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The analysis of the stress-strain state for a layer with N longitudinal cylindrical inclusions,
when the specified displacements are given, has been carried out. The solution of the spatial
problem has been obtained by the generalized Fourier method with respect to the system of Lame's
equation in cylindrical coordinates associated with inclusions and Cartesian coordinates associated
with layer boundaries. Infinite systems of linear algebraic equations obtained by satisfying the
boundary conditions and conjugation conditions of a layer with inclusions have been solved by the
reduction method. As a result, stresses have been obtained at various points of the elastic body. A
numerical study compares the options of the layer stress-strain state with one and three cylindrical
elastic inclusions.
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Introduction

Determination of the stress-strain state of a body is the main task in the
design of various kinds of structures, buildings, and underground
communications. When designing the listed objects, computational schemes,
where a layer densely reinforced with longitudinal bars becomes the main
design element, are often encountered. At present, the mutual influence of
these bars has been little studied, and there is no technique for high-precision
solution of such computational schemes at all.

However, there are works close to the task at hand in the scientific
literature. Thus, in [1 —4], problems are solved for a layer with cavities
perpendicular to its boundaries.

Stationary problems of diffraction of elastic waves with cylindrical cavities
parallel to the layer boundaries are considered in [5 — 7], where the generalized
Fourier method is used in combination with the image method.

For elastic bodies with several limiting surfaces, the generalized Fourier
method [8], which is based on the addition theorems for the basic solutions of
Lame's equation, is used.

Using this method, the following problems have been solved: for a layer
with a spherical cavity [9], for a half-space with longitudinal cylindrical
cavities [10 — 11], for a cylinder with cylindrical cavities and inclusions [12 —
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16]. Problems for a layer with one or several cylindrical cavities are considered
in [17 — 20], for a layer with an elastic inclusion—in [21, 22].

For a layer with several cylindrical inclusions and displacements specified
on limiting surfaces, there are no ready-made algorithms in the spatial version,
so the problem of calculating such problems is urgent.

The purpose of this work is:

— development of an analytical-numerical method for calculating the
second main problem of elasticity (displacements are specified on all limiting
surfaces) for a layer with N cylindrical inclusions that are parallel to the
surfaces of the layer and to each other;

— to analyze the influence of inclusions on the stress state of the layer, as
well as on each other.

Problem statement

There are N circular cylindrical inclusions with radius R, in an elastic
homogeneous layer (Fig. 1).

(e gfl)(x,z)

Fig. 1. Layer with cylindrical inclusions

The inclusion will be considered in local cylindrical coordinate systems
(pp> ¢p» Z), the layer will be considered in the Cartesian coordinate system (x, y,
z) connected to the inclusion coordinate system with the number p = 1. The

layer boundaries are located at the distance y=handy=—4h .
It 1is mnecessary to find a solution of Lame's equation

AU +(1—20)_1Vdivlj =0 provided that displacements are specified at the
boundaries of the layer:

Uy(%,2),0 =U}(x,2) , Uy (x,z)‘yz_,;=0,?(x,z> ,

where U, o —displacements in the layer;
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Up(x,2)=UPe, +UWe, +UMe,
02()(,2) U(h)e +U(h) +U(h)a ’

known functions, which will be considered to be as rapidly decreasing to zero
at long distances from the origin along the x and z coordinates.

At the boundaries of the contact between the layer and the inclusions, the
specified matching conditions

UO((pp’Z)‘pp:Rp =Up ((ppsz)‘pp:Rp ) (2)

FUO((ppaZ)‘pp:Rp ZFUP((pP’Z)‘pp:R,’ 5 (3)

(1)

where U » —displacements in cylindrical inclusion with number p;
- 0~ 1. - E
ndivU +—U+—(nxrotU)]; G= ;
-20 on 2 2(1+ o)
Poison's ratio and elasticity modulus.

