond to double frequencies ®; and

®, of the smooth panel are conjugate, and the mode that corresponds to the
frequency ®; is characterized by the oscillation of its central part. The

opposite nature of the mode shapes is observed for a panel with a hole. The
applied pressure causes a restructuring of both the frequency multiples and the
vibration modes. During loading, the vibration modes are transformed in
accordance with the change in multiple frequencies [12].

Conclusions.

The method for analysis of geometrically nonlinear deformation, stability,
post-buckling behavior and natural vibrations of thin elastic shells of complex
shape and structure under the action of static thermomechanical loads is
presented. It is based on the geometrically nonlinear equations of 3-D
thermoelasticity, the finite element formulation of the problem in increments,
and the use of the moment finite-element scheme. The prestressed state of the
deformable shell is taken into account at each stage of thermomechanical
loading when carrying out modal analysis of the shell.

We show that the method presented in this article makes it possible to
analyze effectively the behavior of a wide class of thin elastic shells of an
inhomogeneous structure under the action of various static thermo-force loads.
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Kpueenko O.I1., Bopona FO.B., Kosax A.A.
CKIHYEHHOEJIEMEHTHUM AHAJII3 HEJIIHIMHOTO TE®OPMYBAHHSI,
CTIAKOCTI TA KOJIUBAHb ITPYKHUX TOHKOCTIHHUX KOHCTPYKIIIA
AKTyalIbHiCTh. TOHKOCTIHHI KOHCTPYKILIi 000JIOHKOBOTO THITY IIKPOKO BHKOPHCTOBYIOTHCS
B OyIIBHHLTBI Ta Pi3HHX raiy3sX TexXHiKH. B yMoBax ekcmuiyaTarii Taki KOHCTpYKLil 3a3BHuaii
HiUIaI0THCS BIUIMBY PI3HUX HABaHTaXXCHb, B TOMY YHCIi i TEPMOCHJIOBHX. PeanibHi 000J0HKOBI
KOHCTPYKLIi, SIK IPAaBHJIO, € KOHCTPYKLISIMH CKJIagHOI GopMH, sKi ISl IiJBHUILNCHHS HAAIHHOCTI,
3HIDKGHHSI MAaTrepialloMiCTKOCTI, 3 TEXHOJIOTIYHHX MIpPKyBaHb IPOCKTYIOTBCS Yy BHIJIAAI
HEOIHOPIHUX IO TOBIUKMHI 000JIOHKOBUX cHcTeM. Lle 00yMoBIoe BeNMUKUi 1 MOCTIHUI iHTepec
iHOKeHepiB 1 KOHCTPYKTOPIB 10 3a7ad JOCITI/DKCHHS [OBEMIHKH IPY)KHUX TOHKOCTIHHHX
000JIOHKOBUX KOHCTpYKIiii. MeTa po6oTH. PoGoTa mpucBsiueHa METOIHLI aHANI3y FeOMETPHYHO
HeNiHiHOro aedopMyBaHHS, CTIHKOCTI, 3aKPUTHYHOI MOBEIIHKMA 1 BJIACHUX KOJIMBAHb TOHKHX



ISSN 2410-2547 33
Omip marepianiB i Teopis cropyx/Strength of Materials and Theory of Structures. 2021. Ne 107

IPYKHUX OOOJOHOK CKJIamHOI (OpMH 1 CTPYKTYypH HPH Ail CTATHYHUX TEPMOCHIIOBHX
HaBaHTaXeHb. Ha 6a3i po3po0JieHOro yHiBepCalbHOr0 MPOCTOPOBOrO CKIHYCHHOIO €IEMEHTa 3
BBEICHUMHU [OJATKOBHMH 3MIHHMMH I[1apaMeTpaMH HOOy[OBaHa PpO3paxyHKOBA MOJIENb, sKa
BPaxoBy€ I'€OMETPHYHI OCOOJIMBOCTI KOHCTPYKTHBHHMX €JIEMCHTIB 1 HEOIHOPIAHICTh MaTepiamy
TOHKOI 00O0JIOHKH (3MIHHICTh TOBIIMHH, 3JIaMHU 1 rpaHOBaHUI OOIIMBKY, peOpa, HAKJIAJAKH, BUIMKH,
OTBOpH, BCTaBKM, 0araTolmiapoBy CTPYKTypy Marepiany). Pesyiabrarn. 3acrocoBaHuii
yHi(iKOBaHMH MiAXiA J03BOJIMUB CTBOPUTH €AUHY PO3PAXYHKOBY CKIHYCHHO-CIEMEHTHY MOJeENb
000JIOHKH HEOIHOPIAHOI cTpyKTYpy. Ha HU3LI NpHKIIaaiB MOKa3aHo, 110 METO/, HABEACHUHN Y il
cTaTTi, J03BOJISIE ePEKTUBHO JOCIIPKYBATH FE€OMETPHYHO HeEMiHiliHe nedopMyBaHHs, CTIHKICTb,
3aKPUTHYHY MTOBEIIHKY 1 BIACHI KOJIMBAHHS TOHKUX MPYXHHX 000JIOHOK HEOJHOPIAHOI CTPYKTYPH
IpH Jii CTAaTHYHUX TEPMOCHIOBUX HABAHTAXKEHb.

KuriouoBi ciioBa: ToHKa HEOJHOpigHA 00O0JOHKA, YHIBEPCAIBHUI MPOCTOPOBUIl CKiHYEHHHI
CIIEMEHT, TIEOMETPHYHO HenmiHiiiHe aedopMyBaHHs, CTIMKICTh, KOJMBAHHS], TEPMOCHIIOBE
HaBaHTa>XXCHHI.

