The stability of rotating rods under the action of vibro-impact load

Authors

DOI:

https://doi.org/10.32347/2410-2547.2021.106.113-121

Keywords:

numeric differentiation, complex bend forms, geometric nonlinearity, inertia forces, axial forces, vibro-impact loads, vibro-drilling, dynamic stability

Abstract

The paper presents the investigation results of the vibro-impact loads’ influence on the stability of vibro-drilling machine’ drill-rod in the process of well in hard rock. The drilling process of such wells is significantly facilitated in case of vibro-impact action. The destroying of the rocks during the vibro-rotary drilling occurs via the complex effect of the vibration impulses and rotational motion. In this way, the task of such drill-rod study stability has actuality. In this case, the various modes of vibration and stability loss are possible. In this regard, the study was done by developed software, in which a technique of computer simulation of the oscillating motion of considerable length rotating rods under the action of axial periodic loads is implemented. Such software gives the possibility to model the oscillatory motion of rotating rods and determine the parameters by witch the dynamic stability loss of the studied system can occur. Using this software the diagrams with regions of stable and unstable motion of the rotating rod were drawn for different parameters of the considered system. The process of oscillation is considered in space with account of inertia forces and geometric nonlinearity of the rod. It is shown, that on certain rotational speeds and frequencies of vibro-impact load there are ranges of unstable motion where the run of equipment can inevitably lead to destruction. The obtained results have been analyzed. The conclusion about the possibility of running the equipment in certain frequency ranges is made.

Author Biographies

Petro Lizunov, Kyiv National University of Construction and Architecture

Doctor of Technical Sciences, Professor, Head of the Department of Fundamentals of Informatics

Valentyn Nedin, Kyiv National University of Construction and Architecture

Candidate of Technical Science, Associate Professor of the Department of Fundamentals of Informatics

References

Bazhenov V.A., Pohorelova O.S., Postnikova T.G. Khaos ta stsenariyi perekhodu do khaosu u vibroudarniy systemi. – Kyiv: Vyd-vo «Karavela», 2019. – 146 p.p.

Bakhvalov N.S., Judkov N.P., Kobelkov G.M. Chislennye metody. M.: BINOM, Laboratoriya znaniy, 2015, 639 pp.

Belyaev A. Dynamics of rod under axial impact by a body / Alexander K. Belyaev, Chien-Ching Ma, Nikita F. Morozov, Petr E. Tovstik, Tatiana P. Tovstik, Anatoly O. Shurpatov // Vestnik SPbGU. Matematika. Mekhanika. Astronomiya. – 2017. V. 4 (62). –P. 506-515.

Belyaev A. Dinamicheskiy podkhod k zadache Ishlinskogo–Lavrent'yeva / A.K. Belyayev, D.N. Il'in, N.F. Morozov // Mekhanika tverdogo tela. – 2013. No. 5. – P. 28-33.

Belyaev A. Parametric resonances in the problem of longitudinal impact on a thin rod / Alexander K. Belyaev, Nikita F. Morozov, Petr E. Tovstik, Tatiana P. Tovstik // Vestnik SPbGU. Matematika. Mekhanika. Astronomiya. – 2016. V. 3 (61). – P. 77-94.

Bolotin V.V. Dinamicheskaya ustoychivost uprugih system. M.: Izdatelstvo tekhniko-teoreticheskoj literatury, 1956, 600 pp.

Lizunov P.P., Nedin V.O. The gyroscopic forces influence on the oscillations of the rotating shafts // Strength of materials and theory of structures. – 2020. – Issue 105. P. 223–231.

Lizunov P., Nedin V. The parametric oscillations of rotating elastic rods under the action of the periodic axial forces // Management of Development of Complex Systems. – 2020, 44, 56–64.

Morozov N.F. Static and Dynamics of a Rod at the Longitudinal Loading / N.F. Morozov, P.E. Tovstik, T.P. Tovstik // Vestnik YUUrGU. Seriya «Matematicheskoye modelirovaniye i programmirovaniye». – 2014. – Vol. 7, No. 1. – S. 76–89.

Morozov N.F. The rod dynamics under short longitudinal impact / N.F. Morozov, P.E. Tovstik // Vestnik SPbGU. – 2013. – Vup. 3. P.131–141.

Munitsyn A.I. Prostranstvennyye izgibnyye kolebaniya sterzhnya, vrashchayushchegosya vokrug svoyey osi (Space bending oscillations of a rod rotating around its axis) // Matematicheskoye i komp'yuternoye modelirovaniye mashin i sistem. – 2008. S. 64–67.

Nedin V.O. The parametric oscillations of rotating rods under action of the axial beat load // Strength of materials and theory of structures. – 2020. – Issue 104. P. 309 – 320.

Nedin V. Numerical differentiation of complex bend forms of long rotating rods // Management of Development of Complex Systems. – 2020, 43, 110 –115.

Changgen Bu. Arithmetic solution for the axial vibration of drill string coupling with a down-the-hole hammer in rock drilling / Changgen Bu, Xiaofeng Li, Long Sun and Boru Xia // Journal of Vibration and Control. – 2016, Vol. 22(13). – P. 3090-3101.

Maurice Petyt. Introduction to Finite Element Vibration Analysis. Cambridge University Press, 1990. – 558 p.

Songyong Liu. Coupling vibration analysis of auger drilling system / Songyong Liu, Xinxia Cui, Xiaohui Liu // Journal of vibroengineering. – 2013. Vol. 15. – P.1442–1453.

Yimin Wei. Influence of Axial Loads to Propagation Characteristics of the Elastic Wave in a Non‑Uniform Shaft / Yimin Wei, Zhiwei Zhao, Wenhua Chen and Qi Liu // Chinese Journal of Mechanical Engineering. – 2019 – No. 32:70. P.13.

Downloads

Published

2021-05-24

Issue

Section

Статті