Problem solving

Let us choose the basic solutions of Lame's equation for the indicated
coordinate systems in the form [8]:

i (x, 230, ;,L):
Ry (p0.2:0)= NP1, (1p)e =) @)
Sk 0.0,z0)=N ( )[(51gnk (|k|p) A”’”"’)lk 1,2,3;

@ _ Lo, y@_4 o a0, Loy v ) ) _lg.
Nt =2V s MO = (oDl +kV(y),N krot( ) N =V

1[gf .0 ~2).9 e
Ny =X{V(Pa—p)+4(6—l)(V—e§2)g)} ;N =rot(e?),

where y=yA2+p?, —o<A,pu<o; I,(x), K, (x)—modified Bessel

functions; Ry ., S;,, k=1, 2, 3—the internal and external solutions of

Lame's equation for the cylinder respectively; u,ﬁ ), u,£ ) _solutions of Lame's

FU = 261 E -

N @, i(KZ+HX)ivy.

equation for the layer.
We represent the solution to the problem in the form:
N 3 o =

Up=3 3 [ 3 BEIA)Si (P02 )dA+
p=lk=]—com=—co
3 oo oo 5
30 [ (Ol 250+ o) 2500 i,

k=1 —co—co

oo

— 3 o
UP=ZJ' (P)(x) Ry (P o9 -2 M)A, (6)

k=1 —co m=—
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where §k’m (P,0,z:1) , ﬁ,ff)(x,y,z A1) and uk )(x ¥,z;\,l1) — basic solutions,
which are given by formulas (4), and unknown functions H, (A1), H (L),

B,iff,i(?»), and A,iff,i(?») should be found based on boundary conditions and

matching conditions.
In order to pass the basic solutions between coordinate systems, we use the
formulas [20]:

- to go from solutions S’k,m of a cylindrical coordinate system to solutions

of the layer u; ) (when y>0) and Uy ) (when y<0)

Skm(p,,,(pp,zx)—( i jmm I () dy“ k=1,3,

—oo

- _n\m =% 2 PR
$20 0 0 0= 5 [ of '((im'u—%wyp)uf”+x2u£+’i ()
e Mgy

i4u(1—o)ﬁ§¢>). -

where y:\lkz +u2 , mi(k,u)zuTH, m=0,£1,£2,... ;

- for the transition from solutions zZ,E” and ﬁ,({_) of the layer to solutions

ﬁk’m of the cylindrical coordinate system:

()(xy, ”X 0, Z 05 ﬁk’m,k=1,3,

(x y’ W,W z |: _2((m'u+;p'kz)'k],mi'Y'EZ,m+4l‘l(l_6)jé3,m)i|’ (8)
where Iik,m =l;k’m P, M)/ e I;]’n (p:M)=¢e, 1, (Ap)+i-l, (kp)'(éq,klp+éz) ;

(pN)=2 -[(46—3)-1,;(xp)+xpl,;'(xp)]+é¢i-m(l,;mp)f(‘;;l)1n<xp))+éziw,;<xp);

Qr‘zl

153’n(p,7»)=—[5p'In(kp)%p+é¢'i'l,;(kp)}; €, €, ¢ - unitary vectors of a

cylindrical coordinate system;
- for passing from solutions of the cylinder with number p to solutions of
the cylinder with number ¢:

i(np,+Az
Sen(Pyp: 0= Zbk,,q(pq)e(‘D+ ) k=1,2,3, )

n=—oc0
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b]mn (pq )=(_1)n ]gm_n (xqu )'el'(m—n)apq .5]”1 (pq ’}\‘) s

b;",;',, (P)=(D"K, (M, )€ " by (py )
= A

by'pg (Py)=(=1)" { men M )by, (quk)—zqu'

.[I?m_nﬂ (M g )+K, (M e )}1;]’” ®, ’M}_ei(m—n)aw ’

where o ,, - the angle between the x, axis and the segment / ap

Ig'm ()= (szgn(x) ‘K (|x|)
The distance and angle between the parallel displaced cavities shall be
calculated by the formulas:

2 2
. _\/lqp+qu—2~L,p~l,,q-cos(ozlq—oclp), at o, 20,
P | [5 2
\/L]p+L]q—2-L]p-L]q'COS(OL]p—OL]q), at o, <o,

o, —arcsin(L]q-sin(OL]q—OL]p)/qu)+n, at 04,20,

b

O pg = ' . . :
OL]p—aI‘CSIIl(L]q'Sln(OL]q—OL]p)/qu)—TI:, at 04, <0y,
In order to fulfill the boundary conditions at the layer boundaries, we are

rewritten the vectors ‘§k m 10 (5), using the transition formulas (7), in the
Cartesian coordinate system through the basic solutions u, ) for y=h and for
y=- h . We equate the obtained vectors with the given U y (x,z) when y=h and
U ;? (x, z) when y=— h (1), represented through double Fourier integral.