Kpueenko O.I1., Bopona FO.B., Kosax A.A.
KOHEYHO-3JIEMEHTHBI AHAJIA3 HEJJMHEMHOI'O TE®OPMUPOBAHUS,
YCTOMYUBOCTHU Y KOJEBAHUM YIIPYTUX TOHKOCTEHHBIX KOHCTPYKLMI

Axmyansnocms. TOHKOCTEHHbIE KOHCTPYKIMH 000JI0YEUHOTO THIIA IIHPOKO UCIIONB3YIOTCS B
CTPOUTEJIBCTBE U PA3JIMYHBIX OTPAC/IAX TEXHUKH. B YCIIOBHUAX 3KCILJIyaTallUH TaKME KOHCTPYKILHUA
06bl‘lH0 moABEPraroTCsA BOSﬂeﬁCTBMm pa3JIM4YHBIX HArpy3okK, B TOM YHCJIC U TEPMOCHUJIOBBIX.
PeanbHble 000J104CYHBIC KOHCTPYKLUH, KaK [PABUIIO, SBJIIOTCS KOHCTPYKLMSMH CJIOXKHOM
(opMBI, KOTOpBIE JUIi TIOBBIIICHWS HAJCKHOCTH, CHIDKCHHS MAaTEPUaJOEMKOCTH, IO
TEXHOJIOTUYECCKUM COOGpa)KCHl/lﬂM MNPOCKTUPYIOTCA B BHUHAEC HCOAHOPOAHBIX II0 TOJIIUHE
000JI0YCYHBIX CHCTEM. OJTO 00yCIaBIMBaeT OOJNBIIOH M IMOCTOSHHBIA HHTEPEC HHXEHEPOB U
KOHCTPYKTOPOB K 3aJa4yaM HCCICIOBaHUA IOBCACHHUSA YHNPYIHX TOHKOCTCHHBIX OGOHO‘{CHHHX
KOHCTPYyKUMA. Ilens padomel. PaGora mOCBslEHa METOAMKE aHAJIW3a T'EOMETPUUYCCKH
HEJIMHEWHOro J1e(hOPMHUPOBAHUS, YCTOWYHBOCTH, 3aKPUTHYECKOrO IMOBEACHUS M COOCTBEHHBIX
KOJIeOaHUH TOHKHX YHPYTHMX OO0OJIOUEK CIOXKHOH (OpMBI M CTPYKTYphl NpPU JeHCTBHU
CTATUYECKUX  TEPMOCHJIOBBIX Harpy3ok. Ha ©0a3e pa3pa0OTaHHOrO  YHHBEPCAJIBLHOIO
MPOCTPAaHCTBEHHOI'O KOHEYHOI'O JJIEMEHTAa C BBCIACHHBIMH [OIIOJHUTCIBHBIMH NEPEMEHHBIMA
HapaMeTpamMy IOCTPOEHA PacueTHast MOJIENb, KOTOPAsk YYUTHIBAET I'€OMETPUUYECKHE OCOOEHHOCTH
KOHCTPYKTUBHBIX 3JIEMEHTOB M HEOJHOPOIHOCTb MaTepuasla TOHKOH 000JIOYKH (IIepeMEHHOCTb
TOJIILMHBI, U3JIOMbl W T'PAHEHOCTh OOIIMBKH, peOpa, HAKJIAIKH, BBIEMKH, OTBEPCTHS, BCTaBKH,
MHOTOCIIONHYIO CTPYKTYpy Marepuaia). Pezyasmamul. IlpuMeHEHHbIH yHUDUIIMPOBAHHbIH
HOAXOJ IO3BOJIMJI CO3aTh E€IMHYIO pAacUETHYI0 KOHEUHO-JIEMEHTHYIO MOJENb O00O0JIOUYKH
HEOJIHOPOJHOM CTPYKTYpbl. Ha psie npuMepoB 1oka3aHo, YTO METO/, IIPUBEACHHBIN B HACTOSILICH
cTaThe, MO3BOJSIET I(P(EKTHBHO HCCICAOBATH I'COMETPUYCCKH HEIHMHeiiHoe nedopMHupoBaHHue,
YCTOHYMBOCTb, 3aKPUTHYECKOE TIOBEACHHE M COOCTBEHHBIE KOJIEOaHNsI TOHKHUX YIPYTUX 000104 eK
HEOJHOPOAHON CTPYKTYPBI IIPU I€HCTBUU CTATHYECKUX TEPMOCHIIOBBIX HAIPy30K.

KarodeBble cj10Ba: TOHKas HEOJHOPOJHAs 000JIOUKA, YHUBEPCAIbHBIH MPOCTPAHCTBEHHbINH
KOHEUHBIH 3JIEMEHT, TeOMETPUUCCKH HEeNMHEitHOe 1e(GOpMHPOBAaHHE, YCTOHYMBOCTD, KONEOaHNS,
TEPMOCHJIOBAst Harpy3Ka.
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Krivenko O.P., Vorona Yu.V., Kozak A.A. Finite element analysis of nonlinear deformation,
stability and vibrations of elastic thin-walled structures / Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles. — K.: KNUBA, 2021. — Issue 107. — P. 20-
34.

The method for analyzing geometrically nonlinear deformation, stability, post-buckling behavior
and natural vibrations of thin elastic shells of complex shape and structure under the action of
static thermomechanical loads is presented. The effectiveness of the method was demonstrated on
a number of problems.

Tabl. 0. Fig. 19. Ref. 13.
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CoIpoTHBIIEHHE MAaTEPUAJIOB U TEOPUsl COOPYKEHHMi: Hayu.-TeX. coopH. — K.: KHYCA, 2021. —
Bum. 107. — C. 20-34. — AHriL.
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