From the obtained equations, we find the functions A, (A,u) and H (L),
using B,if;z ).

In order to satisfy the matching conditions of the layer and the inclusion p

= ()

in the displacements (2), we rewrite them in solutions u;’ and ﬁ,ff) in

UO((pp,z)‘p _p in terms of basic solutions Rk’m (pp,(pp,z;l) (8), and also for

each inclusion # p, we rewrite the solutions §k’m(pq,(pq,z;7»), using the

solutions §k’m(pp,(pp,z;7»), according to formulas (9). So we get three

equations for each inclusion in the displacements. Applying the stress operator
to each obtained expression, we can write three more equations for each
inclusion in the form of stresses (2). Thus, we obtain N -6 infinite equations

with (N+1)-6 unknowns H, (L), H,(Au), B,i’;i(?») A(”)(k). If we now
exclude from these equations H, (A1), Hk(k,u) found earlier, using
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B,iff,z (M), get rid of the series in m and integrals in A, then we get N -6 infinite
systems of linear algebraic equations of the second kind for determining the
unknowns B,iff,z a), A,iff,z ).

The determinant of this system of equations coincides with [22].

These systems can be solved by the reduction method, and there is a
convergence of approximate solutions to the exact one. As a result, we find the
unknown B,iff,z a), A,iff,z (A). Now we substitute B,iff,z (M) in the expressions

for H, (A1) and H (A1), this will define all the unknown problems.

Numerical studies of the stress state

We have a homogeneous isotropic layer (ABS plastic) o, = 0.38,
Ey=1,700 N/mm®, which has three longitudinal cylindrical inclusions (steel)
6,=06,=0;=0.21, E,;= E,= E;=200,000 N/mm’. Geometric characteristics of

the section: R, = R, = R;= 10 mm, s = 20mm, /1 =40 mm, L,,= L,; =30 mm,
o, =0,03=m.

Displacements are set on the upper boundary
UL (x,2)=—10%(2+10") 7 -(x*+10*) 2, UP=UP =0, there are no

displacements on the lower boundary of the layer U )(Ch) =U;h) =U ;h) =0.

The infinite system of equations was reduced to a finite one—m=6. The
integrals are calculated using the Philo quadrature formulas (for oscillating
functions) and Simpson (for functions without oscillations). The accuracy of
the boundary conditions at the specified values of geometric parameters is 10

In comparison, the problem for a layer with one cylindrical inclusion has
been calculated [22].

Figure 2 shows the stress state on the cylindrical mating surface of the
layer and the first inclusion (in the body of the layer), at z= 0, MPa.

0 n/4 /2 3n/4 s 0 /4 n/2 3n/4 b1
20 10
0 . \! " .
0 =y il
5 N / = \ 7
\ / o \ i
- -50
40 \ 1 / -60 \ 1/
-60 | -70 \\ 1{[ /
2 A\ -80 =S
-80 s -90
(@) (b)

Fig. 2. Stress state on the mating surface (in the body of the layer):
(a)— Cy: (b) - O ; 1 —three inclusions; 2 — one inclusion

With an increase in the number of longitudinal bars, the maximum stresses
in the layer body decrease slightly (Fig. 2).
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The maximum stresses occur in the upper part of the layer. In the lower
part of the layer, the stresses are relatively small; therefore, they are not shown
in Figure 2.

The stresses in the body of inclusions are shown in Figure 3.

The maximum negative stresses o, (Fig.3 (a)) arise at ¢=mn/4 and
@ =37/4 in the upper part of the inclusion.

The largest stresses o, are positive, the maximum values of which arise in
the lower part of the inclusion at ¢ =6m/4 (Fig. 3 (b)). Negative stress values

o, appear in the upper part of the inclusion at p=7/2.

0 n/4 7/23n/4 7 5m/46n/4 Tnld 27 300 0 n/4 m/23n/4 7 5nld 6n/4Tnld 2n

3

oL 74
N e T G e o e 900
'

/ N

100 NE J 4T AN

~2
/ 0 Kot va
1_1 -100 1\ 4_/2/

-60 -200
(@) (b)

Fig. 3. Stress state on the mating surface (in the body of the layer):

2N
SN
X

(a)— Cy: (b) - 0, ; 1 —in the body of the first inclusion; 2 — option with one inclusion; 3 — in the
body of the second and the third inclusions

The greatest tangent stresses T, on the mating surface arise in its upper

PP
partat o=m/4 and o=37n/4.

Conclusions

Based on the generalized Fourier method, an analytical-numerical
algorithm for calculating the second main spatial problem of elasticity for the
layer with N cylindrical inclusions that are parallel to the layer surfaces has
been developed. The problem is reduced to a set of infinite systems of linear
algebraic equations.

On the strength of numerical studies of the algebraic system, it can be
argued that the solution of this system can be found with any degree of
accuracy by the reduction method. This is confirmed by the high accuracy of
fulfilling the boundary conditions.

A comparative analysis of the layer stress state with one and three
inclusions has been carried out. When the inclusions are located close, an

increase in stresses Gy in their bodies is revealed.

Further studies in this direction are relevant for a layer lying on an elastic
foundation (conjugate with a half-space) and having several longitudinal
cylindrical inclusions.
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Mipowmnixoe B.1O., [lenucosa T. B.
JOCJIIKEHHSA IPYTOi OCHOBHOI 3AJIAUI TEOPIi MPYKHOCTI JIA LIAPY 3
N IUWITHAPUYHUMU BKJIIOYEHHSAMU

Ilpy 1poexTyBaHHI KOHCTPYKLIH y BHIVIAAI apMOBAHOIO IIapy NOBOAMTHCS CTHKATHCS 3
CHTYAI[i€10, KOJM CTEP)KHI apMyBaHHsI pO3TaIlOBaHi OJIM3bKO OJHMH 10 OXHOr0. Y 1[bOMY BHIIAIKY
3pocTaE BIUIMB IX OAMH Ha OAHOro. J{Js OTpHMaHHsS HaNpy)XeHO-Ae(pOPMOBAHOIO CTaHY B 30HI
KOHTAKTY IIapy i BKIIOYCHHS HEOOXiTHO MAaTH METOJ, KMl OM JO3BOJISIB OTPHMATH PE3yJbTaT 3
BHCOKOIO TOYHICTIO.

VY wiif poGoTi 3ampoNnOHOBAHO AHATITUKO-YMCEIbHMI IMiAXiH 10 BHPIIICHHS HPOCTOPOBOI
3aj1a4i Teopii NPY)KHOCTI [Isl 1apy 3 33[aHO0 KIIBKICTIO MO3JOBXKHIX HUIIHAPHYHUX BKIHOYCHD i
3a/laHNX HAa MEKax IIapy HepeMilleHHsIX.

Po3B’s30K 3a1aui OTpUMaHO Ha OCHOBI y3aranpHeHoro Merony ®dyp'e mog0 cucTeMu piBHIHb
Jlame B JIOKaNIpHUX LWIHAPUYHHX KOOPAMHATAX, MOB'SI3aHMX 3 BKIIOYCHHSAMH 1 IEKapPTOBHX
KOOpAMHATAX, IOB'SI3aHMX 3 MexamH mapy. HeckiHueHHI cucTeMu INiHIHHHX anreOpalyHuX
PIBHSHB, SIKI OTPUMaHI B pe3yJbTaTi 3a[0BOJICHHs IPAHUYHUX YMOB i YMOB CIOJIyYCHHs LIapy 3
BKJIIOYCHHSIMH, PO3B’SI3aHO METOROM penykuil. B pesymbrari oTpumaHi mnepemilueHHS i
HANPY)KEHHS B PI3HUX TOYKAX PO3TJSHYTOro cepeoBHIna. IIpH HOPSIKY CHCTEMH DIBHSHB 6,
TOYHICTh BUKOHAHHS "PAHHYHUX YMOB cKiana 107 s 3Hauens Bix 0 10 1.

UYncenbHi JOCTIIKEHHS anreOpaliyHol CHCTEMHU PIBHIHb JAI0Th MiACTaBH CTBEPKYBATH, IO ii
pileHHs Moxe OyTn 3 OyOb-SIKHM CTYNEHEM TOYHOCTI 3HAHICHO METOAOM PEmyKLil, MIo
HiATBEPKYETHCS BUCOKOIO TOYHICTIO BUKOHAHHS IPAHHYHUX YMOB.

VY 4ucenpHOMY aHaui3i MOPIBHIOBAJINCS BAapiaHTH IIapy 3 OJHHUM 1 3 TPhOMa BKIIOYCHHIMH.
Pe3ynbTar mokasas, 110 GiM3bKe PO3TAalllyBaHHS CTEP)KHIB apMyBaHHs 301/IbIIye HANPyXXEHHS Ha
HOBEPXHI LIMX BKIIOYCHb. Takox OyaM OTpUMaHi 3HAYCHHS HANPY)KCHb HA MOBEPXHSIX KOHTAKTIB
IIapy 3 BKIIOYCHHIMH.

3anponoHOBaHMN ANrOPUTM pO3B’SI3aHHS MOXKHA BHKOPHCTOBYBATH IIPH INPOCKTYBaHHI
KOHCTPYKIIi, PO3PaXyHKOBOI CXEMOK SKHX € [ap 3 [O3JOBXHIMH LHJIiHIPUYHIUMH
BKJIIOUCHHSIMU 1 33JaHHMH Ha MEXax IIapy MepeMillCHHSX.

KiarouoBi cioBa: map 3 HMIHAPUYHUMHE BKIIOYCHHSIMH, PiBHSHHS JlaMe, y3araJibHEHH
meron Dyp'e, HECKIHUCHHI CHCTEMH JIHIHHUX aareOpaiuHuX PiBHSHb.
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Miroshnikov V.Yu., Denysova T.V.
INVESTIGATION OF THE SECOND MAIN PROBLEM OF ELASTICITY FOR A
LAYER WITH N CYLINDRICAL INCLUSIONS

When designing structures in the form of a reinforced layer, one has to deal with the situation
when the reinforcement bars are located close to each other. In this case, their influence on each
other increases. In order to obtain the stress-strain state in the contact zone of the layer and the
inclusion, it is necessary to have a method that would allow obtaining a result with high accuracy.

In this work, an analytical-numerical approach to solving the spatial problem of the theory of
elasticity for a layer with a given number of longitudinal cylindrical inclusions and displacements
given at the boundaries of the layer has been proposed.

The solution of the problem has been obtained by the generalized Fourier method with respect
to the system of Lame's equation in local cylindrical coordinates associated with inclusions and
Cartesian coordinates associated with layer boundaries. Infinite systems of linear algebraic
equations obtained by satisfying the boundary conditions and conjugation conditions of a layer
with inclusions have been solved by the reduction method. As a result, displacements and stresses
have been obtained at different points of the considered medium. When the order of the system of
equations is 6, the accuracy of fulfilling the boundary conditions was 107 for values from 0 to 1.

Numerical studies of the algebraic system of equations give grounds to assert that its solution
can be found with any degree of accuracy by the reduction method, which is confirmed by the high
accuracy of fulfilling the boundary conditions.

In the numerical analysis, variants of the layer with 1 and 3 inclusions have been compared.

The result has shown that close placement of reinforcement bars increases stresses G, on the

surface of these inclusions. The values of stresses on the layer contact surfaces with inclusions
have also been obtained.

The proposed solution algorithm can be used in the design of structures, the computational
scheme of which is the layer with longitudinal cylindrical inclusions and displacements specified
at the layer boundaries.
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infinite systems of linear algebraic equations.
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